1
|
Oliveira-Rizzo C, Colantuono CL, Fernández-Alvarez AJ, Boccaccio GL, Garat B, Sotelo-Silveira JR, Khan S, Ignatchenko V, Lee YS, Kislinger T, Liu SK, Fort RS, Duhagon MA. Multi-Omics Study Reveals Nc886/vtRNA2-1 as a Positive Regulator of Prostate Cancer Cell Immunity. J Proteome Res 2025; 24:433-448. [PMID: 39723625 DOI: 10.1021/acs.jproteome.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Noncoding RNA 886 has emerged as a pivotal regulatory RNA with distinct functions across tissues, acting as a regulator of protein activity by directly binding to protein partners. While it is well recognized as a tumor suppressor in prostate cancer, the underlying molecular mechanisms remain elusive. To discover the principal pathways regulated by nc886 in prostate cancer, we used a transcriptomic and proteomic approach analyzing malignant DU145, LNCaP, PC3, and benign RWPE-1 prostate cell line models transiently transfected with in vitro transcribed nc886 or antisense oligonucleotides. Multiomics revelead a significant enrichment of immune system-related pathways across the cell lines, including cytokines and interferon signaling. The interferon response provoked by nc886 was validated by functional assays. The invariability of PKR phosphorylation and NF-κB activity in the gain/loss of nc886 function experiments and the positive regulation of innate immunity suggest a PKR-independent mechanism of nc886 action. Accordingly, the GSEA of the PRAD-TCGA data set revealed immune stimulation as the nc886 most associated node also in the clinical setting. Our study showed that the reduction of nc886 leads to a blunted immune response in prostate cancer.
Collapse
Affiliation(s)
- Carolina Oliveira-Rizzo
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Camilla L Colantuono
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| | - Ana J Fernández-Alvarez
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
| | - Graciela L Boccaccio
- Laboratorio de Biología Celular del ARN, Instituto Leloir (FIL) and Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA)-Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires 1405, Argentina
- Departamento de Fisiología y Biología Molecular y Celular (FBMyC), Facultad de Ciencias Exactas y Naturales (FCEN), Universidad de Buenos Aires, Buenos Aires 1428, Argentina
| | - Beatriz Garat
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Shahbaz Khan
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
| | | | - Yong Sun Lee
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do 10408, South Korea
| | - Thomas Kislinger
- Princess Margaret Hospital Cancer Centre, Toronto, Ontario M5G 2C4, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Stanley K Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Odette Cancer Centre and Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5T 1P5, Canada
| | - Rafael S Fort
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo 11600, Uruguay
| | - María A Duhagon
- Facultad de Ciencias, Universidad de la República, Sección Genómica Funcional, Montevideo 11400, Uruguay
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
2
|
Huda NA, Chatterjee S, Sultana N, Sengupta S, Sarkar D. Investigating the clinical significance of E2F5 expression in circulating extracellular vesicles in prostate carcinoma. Urologia 2025:3915603241313276. [PMID: 39907045 DOI: 10.1177/03915603241313276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
BACKGROUND Prostate-specific antigen (PSA) based screening strategy has caused a marked improvement in prostate cancer detection and reduction in associated mortality. However, its specificity and sensitivity is not optimal for differentiating different forms of prostate cancer, resulting in overtreatment of indolent tumors. E2F5, a member of the family of transcription factors plays essential roles during many cellular processes. E2F5 amplification is a major event in PCa. A liquid biopsy is a minimally invasive procedure to investigate the cancer-related molecules in circulating tumor cells (CTCs), cell-free DNA, and extracellular vesicles (EVs). Serum and plasma are attractive sources of EV-based biomarkers as blood sample acquisition is a minimally invasive procedure. Given, the shortcomings of PSA as a serum marker, the suitability of E2F5 expression and chemical properties of EVs can be used for the diagnosis of clinically significant prostate cancer. OBJECTIVES To technically refine the current histopathology-based diagnosis of PCa by adding it to the molecular readouts specific to disease states and biochemical fingerprints of EVs. MATERIALS AND METHODS The study included 100 TRUS-biopsied tissues, 50 representing 4 Gleason grades and another 50 representing BPH. Expression of E2F5 was studied in all the qualified tissues by Immunohistochemistry (IHC). Blood from patients was collected and EVs were isolated and characterized. RESULTS E2F5 was highly upregulated through all Gleason grades, the maximum being in Gleason 10(5 + 5) and the minimum in Gleason 7(3 + 4), as compared to BPH. The EVs isolated from blood plasma were within 30-200 nm in size. CONCLUSION E2F5, being a transcription factor, is highly overexpressed in malignant biopsy tissues, through all Gleason grades. BPH tissues served as control samples. EVs from blood plasma might serve as a potential liquid biopsy marker for predicting disease progression and better prognosis.
Collapse
Affiliation(s)
- Noushim Akram Huda
- Department of Urology, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Souvik Chatterjee
- Department of Urology, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| | - Nahid Sultana
- Department of Biochemistry, University of Calcutta, Kolkata, West Bengal, India
| | | | - Debansu Sarkar
- Department of Urology, IPGMER and SSKM Hospital, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Gulia S, Chandra P, Das A. Combating anoikis resistance: bioactive compounds transforming prostate cancer therapy. Anticancer Drugs 2024; 35:687-697. [PMID: 38743565 DOI: 10.1097/cad.0000000000001616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The study aims to discuss the challenges associated with treating prostate cancer (PCa), which is known for its complexity and drug resistance. It attempts to find differentially expressed genes (DEGs), such as those linked to anoikis resistance and circulating tumor cells, in PCa samples. This study involves analyzing the functional roles of these DEGs using gene enrichment analysis, and then screening of 102 bioactive compounds to identify a combination that can control the expression of the identified DEGs. In this study, 53 DEGs were identified from PCa samples including anoikis-resistant PCa cells and circulating tumor cells in PCa. Gene enrichment analysis with regards to functional enrichment of DEGs was performed. An inclusive screening process was carried out among 102 bioactive compounds to identify a combination capable of affecting and regulating the expression of selected DEGs. Eventually, gastrodin, nitidine chloride, chenodeoxycholic acid, and bilobalide were selected, as their combination demonstrated ability to modulate expression of 50 out of the 53 genes targeted. The subsequent analysis focused on investigating the biological pathways and processes influenced by this combination. The findings revealed a multifaceted and multidimensional approach to tumor regression. The combination of bioactive compounds exhibited effects on various genes including those related to production of inflammatory cytokines, cell proliferation, autophagy, apoptosis, angiogenesis, and metastasis. The current study has made a valuable contribution to the development of a combination of bioactive natural compounds that can significantly impede the development of treatment resistance in prostate tumor while countering the tumors' evasion of the immune system. The implications of this study are highly significant as it suggests the creation of an enhanced immunotherapeutic, natural therapeutic concoction with combinatorial potential.
Collapse
Affiliation(s)
- Shweta Gulia
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | | | | |
Collapse
|
4
|
Sarfraz M, Abida, Eltaib L, Asdaq SMB, Guetat A, Alzahrani AK, Alanazi SS, Aaghaz S, Singla N, Imran M. Overcoming chemoresistance and radio resistance in prostate cancer: The emergent role of non-coding RNAs. Pathol Res Pract 2024; 255:155179. [PMID: 38320439 DOI: 10.1016/j.prp.2024.155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 02/08/2024]
Abstract
Prostate cancer (PCa) continues to be a major health concern worldwide, with its resistance to chemotherapy and radiation therapy presenting major hurdles in successful treatment. While patients with localized prostate cancer generally have a good survival rate, those with metastatic prostate cancer often face a grim prognosis, even with aggressive treatments using various methods. The high mortality rate in severe cases is largely due to the lack of treatment options that can offer lasting results, especially considering the significant genetic diversity found in tumors at the genomic level. This comprehensive review examines the intricate molecular mechanisms governing resistance in PCa, emphasising the pivotal contributions of non-coding RNAs (ncRNAs). We delve into the diverse roles of microRNAs, long ncRNAs, and other non-coding elements as critical regulators of key cellular processes involved in CR & RR. The review emphasizes the diagnostic potential of ncRNAs as predictive biomarkers for treatment response, offering insights into patient stratification and personalized therapeutic approaches. Additionally, we explore the therapeutic implications of targeting ncRNAs to overcome CR & RR, highlighting innovative strategies to restore treatment sensitivity. By synthesizing current knowledge, this review not only provides a comprehension of the chemical basis of resistance in PCa but also identifies gaps in knowledge, paving the way for future research directions. Ultimately, this exploration of ncRNA perspectives offers a roadmap for advancing precision medicine in PCa, potentially transforming therapeutic paradigms and improving outcomes for patients facing the challenges of treatment resistance.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain 64141, United Arab Emirates
| | - Abida
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | | | - Arbi Guetat
- Department of Biological Sciences, College of Sciences, Northern Border University, Arar 73213, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Medical Applied Science, Northern Border University, Arar 91431, Saudi Arabia
| | | | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Neelam Singla
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur 302017, India
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia.
| |
Collapse
|
5
|
Ramu A, Chinnappan J. Bioinformatics-Assisted Extraction of All PCa miRNAs and their Target Genes. Microrna 2024; 13:33-55. [PMID: 38284737 DOI: 10.2174/0122115366253242231020053221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/03/2023] [Accepted: 08/23/2023] [Indexed: 01/30/2024]
Abstract
INTRODUCTION To retrieve, and classify PCa miRNAs and identify the functional relationship between miRNAs and their targets through literature collection with computational analysis. BACKGROUND MicroRNAs play a role in gene regulation, which can either repress or activate the gene. Hence, the functions of miRNAs are dependent on the target gene. This study will be the first of its kind to combine computational analysis with corpus PCa data. Effectively, our study reported the huge number of miRNAs associated with PCa along with functional information. OBJECTIVE The identification and classification of previously known full PCa miRNAs and their targets were made possible by mining the literature data. Systems Biology and curated data mining assisted in identifying optimum miRNAs and their target genes for PCa therapy. METHODS PubMed database was used to collect the PCa literature up to December 2021. Pubmed. mineR package was used to extract the microRNAs associated articles and manual curation was performed to classify the microRNAs based on the function in PCa. PPI was constructed using the STRING database. Pathway analysis was performed using PANTHER and ToppGene Suite Software. Functional analysis was performed using ShinyGO software. Cluster analysis was performed using MCODE 2.0, and Hub gene analysis was performed using cytoHubba. The genemiRNA network was reconstructed using Cytoscape. RESULTS Unique PCa miRNAs were retrieved and classified from mined PCa literature. Six hundred and five unique miRNAs from 250 articles were considered as oncomiRs to trigger PCa. One hundred and twenty unique miRNAs from 118 articles were considered Tumor Suppressor miRNAs to suppress the PCa. Twenty-four unique miRNAs from 22 articles were utilized as treatment miRNAs to treat PCa. miRNAs target genes and their significant pathways, functions and hub genes were identified. CONCLUSION miR-27a, miR-34b, miR-495, miR-23b, miR-100, miR-218, Let-7a family, miR-27a- 5p, miR-34c, miR-34a, miR-143/-145, miR-125b, miR-124 and miR-205 with their target genes AKT1, SRC, CTNNB1, HRAS, MYC and TP53 are significant PCa targets.
Collapse
Affiliation(s)
- Akilandeswari Ramu
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Jayaprakash Chinnappan
- Anthropology and Health Informatics Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
6
|
Azani A, Omran SP, Ghasrsaz H, Idani A, Eliaderani MK, Peirovi N, Dokhani N, Lotfalizadeh MH, Rezaei MM, Ghahfarokhi MS, KarkonShayan S, Hanjani PN, Kardaan Z, Navashenagh JG, Yousefi M, Abdolahi M, Salmaninejad A. MicroRNAs as biomarkers for early diagnosis, targeting and prognosis of prostate cancer. Pathol Res Pract 2023; 248:154618. [PMID: 37331185 DOI: 10.1016/j.prp.2023.154618] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Globally, prostate cancer (PC) is leading cause of cancer-related mortality in men worldwide. Despite significant advances in the treatment and management of this disease, the cure rates for PC remains low, largely due to late detection. PC detection is mostly reliant on prostate-specific antigen (PSA) and digital rectal examination (DRE); however, due to the low positive predictive value of current diagnostics, there is an urgent need to identify new accurate biomarkers. Recent studies support the biological role of microRNAs (miRNAs) in the initiation and progression of PC, as well as their potential as novel biomarkers for patients' diagnosis, prognosis, and disease relapse. In the advanced stages, cancer-cell-derived small extracellular vesicles (SEVs) may constitute a significant part of circulating vesicles and cause detectable changes in the plasma vesicular miRNA profile. Recent computational model for the identification of miRNA biomarkers discussed. In addition, accumulating evidence indicates that miRNAs can be utilized to target PC cells. In this article, the current understanding of the role of microRNAs and exosomes in the pathogenesis and their significance in PC prognosis, early diagnosis, chemoresistance, and treatment are reviewed.
Collapse
Affiliation(s)
- Alireza Azani
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Parvizi Omran
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haniyeh Ghasrsaz
- Faculty of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran
| | - Asra Idani
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Niloufar Peirovi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Negar Dokhani
- Student Research Committee, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | | | | | - Sepideh KarkonShayan
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parisa Najari Hanjani
- Department of Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Zahra Kardaan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | | | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mitra Abdolahi
- Department of Pathology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Regenerative Medicine, Organ Procurement and Transplantation Multi-Disciplinary Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Papanikolaou S, Vourda A, Syggelos S, Gyftopoulos K. Cell Plasticity and Prostate Cancer: The Role of Epithelial-Mesenchymal Transition in Tumor Progression, Invasion, Metastasis and Cancer Therapy Resistance. Cancers (Basel) 2021; 13:cancers13112795. [PMID: 34199763 PMCID: PMC8199975 DOI: 10.3390/cancers13112795] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Although epithelial-to-mesenchymal transition (EMT) is a well-known cellular process involved during normal embryogenesis and wound healing, it also has a dark side; it is a complex process that provides tumor cells with a more aggressive phenotype, facilitating tumor metastasis and even resistance to therapy. This review focuses on the key pathways of EMT in the pathogenesis of prostate cancer and the development of metastases and evasion of currently available treatments. Abstract Prostate cancer, the second most common malignancy in men, is characterized by high heterogeneity that poses several therapeutic challenges. Epithelial–mesenchymal transition (EMT) is a dynamic, reversible cellular process which is essential in normal embryonic morphogenesis and wound healing. However, the cellular changes that are induced by EMT suggest that it may also play a central role in tumor progression, invasion, metastasis, and resistance to current therapeutic options. These changes include enhanced motility and loss of cell–cell adhesion that form a more aggressive cellular phenotype. Moreover, the reverse process (MET) is a necessary element of the metastatic tumor process. It is highly probable that this cell plasticity reflects a hybrid state between epithelial and mesenchymal status. In this review, we describe the underlying key mechanisms of the EMT-induced phenotype modulation that contribute to prostate tumor aggressiveness and cancer therapy resistance, in an effort to provide a framework of this complex cellular process.
Collapse
|
8
|
Dai Y, Gao X. Inhibition of cancer cell-derived exosomal microRNA-183 suppresses cell growth and metastasis in prostate cancer by upregulating TPM1. Cancer Cell Int 2021; 21:145. [PMID: 33653339 PMCID: PMC7927228 DOI: 10.1186/s12935-020-01686-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Emerging evidence continues to highlight the significant role of microRNAs (miRNAs) in the regulation of cancer growth and metastasis. Herein, the current study aimed to elucidate the role of exosomal miR-183 in prostate cancer development. METHODS Initially, public microarray-based gene expression profiling of prostate cancer was employed to identify differentially expressed miRNAs. The putative target gene TPM1 of miR-183 was subsequently predicted, followed by the application of a luciferase reporter assay and examination of the expression patterns in prostate cancer patients and cell lines. The effects of miR-183 and TPM1 on processes such as cell proliferation, invasion and migration were evaluated using in vitro gain- and loss-of-function experiments. The effect of PC3 cells-derived exosomal miR-183 was validated in LNCaP cells. In vivo experiments were also performed to examine the effect of miR-183 on prostate tumor growth. RESULTS High expression of miR-183 accompanied with low expression of TPM1 was detected in prostate cancer. Our data indicated that miR-183 could target and downregulate TPM1, with the overexpression of miR-183 and exosomal miR-183 found to promote cell proliferation, migration, and invasion in prostate cancer. Furthermore, the tumor-promoting effect of exosome-mediated delivery of miR-183 was subsequently confirmed in a tumor xenograft model. CONCLUSIONS Taken together, the key findings of our study demonstrate that prostate cancer cell-derived exosomal miR-183 enhance prostate cancer cell proliferation, invasion and migration via the downregulation of TPM1, highlighting a promising therapeutic target against prostate cancer.
Collapse
Affiliation(s)
- Yanping Dai
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China
- Center of Reproductive Medicine, Yueyang Maternity and Child Health Hospital, Yueyang, 414000, People's Republic of China
- Centre for Reproductive Research, National School of Medicine Guiyang Medical University Magic, Guiyang, 550004, China
| | - Xiaoqin Gao
- Department of Pathology and Pathophysiology, College of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, People's Republic of China.
- Zunyi Medical and Pharmaceutical College, No. 2, North Section of Ping an Avenue, Xinpu New District, Zunyi, 563000, Guizhou, People's Republic of China.
- Centre for Reproductive Research, National School of Medicine Guiyang Medical University Magic, Guiyang, 550004, China.
| |
Collapse
|
9
|
Noncoding RNAs in the Interplay between Tumor Cells and Cancer-Associated Fibroblasts: Signals to Catch and Targets to Hit. Cancers (Basel) 2021; 13:cancers13040709. [PMID: 33572359 PMCID: PMC7916113 DOI: 10.3390/cancers13040709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Cancer aggressiveness is the result of a proficient bidirectional interaction between tumor and stromal cells within the tumor microenvironment, among which a major role is played by the so-called cancer-associated fibroblasts. Upon such interplay, both cancer cells and fibroblasts are reprogrammed to sustain malignancy, with changes in the repertoire of noncoding RNAs, mainly microRNAs and long noncoding RNAs. Such molecules are also exchanged between the two cell types through extracellular vesicles. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly or extracellularly to sustain tumor-stroma interplay. We also provide our view regarding the possible clinical utility of such noncoding RNAs as therapeutic target/tools or biomarkers to predict patient outcome or response to specific treatments. Abstract Cancer development and progression are not solely cell-autonomous and genetically driven processes. Dynamic interaction of cancer cells with the surrounding microenvironment, intended as the chemical/physical conditions as well as the mixture of non-neoplastic cells of the tumor niche, drive epigenetic changes that are pivotal for the acquisition of malignant traits. Cancer-associated fibroblasts (CAF), namely fibroblasts that, corrupted by cancer cells, acquire a myofibroblast-like reactive phenotype, are able to sustain tumor features by the secretion of soluble paracrine signals and the delivery extracellular vesicles. In such diabolic liaison, a major role has been ascribed to noncoding RNAs. Defined as RNAs that are functional though not being translated into proteins, noncoding RNAs predominantly act as regulators of gene expression at both the transcriptional and post-transcriptional levels. In this review, we summarize the current knowledge of microRNAs and long noncoding RNAs that act intracellularly in either CAFs or cancer cells to sustain tumor-stroma interplay. We also report on the major role of extracellular noncoding RNAs that are bidirectionally transferred between either cell type. Upon presenting a comprehensive view of the existing literature, we provide our critical opinion regarding the possible clinical utility of tumor-stroma related noncoding RNAs as therapeutic target/tools or prognostic/predictive biomarkers.
Collapse
|
10
|
Lu K, Yu M, Chen Y. Non-coding RNAs regulating androgen receptor signaling pathways in prostate cancer. Clin Chim Acta 2020; 513:57-63. [PMID: 33309734 DOI: 10.1016/j.cca.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer (PCa) is one of the most common malignancies for men worldwide, and abnormal activation of the androgen receptor (AR) signaling plays an important role in the progression of PCa. However, in the androgen deprivation therapy (ADT), AR signaling inevitably recovered, as a result, exploring novel regulating mechanisms is of great importance. Recently, non-coding RNAs (ncRNAs), including microRNAs, long non-coding RNAs, circular RNAs, could be involved in the progression of PCa, and participate in the regulatory network of AR signaling in a variety of ways. This will help to identify novel molecular mechanisms to promote the development of PCa and find new potential therapeutic targets. In this review, we provide a synopsis of the latest research relating to ncRNAs and associated AR signaling in PCa.
Collapse
Affiliation(s)
- Ke Lu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Muyuan Yu
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China
| | - Yongchang Chen
- Department of Urology, Changshu Second People's Hospital, Yangzhou University Fifth Clinical Medical College, Changshu, China.
| |
Collapse
|
11
|
A novel miRNA inhibits metastasis of prostate cancer via decreasing CREBBP-mediated histone acetylation. J Cancer Res Clin Oncol 2020; 147:469-480. [PMID: 33221996 DOI: 10.1007/s00432-020-03455-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 11/05/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND To identify novel miRNAs implicated in prostate cancer metastasis. METHODS Sixty-five prostate cancer tissues and paired pan-cancer tissues were sequenced. Novel miRNAs were re-analyzed by MIREAP program. Biological functions of miR-N5 were transwell experiment and colony formation. Target genes of miR-N5 were analyzed by bioinformatic analysis. Downstream of target gene was analyzed by The Cancer Genome Atlas (TCGA) and Memorial Sloan Kettering Cancer Center (MSKCC) databases and confirmed by CHIP experiment. RESULTS We identified a novel miRNA-miR-N5, which was downregulated in PCa cells, PCa tissue, and in the serum of patients with PCa. Knockout of miR-N5 enhanced migration and invasiveness in vitro. miR-N5 specified targeted CREBBP 3'-UTR and inhibited CREBBP expression, which mediated H3K56 acetylation at the promoter of EGFR, β-catenin and CDH1. CONCLUSION This study may shed the light on miR-N5 which influences metastasis via histone acetylation.
Collapse
|
12
|
Sheetz T, Mills J, Tessari A, Pawlikowski M, Braddom AE, Posid T, Zynger DL, James C, Embrione V, Parbhoo K, Foray C, Coppola V, Croce CM, Palmieri D. NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers (Basel) 2020; 12:E1861. [PMID: 32664322 PMCID: PMC7408652 DOI: 10.3390/cancers12071861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and second most common cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is only temporarily effective for advanced-stage PCa, as the disease inevitably progresses to castration-resistant prostate cancer (CRPC). The protein nucleolin (NCL) is overexpressed in several types of human tumors where it is also mislocalized to the cell surface. We previously reported the identification of a single-chain fragment variable (scFv) immuno-agent that is able to bind NCL on the surface of breast cancer cells and inhibit proliferation both in vitro and in vivo. In the present study, we evaluated whether NCL could be a valid therapeutic target for PCa, utilizing DU145, PC3 (CRPC), and LNCaP (androgen-sensitive) cell lines. First, we interrogated the publicly available databases and noted that higher NCL mRNA levels are associated with higher Gleason Scores as well as with recurrent and metastatic tumors. Then, using our anti-NCL scFv, we demonstrated that NCL is expressed on the surface of all three tested cell lines and that NCL inhibition results in reduced proliferation and migration. We also measured the inhibitory effect of NCL targeting on the biogenesis of oncogenic microRNAs such as miR-21, -221 and -222, which was cell context dependent. Taken together, our data provide evidence that NCL targeting inhibits the key hallmarks of malignancy in PCa cells and may provide a novel therapeutic option for patients with advanced-stage PCa.
Collapse
Affiliation(s)
- Tyler Sheetz
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Joseph Mills
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan Pawlikowski
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Braddom
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tasha Posid
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Debra L. Zynger
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Cindy James
- Mass Spectroscopy and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA;
| | - Valerio Embrione
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kareesma Parbhoo
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Foray
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
13
|
Liu D, Kuai Y, Zhu R, Zhou C, Tao Y, Han W, Chen Q. Prognosis of prostate cancer and bone metastasis pattern of patients: a SEER-based study and a local hospital based study from China. Sci Rep 2020; 10:9104. [PMID: 32499554 PMCID: PMC7272631 DOI: 10.1038/s41598-020-64073-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 03/27/2020] [Indexed: 11/29/2022] Open
Abstract
Prostate cancer (PCa) is the leading cause of cancer-related death among men worldwide. Knowledge of the prognostic factors of PCa and the bone metastasis pattern of patients would be helpful for patients and doctors. The data of 177,255 patients with prostate cancer diagnosed between 2010 and 2013 with at least five years of follow-up were retrieved from the Surveillance, Epidemiology, and End Results (SEER) database. Multivariate Cox regression analysis was used to determine the predictive value of patients’ characteristics for survival after adjusting for other variates. Multivariate logistic regression analysis was used to evaluate the odds ratio of bone metastasis in PCa patients. The predictive value of age, race, marital status, and tumor characteristics were compared. The survival of patients with different socioeconomic statuses and bone metastasis statuses was compared by Kaplan–Meier analysis. A total of 1,335 patients with prostate cancer diagnosed between 2009 and 2015 were enrolled from the Second Affiliated Hospital of Zhejiang University School of Medicine. The survival of patients with different prostate-specific antigen (PSA) levels, Gleason scores, marital statuses and bone metastasis statuses was compared by Kaplan-Meier analysis. In SEER database, 96.74% of patients were 50 years of age or older. Multivariate Cox analysis revealed that for PCa patients, age at presentation, older age, single marital status, lower socioeconomic status, higher PSA level, T1 and N0 stage, and bone metastasis were independent risk factors for increased mortality. Multivariate logistic regression analysis revealed that patients who were married, were living in urban areas, had lower PSA levels, underwent surgery, and radiation had lower OR factors for bone metastasis. Asian or Pacific Islander, better socioeconomic status, lived in urban areas, married marital status, lower PSA levels and lower Gleason scores were better prognostic factors in PCa. Additionally, patients with single or divorced marital status, who were living in rural places had higher PSA levels, and T1 and N0 stages have a high OR for bone metastasis.
Collapse
Affiliation(s)
- Dongyu Liu
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Kuai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ruohui Zhu
- Department of Internal Medicine, Lincoln Medical Center,234 E149th Street, The Bronx, NY, 10451, USA
| | - Chenhe Zhou
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiqing Tao
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qixin Chen
- Department of Orthopedics Surgery, 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
14
|
Ye J, Gao M, Guo X, Zhang H, Jiang F. Breviscapine suppresses the growth and metastasis of prostate cancer through regulating PAQR4-mediated PI3K/Akt pathway. Biomed Pharmacother 2020; 127:110223. [PMID: 32413672 DOI: 10.1016/j.biopha.2020.110223] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES Prostate cancer, one of the most frequently diagnosed tumors of men, leads to poor quality of life. Previous studies have shown that breviscapine (BRE) exerts therapeutic activity in malignant tumors. However, the role and mechanism of BRE exhibit an anti-tumor effect on prostate cancer are largely unknown. METHODS The mRNA and protein levels in prostate cancer tissues and cell lines were measured using RT-qPCR, western blot, and immunohistochemical staining, respectively. Cell proliferation, invasion, and migration in both PC3 and DU145 cells were evaluated using CCK-8 and Transwell assay. The effect of BRE on cell proliferation and metastasis by regulating the PAQR4-mediated PI3K/Akt pathway in vitro and in vivo was determined. RESULTS PAQR4 was significantly overexpressed in prostate cancer tissues and cell lines, which was positively correlated with poor prognosis. Knockdown of PAQR4 inhibited the proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) of both PC3 and DU145 cells. Mechanistically, BRE treatment significantly suppressed the malignant biological behavior of both prostate cancer cells by downregulating PAQR4 and blocking the PI3K/Akt pathway. In vivo experiments, BRE administration remarkably inhibited tumor growth and metastasis in a xenograft model of prostate cancer. CONCLUSION Our findings revealed that BRE exerts anti-tumor and anti-metastasis roles in prostate cancer by inhibiting PAQR4-mediated PI3K/Akt pathway, which provides a new therapeutic agent for prostate cancer clinical treatment.
Collapse
Affiliation(s)
- Jiwei Ye
- Department of Urology, Nanyang Second People's Hospital of Henan Province, Nanyang, 473000, Henan, China.
| | - Mingquan Gao
- Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China.
| | - Xinwu Guo
- Department of Urology, Nanyang Second People's Hospital of Henan Province, Nanyang, 473000, Henan, China.
| | - Henan Zhang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai, 201403, China.
| | - Fuchun Jiang
- Department of Pharmaceutical Botany, School of Pharmacy, The Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
15
|
Barlak N, Capik O, Sanli F, Kilic A, Aytatli A, Yazici A, Ortucu S, Ittmann M, Karatas OF. ING5 inhibits cancer aggressiveness by inhibiting Akt and activating p53 in prostate cancer. Cell Biol Int 2020; 44:242-252. [PMID: 31475765 DOI: 10.1002/cbin.11227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Prostate cancer (PCa) is one of the most common types of cancer in men. In several recent studies, chromosomal deletions in the q arm of chromosome 2, where ING5 resides within, have been identified in various cancer types including PCa. In this study, we investigate the role of ING5 as a tumor suppressor in PCa. We examined the expression level of ING5 in tissue samples and cell lines using quantitative real-time polymerase chain reaction and western blot analysis. We tested the in vitro tumor suppressor potential of ING5 in PC3 and LNCaP cells stably overexpressing it using cell viability, colony formation, migration, invasion, and apoptosis assays. We then investigated the effects of ING5 on the Akt and p53 signaling using western blot analysis. We show that ING5 is significantly downregulated in PCa tumor tissue samples and cell lines compared with the corresponding controls. In vitro assays demonstrate that ING5 effectively suppresses proliferative, clonogenic, migratory, and invasive potential and induce apoptosis in PCa cells. ING5 may potentially exert its anti-tumor potential by inhibiting AKT and inducing p53 signaling pathways. Our findings demonstrate that ING5 possesses tumor suppressor roles in vitro, pointing its importance during the prostatic carcinogenesis processes.
Collapse
Affiliation(s)
- Neslisah Barlak
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Ozel Capik
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Fatma Sanli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Ahsen Kilic
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Abdulmelik Aytatli
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Aysenur Yazici
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Serkan Ortucu
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Michael Ittmann
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA.,Michael E. DeBakey VAMC, Houston, Texas, 77030, USA
| | - Omer Faruk Karatas
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| |
Collapse
|
16
|
Gao G, Xiu D, Yang B, Sun D, Wei X, Ding Y, Ma Y, Wang Z. miR-129-5p inhibits prostate cancer proliferation via targeting ETV1. Onco Targets Ther 2019; 12:3531-3544. [PMID: 31190859 PMCID: PMC6512784 DOI: 10.2147/ott.s183435] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Prostate cancer is one of the most commonly diagnosed diseases in males. Methods RT-qPCR was used to detect miR-129-5p expression in tumor tissues and adjacent normal tissues from patients with prostate cancer. The cell proliferation assay and colony forming assay were used to study the role of miR-129-5p in mediating prostate cancer cell growth. Bioinformatic analysis and dual luciferase assay were performed to predict and confirm ETV1 as a target gene of miR-129-5p. Results We found that miR-129-5p levels were decreased significantly in human prostate cancer tissues compared with matched normal tissues from patients with prostate cancer. Overexpression of miR-129-5p suppressed prostate cancer cell growth while antagonist of miR-129-5p promoted cell proliferation in immortal prostate cell line RWPE-1. In addition, elevation of miR-129-5p decreased ETV1 expression in prostate cancer cells while downregulation of miR-129-5p increased ETV1 expression in RWPE-1. Mechanistically, ETV1 is confirmed a direct target of miR-129-5p in prostate cancer cells. Through repression of ETV1 expression, miR-129-5p could inactivate YAP signaling in prostate cancer cells. In addition, overexpression of ETV1 attenuated miR-129-5p induced cell proliferation in prostate cancer cells. Correlation analysis further revealed that there was a negative correlation between miR-129-5p levels and ETV1 mRNA levels in tumor tissues from patients with prostate cancer. Conclusion Our results identified miR-129-5p as a tumor suppressor in prostate cancer via repression of ETV1.
Collapse
Affiliation(s)
- Ge Gao
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dianhui Xiu
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Yang
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Daju Sun
- Department of Pathology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Xin Wei
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Youpeng Ding
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Yanan Ma
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| | - Zhixin Wang
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China,
| |
Collapse
|
17
|
Zhu Y, Tong Y, Wu J, Liu Y, Zhao M. Knockdown of LncRNA GHET1 suppresses prostate cancer cell proliferation by inhibiting HIF-1α/Notch-1 signaling pathway via KLF2. Biofactors 2019; 45:364-373. [PMID: 30609158 DOI: 10.1002/biof.1486] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/13/2022]
Abstract
Prostate cancer (PC) is one of the most common cancers in male groups worldwide. Long noncoding RNAs (LncRNAs) are reported to be dysregulated in a variety of cancers, including PC. This study aimed to explore the role of LncRNA GHET1 in the pathogenesis of PC. RT-qPCR was carried out to examine the relative expression level of GHET1 in PC patients. In vitro, GHET1 siRNA (si-GHET1) was used to investigate the biological role of GHET1 in PC cell lines. Cell proliferation was detected by CCK-8 and colony formation assay, while cell cycle and cell apoptosis were analyzed using flow cytometry. Moreover, western blot was carried out to measure the protein expression levels of KLF2 and HIF-1α/Notch-1 signal pathway. We found that GHET1 showed higher expression in PC tissues and had a negative correlation with KLF2 expression. Knockdown of GHET1 significantly suppressed the cell proliferation, induced cell cycle arrest at G0/G1 phase and promoted cell apoptosis. Additionally, si-GHET1 transfection induced KLF2 upregulation and HIF-1α/Notch-1 signal pathway suppression, which could be rescued by si-KLF2 transfection. These results suggest the key role of GHET1 in PC progression. Moreover, GHET1 might be explored to be a potential target for clinical treatment of PC. © 2019 BioFactors, 45(3):364-373, 2019.
Collapse
Affiliation(s)
- Yanfeng Zhu
- Department of Urology, Tangshan People's Hospital, Tangshan, China
| | - Yue Tong
- Chinese Academy of Medical Sciences, Graduate School of Peking Union Medical College, Beijing, China
| | - Jianhua Wu
- Department of Reproduction and Genetics, Maternity and Child Health Care Hospital, Tangshan, China
| | - Yuejuan Liu
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan, China
| | - Mingjia Zhao
- Department of Reproduction and Genetics, Maternity and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
18
|
MicroRNA Expression Profiles in Upper Tract Urothelial Carcinoma Differentiate Tumor Grade, Stage, and Survival: Implications for Clinical Decision-Making. Urology 2019; 123:93-100. [DOI: 10.1016/j.urology.2018.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/05/2018] [Accepted: 10/02/2018] [Indexed: 12/14/2022]
|
19
|
The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:219. [PMID: 30185212 PMCID: PMC6125869 DOI: 10.1186/s13046-018-0895-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 08/28/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Previous studies report that miR-1-3p, a member of the microRNA-1 family (miR-1), and functions as a tumor suppressor in several different cancers. However, little is known regarding the biological role and intrinsic regulatory mechanisms of miR-1-3p in prostate cancer (PCa). METHODS In this study, the expression levels of miR-1-3p were first examined in PCa cell lines and tumor tissues by RT-qPCR and bioinformatics. The in vitro and in vivo functional effect of miR-1-3p was examined further. A luciferase reporter assay was conducted to confirm target associations. RESULTS We found that miR-1-3p was significantly downregulated in advanced PCa tissues and cell lines. Low miR-1-3p levels were strongly associated with aggressive clinicopathological features and poor prognosis in PCa patients. Ectopic expression of miR-1-3p in 22RV1 and LncaP cells was sufficient to prevent tumor cell growth and cell cycle progression in vitro and in vivo. Further mechanistic studies revealed that miR-1-3p could directly target the mRNA 3'- untranslated region (3'- UTR) of two central cell cycle genes, E2F5 and PFTK1, and could suppress their mRNA and protein expression. In addition, knockdown of E2F5 and PFTK1 mimicked the tumor-suppressive effects of miR-1-3p overexpression on PCa progression. Conversely, concomitant knockdown of miR-1-3p and E2F5 and PFTK1 substantially reversed the inhibitory effects of either E2F5 or PFTK1 silencing alone. CONCLUSION These data highlight an important role for miR-1-3p in the regulation of proliferation and cell cycle in the molecular etiology of PCa and indicate the potential for miR-1-3p in applications furthering PCa prognostics and therapeutics.
Collapse
|
20
|
Wang B, Yin M, Cheng C, Jiang H, Jiang K, Shen Z, Ye Y, Wang S. Decreased expression of miR‑490‑3p in colorectal cancer predicts poor prognosis and promotes cell proliferation and invasion by targeting RAB14. Int J Oncol 2018; 53:1247-1256. [PMID: 29916545 DOI: 10.3892/ijo.2018.4444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/16/2018] [Indexed: 11/06/2022] Open
Abstract
Growing evidence indicates a potential role for miR‑490‑3p in tumorigenesis. However, its function in colorectal carcinoma (CRC) remains undefined. In this study, miR‑490‑3p was markedly downregulated in fifty colorectal cancer tissue samples compared with the corresponding adjacent non‑cancerous specimens, by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The expression levels of miR‑490‑3p were closely associated with tumor differentiation and distant metastasis. In addition, both Kaplan-Meier and multivariate analyses indicated CRC patients with elevated miR‑490‑3p amounts had prolonged overall survival. Overexpression of miR‑490‑3p markedly reduced proliferation, colony formation and invasion in CRC cells by enhancing apoptosis and promoting G2/M phase arrest. Furthermore, ectopic expression of miR‑490‑3p resulted in decreased expression of RAB14, which was directly targeted by miR‑490‑3p, as shown by the dual-luciferase reporter gene assay. Finally, in a nude mouse model, miR‑490‑3p overexpression significantly suppressed the growth of CRC cells. The above results indicated that miR‑490‑3p might constitute a prognostic indicator and a novel molecular target for miRNA-based CRC therapy.
Collapse
Affiliation(s)
- Bo Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Mujun Yin
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Cheng Cheng
- Department of General Surgery, First Hospital of Qinhuangdao, Hebei 066000, P.R. China
| | - Hongpeng Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Kewei Jiang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Yingjiang Ye
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Shan Wang
- Department of Gastroenterological Surgery, Laboratory of Surgical Oncology, Beijing Key Laboratory of Colorectal Cancer Diagnosis and Treatment Research, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
21
|
Smits M, Mehra N, Sedelaar M, Gerritsen W, Schalken JA. Molecular biomarkers to guide precision medicine in localized prostate cancer. Expert Rev Mol Diagn 2018. [PMID: 28635333 DOI: 10.1080/14737159.2017.1345627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Major advances through tumor profiling technologies, that include next-generation sequencing, epigenetic, proteomic and transcriptomic methods, have been made in primary prostate cancer, providing novel biomarkers that may guide precision medicine in the near future. Areas covered: The authors provided an overview of novel molecular biomarkers in tissue, blood and urine that may be used as clinical tools to assess prognosis, improve selection criteria for active surveillance programs, and detect disease relapse early in localized prostate cancer. Expert commentary: Active surveillance (AS) in localized prostate cancer is an accepted strategy in patients with very low-risk prostate cancer. Many more patients may benefit from watchful waiting, and include patients of higher clinical stage and grade, however selection criteria have to be optimized and early recognition of transformation from localized to lethal disease has to be improved by addition of molecular biomarkers. The role of non-invasive biomarkers is challenging the need for repeat biopsies, commonly performed at 1 and 4 years in men under AS programs.
Collapse
Affiliation(s)
- Minke Smits
- a Department of Urology and Oncology , Radboud Universiteit , Nijmegen , The Netherlands
| | - Niven Mehra
- a Department of Urology and Oncology , Radboud Universiteit , Nijmegen , The Netherlands
| | - Michiel Sedelaar
- a Department of Urology and Oncology , Radboud Universiteit , Nijmegen , The Netherlands
| | - Winald Gerritsen
- a Department of Urology and Oncology , Radboud Universiteit , Nijmegen , The Netherlands
| | - Jack A Schalken
- a Department of Urology and Oncology , Radboud Universiteit , Nijmegen , The Netherlands
| |
Collapse
|
22
|
Fort RS, Mathó C, Geraldo MV, Ottati MC, Yamashita AS, Saito KC, Leite KRM, Méndez M, Maedo N, Méndez L, Garat B, Kimura ET, Sotelo-Silveira JR, Duhagon MA. Nc886 is epigenetically repressed in prostate cancer and acts as a tumor suppressor through the inhibition of cell growth. BMC Cancer 2018; 18:127. [PMID: 29394925 PMCID: PMC5797390 DOI: 10.1186/s12885-018-4049-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 01/24/2018] [Indexed: 12/20/2022] Open
Abstract
Background Nc886 is a 102 bp non-coding RNA transcript initially classified as a microRNA precursor (Pre-miR-886), later as a divergent homologue of the vault RNAs (vtRNA 2–1) and more recently as a novel type of RNA (nc886). Although nc886/vtRNA2–1/Pre-miR-886 identity is still controversial, it was shown to be epigenetically controlled, presenting both tumor suppressor and oncogenic function in different cancers. Here, we study for the first time the role of nc886 in prostate cancer. Methods Nc886 promoter methylation status and its correlation with patient clinical parameters or DNMTs levels were evaluated in TCGA and specific GEO prostate tissue datasets. Nc886 level was measured by RT-qPCR to compare normal/neoplastic prostate cells from radical prostatectomies and cell lines, and to assess nc886 response to demethylating agents. The effect of nc886 recovery in cell proliferation (in vitro and in vivo) and invasion (in vitro) was evaluated using lentiviral transduced DU145 and LNCaP cell lines. The association between the expression of nc886 and selected genes was analyzed in the TCGA-PRAD cohort. Results Nc886 promoter methylation increases in tumor vs. normal prostate tissue, as well as in metastatic vs. normal prostate tissue. Additionally, nc886 promoter methylation correlates with prostate cancer clinical staging, including biochemical recurrence, Clinical T-value and Gleason score. Nc886 transcript is downregulated in tumor vs. normal tissue -in agreement with its promoter methylation status- and increases upon demethylating treatment. In functional studies, the overexpression of nc886 in the LNCaP and DU145 cell line leads to a decreased in vitro cell proliferation and invasion, as well as a reduced in vivo cell growth in NUDE-mice tumor xenografts. Finally, nc886 expression associates with the prostate cancer cell cycle progression gene signature in TCGA-PRAD. Conclusions Our data suggest a tumor suppressor role for nc886 in the prostate, whose expression is epigenetically silenced in cancer leading to an increase in cell proliferation and invasion. Nc886 might hold clinical value in prostate cancer due to its association with clinical parameters and with a clinically validated gene signature. Electronic supplementary material The online version of this article (10.1186/s12885-018-4049-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rafael Sebastián Fort
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Cecilia Mathó
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Murilo Vieira Geraldo
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, USP, São Paulo, Brazil.,Present Address: Department of Structural and Functional Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - María Carolina Ottati
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.,Present Address: Departamento de Diagnóstico y Tratamientos Especiales, Dirección Nacional de Sanidad de las Fuerzas Armadas, Hospital Central de las Fuerzas Armadas, Montevideo, Uruguay
| | - Alex Shimura Yamashita
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, USP, São Paulo, Brazil
| | - Kelly Cristina Saito
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, USP, São Paulo, Brazil
| | - Katia Ramos Moreira Leite
- Laboratório de Investigação Médica en Urologia, LIM55, Departamento de Urología, Faculdade de Medicina, USP, São Paulo, Brazil
| | - Manuel Méndez
- Departamento de Anatomía Patológica, Hospital Policial, Montevideo, Uruguay
| | - Noemí Maedo
- Departamento de Anatomía Patológica, Hospital Policial, Montevideo, Uruguay
| | - Laura Méndez
- Departamento de Anatomía Patológica, Hospital Policial, Montevideo, Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Edna Teruko Kimura
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, USP, São Paulo, Brazil
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.,Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Ana Duhagon
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay. .,Departamento de Genética, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
23
|
Barra WF, Moreira FC, Pereira Cruz AM, Khayat AS, Calcagno DQ, Carneiro Dos Santos NP, Mascarenhas Junior RW, Thomaz Araújo TM, Ishak G, Demachki S, Rodríguez Burbano RM, Campos Ribeiro Dos Santos ÂK, Batista Dos Santos SE, Riggins GJ, Pimentel de Assumpção P. GEJ cancers: gastric or esophageal tumors? searching for the answer according to molecular identity. Oncotarget 2017; 8:104286-104294. [PMID: 29262640 PMCID: PMC5732806 DOI: 10.18632/oncotarget.22216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/21/2017] [Indexed: 12/11/2022] Open
Abstract
The 7th edition of Union for International Cancer Control (UICC) staging system moved gastroesophageal junction (GEJ) cancers from gastric to esophageal group. Since clinical management is strongly influenced by this staging system, we looked at molecular fingerprints of GEJ tumors and compared to gastric and esophageal profiles. We aimed at elucidating whether GEJ cancers cluster with gastric or esophageal groups according to mRNA and microRNA expression pattern, since this might represent tumor identity. The clinical and expression data were downloaded from The Cancer Genome Atlas (TCGA) with 395 stomach, 184 esophagus and 521 colon samples for mRNA analyses and 392 stomach, 175 esophagus and 459 colon samples for microRNA comparisons. Both Principal Component Analysis (PCA) and Heat Map plots were performed in R platform, using Log2 transformation of RPKM normalized data. Differential Expression Analysis was also performed in R, using RAW data and the DESeq2 package. The mRNAs and microRNAs were tagged as differentially expressed if they met the following criteria: i) FDR adjusted p-value < 0.05; and ii) |Log2 (fold-change)| > 2. Esophagus squamous cell carcinoma (ESCC) clustered apart of the others tumors, while adenocarcinomas (AC) clustered all together according to both mRNAs and microRNAs expression patterns. The HMs of the differentially expressed mRNAs and microRNAs also demonstrated that ESCC belongs to a different group, while AC molecular signature of esophagus looks like AC of the cardia and non cardia regions. Even distal gastric cancers are quite similar to AC of the lower esophagus, demonstrating that esophagus AC relies much closer to gastric cancers than to esophagus cancers. By using robust molecular fingerprints, it was strongly demonstrated that GEJ tumors looks more like gastric cancers than esophageal cancers, despite of tumor heterogeneity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Geraldo Ishak
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Brazil.,Hospital Universitário João de Barros Barreto, Universidade Federal do Pará, Brazil
| | - Samia Demachki
- Núcleo de Pesquisas em Oncologia, Universidade Federal do Pará, Brazil
| | | | | | | | - Gregory Joseph Riggins
- Brain Cancer Biology and Therapy Research Laboratory, Johns Hopkins Medicine, Baltimore, MD, USA
| | | |
Collapse
|
24
|
Ni J, Bucci J, Chang L, Malouf D, Graham P, Li Y. Targeting MicroRNAs in Prostate Cancer Radiotherapy. Theranostics 2017; 7:3243-3259. [PMID: 28900507 PMCID: PMC5595129 DOI: 10.7150/thno.19934] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 05/10/2017] [Indexed: 02/06/2023] Open
Abstract
Radiotherapy is one of the most important treatment options for localized early-stage or advanced-stage prostate cancer (CaP). Radioresistance (relapse after radiotherapy) is a major challenge for the current radiotherapy. There is great interest in investigating mechanisms of radioresistance and developing novel treatment strategies to overcome radioresistance. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level, participating in numerous physiological and pathological processes including cancer invasion, progression, metastasis and therapeutic resistance. Emerging evidence indicates that miRNAs play a critical role in the modulation of key cellular pathways that mediate response to radiation, influencing the radiosensitivity of the cancer cells through interplaying with other biological processes such as cell cycle checkpoints, apoptosis, autophagy, epithelial-mesenchymal transition and cancer stem cells. Here, we summarize several important miRNAs in CaP radiation response and then discuss the regulation of the major signalling pathways and biological processes by miRNAs in CaP radiotherapy. Finally, we emphasize on microRNAs as potential predictive biomarkers and/or therapeutic targets to improve CaP radiosensitivity.
Collapse
|
25
|
Gandellini P, Doldi V, Zaffaroni N. microRNAs as players and signals in the metastatic cascade: Implications for the development of novel anti-metastatic therapies. Semin Cancer Biol 2017; 44:132-140. [PMID: 28344166 DOI: 10.1016/j.semcancer.2017.03.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 01/28/2023]
Abstract
microRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. Increasing evidence emerging from human tumor preclinical models clearly indicates that specific miRNAs, collectively termed "metastamirs," play a functional role in different steps of the metastatic cascade, by exerting either pro- or anti-metastatic functions, and behave as signaling mediators to enable tumor cell to colonize a specific organ. miRNAs also actively participate in the proficient interaction of cancer cells with tumor microenvironment, either at the primary or at the metastatic site. Circulating miRNAs, released by multiple cell types, following binding to proteins or encapsulation in extracellular vesicles, play a main role in this cross-talk by acting as transferrable messages. The documented involvement of specific miRNAs in the dissemination process has aroused interest in the development of miRNA-based strategies for the treatment of metastasis. Preclinical research carried out in tumor experimental models, using both miRNA replacement and miRNA inhibitory approaches, is encouraging towards translating miRNA-based strategies into human cancer therapy, based on the observed therapeutic activity in the absence of main toxicity. However, to accelerate their adoption in the clinic, further improvements in terms of efficacy and targeted delivery to the tumor are still necessary.
Collapse
Affiliation(s)
- Paolo Gandellini
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Valentina Doldi
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| | - Nadia Zaffaroni
- Molecular Pharmacology, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Via Amadeo 42, 20133 Milan, Italy.
| |
Collapse
|
26
|
Lin ZY, Chen G, Zhang YQ, He HC, Liang YX, Ye JH, Liang YK, Mo RJ, Lu JM, Zhuo YJ, Zheng Y, Jiang FN, Han ZD, Wu SL, Zhong WD, Wu CL. MicroRNA-30d promotes angiogenesis and tumor growth via MYPT1/c-JUN/VEGFA pathway and predicts aggressive outcome in prostate cancer. Mol Cancer 2017; 16:48. [PMID: 28241827 PMCID: PMC5327510 DOI: 10.1186/s12943-017-0615-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Even though aberrant expression of microRNA (miR)-30d has been reported in prostate cancer (PCa), its associations with cancer progression remain contradictory. The aim of this study was to investigate clinical significance, biological functions and underlying mechanisms of miR-30d deregulation in PCa. METHODS Involvement of miR-30d deregulation in malignant phenotypes of PCa was demonstrated by clinical sample evaluation, and in vitro and in vivo experiments. The mechanisms underlying its regulatory effect on tumor angiogenesis were determined. RESULTS miR-30d over-expression was observed in both PCa cells and clinical specimens. High-miR-30d was distinctly associated with high pre-operative PSA and Gleason score, advanced clinical and pathological stages, positive metastasis and biochemical recurrence (BCR), and reduced overall survival of PCa patients. Through gain- and loss-of-function experiments, we found that miR-30d promoted PCa cell proliferation, migration, invasion, and capillary tube formation of endothelial cells, as well as in vivo tumor growth and angiogenesis in a mouse model. Simulation of myosin phosphatase targeting subunit 1 (MYPT1), acting as a direct target of miR-30d, antagonized the effects induced by miR-30d up-regulation in PCa cells. Notably, miR-30d/MYPT1 combination was identified as an independent factor to predict BCR of PCa patients. Furthermore, miR-30d exerted its pro-angiogenesis function, at least in part, by inhibiting MYPT1, which in turn, increased phosphorylation levels of c-JUN and activated VEGFA-induced signaling cascade in endothelial cells. CONCLUSIONS miR-30d and/or its target gene MYPT1 may serve as novel prognostic markers of PCa. miR-30d promotes tumor angiogenesis of PCa through MYPT1/c-JUN/VEGFA pathway.
Collapse
Affiliation(s)
- Zhuo-Yuan Lin
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
| | - Guo Chen
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yan-Qiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Hui-Chan He
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yu-Xiang Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jian-Heng Ye
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Ying-Ke Liang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ru-Jun Mo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jian-Ming Lu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yang-Jia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yu Zheng
- Department of Urology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510260, China
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Fu-Neng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhao-Dong Han
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Shu-Lin Wu
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Wei-de Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
- Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
- Urology Key Laboratory of Guangdong Province, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510230, China.
- Graduate school of Jinan University, Guangzhou, 510632, China.
| | - Chin-Lee Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
- Department of Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|