1
|
Kuo HH, Yao JS, Yih LH. Thiostrepton induces spindle abnormalities and enhances Taxol cytotoxicity in MDA-MB-231 cells. Mol Biol Rep 2024; 51:927. [PMID: 39168955 PMCID: PMC11339111 DOI: 10.1007/s11033-024-09863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Thiostrepton (TST) is a known inhibitor of the transcription factor Forkhead box M1 (FoxM1) and inducer of heat shock response (HSR) and autophagy. TST thus may be one potential candidate of anticancer drugs for combination chemotherapy. METHODS AND RESULTS Immunofluorescence staining of mitotic spindles and flow cytometry analysis revealed that TST induces mitotic spindle abnormalities, mitotic arrest, and apoptotic cell death in the MDA-MB-231 triple-negative breast cancer cell line. Interestingly, overexpression or depletion of FoxM1 in MDA-MB-231 cells did not affect TST induction of spindle abnormalities; however, TST-induced spindle defects were enhanced by inhibition of HSP70 or autophagy. Moreover, TST exhibited low affinity for tubulin and only slightly inhibited in vitro tubulin polymerization, but it severely impeded tubulin polymerization and destabilized microtubules in arrested mitotic MDA-MB-231 cells. Additionally, TST significantly enhanced Taxol cytotoxicity. TST also caused cytotoxicity and spindle abnormalities in a Taxol-resistant cell line, MDA-MB-231-T4R. CONCLUSIONS These results suggest that, in addition to inhibiting FoxM1, TST may induce proteotoxicity and autophagy to disrupt cellular tubulin polymerization, and this mechanism might account for its antimitotic effects, enhancement of Taxol anticancer effects, and ability to overcome Taxol resistance in MDA-MB-231 cells. These data further imply that TST may be useful to improve the therapeutic efficacy of Taxol.
Collapse
Affiliation(s)
- Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Chuang JY, Kuo HH, Wang PH, Su CJ, Yih LH. NPRL2 is required for proliferation of oncogenic Ras-transformed bronchial epithelial cells. Cell Div 2024; 19:22. [PMID: 38915098 PMCID: PMC11197203 DOI: 10.1186/s13008-024-00126-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024] Open
Abstract
Nitrogen permease regulator-like 2 (NPRL2/TUSC4) is known to exert both tumor-suppressing and oncogenic effects in different types of cancers, suggesting that its actions are context dependent. Here, we delineated the molecular and functional effects of NPRL2 in malignantly transformed bronchial epithelial cells. To do so, we depleted NPRL2 in oncogenic HRas-transduced and malignantly transformed human bronchial epithelial (BEAS2B), Ras-AI-T2 cells. Intriguingly, depletion of NPRL2 in these cells induced activation of mTORC1 downstream signaling, inhibited autophagy, and impaired Ras-AI-T2 cell proliferation both in vitro and in vivo. These results suggest that NPRL2 is required for oncogenic HRas-induced cell transformation. Depletion of NPRL2 increased levels of the DNA damage marker γH2AX, the cell cycle inhibitors p21 and p27, and the apoptosis marker cleaved-PARP. These NPRL2-depleted cells first accumulated at G1 and G2, and later exhibited signs of mitotic catastrophe, which implied that NPRL2 depletion may be detrimental to oncogenic HRas-transformed cells. Additionally, NPRL2 depletion reduced heat shock factor 1/heat shock element- and NRF2/antioxidant response element-directed luciferase reporter activities in Ras-AI-T2 cells, indicating that NPRL2 depletion led to the suppression of two key cytoprotective processes in oncogenic HRas-transformed cells. Overall, our data suggest that oncogenic HRas-transduced and malignantly transformed cells may depend on NPRL2 for survival and proliferation, and depletion of NPRL2 also induces a stressed state in these cells.
Collapse
Affiliation(s)
- Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Pei-Han Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Chih-Jou Su
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
3
|
Castro-Sierra I, Duran-Izquierdo M, Sierra-Marquez L, Ahumedo-Monterrosa M, Olivero-Verbel J. Toxicity of Three Optical Brighteners: Potential Pharmacological Targets and Effects on Caenorhabditis elegans. TOXICS 2024; 12:51. [PMID: 38251007 PMCID: PMC10818959 DOI: 10.3390/toxics12010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Optical brighteners (OBs) have become an integral part of our daily lives and culture, with a growing number of applications in various fields. Most industrially produced OBs are derived from stilbene, which has been found in environmental matrices. The main objectives for this work are as follows: first, to identify protein targets for DAST, FB-28, and FB-71, and second, to assess their effects in some behaviors physiologic of Caenorhabditis elegans. To achieve the first objective, each OB was tested against a total of 844 human proteins through molecular docking using AutoDock Vina, and affinities were employed as the main criteria to identify potential target proteins for the OB. Molecular dynamics simulations took and validated the best 25 docking results from two protein databases. The highest affinity was obtained for the Hsp70-1/DAST, CD40 ligand/FB-71, and CD40 ligand/FB-28 complexes. The possible toxic effects that OBs could cause were evaluated using the nematode C. elegans. The lethality, body length, locomotion, and reproduction were investigated in larval stage L1 or L4 of the wild-type strain N2. In addition, transgenic green fluorescent protein (GFP) strains were employed to estimate changes in relative gene expression. The effects on the inhibition of growth, locomotion, and reproduction of C. elegans nematodes exposed to DAST, FB-71, and FB-28 OBs were more noticeable with respect to lethality. Moreover, an interesting aspect in OB was increased the expression of gpx-4 and sod-4 genes associated with oxidative stress indicating a toxic response related to the generation of reactive oxygen species (ROS). In all cases, a clear concentration-response relationship was observed. It is of special attention that the use of OBs is increasing, and their different sources, such as detergents, textiles, plastics, and paper products, must also be investigated to characterize the primary emissions of OBs to the environment and to develop an adequate regulatory framework.
Collapse
Affiliation(s)
- Isel Castro-Sierra
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (I.C.-S.); (M.D.-I.); (L.S.-M.)
| | - Margareth Duran-Izquierdo
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (I.C.-S.); (M.D.-I.); (L.S.-M.)
| | - Lucellys Sierra-Marquez
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (I.C.-S.); (M.D.-I.); (L.S.-M.)
| | - Maicol Ahumedo-Monterrosa
- Natural Products Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia;
| | - Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group, School of Pharmaceutical Sciences, Zaragocilla Campus, University of Cartagena, Cartagena 130014, Colombia; (I.C.-S.); (M.D.-I.); (L.S.-M.)
| |
Collapse
|
4
|
Fang CT, Kuo HH, Amartuvshin O, Hsu HJ, Liu SL, Yao JS, Yih LH. Inhibition of acetyl-CoA carboxylase impaired tubulin palmitoylation and induced spindle abnormalities. Cell Death Dis 2023; 9:4. [PMID: 36617578 PMCID: PMC9826786 DOI: 10.1038/s41420-023-01301-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/20/2022] [Accepted: 01/03/2023] [Indexed: 01/10/2023]
Abstract
Tubulin s-palmitoylation involves the thioesterification of a cysteine residue in tubulin with palmitate. The palmitate moiety is produced by the fatty acid synthesis pathway, which is rate-limited by acetyl-CoA carboxylase (ACC). While it is known that ACC is phosphorylated at serine 79 (pSer79) by AMPK and accumulates at the spindle pole (SP) during mitosis, a functional role for tubulin palmitoylation during mitosis has not been identified. In this study, we found that modulating pSer79-ACC level at the SP using AMPK agonist and inhibitor induced spindle defects. Loss of ACC function induced spindle abnormalities in cell lines and in germ cells of the Drosophila germarium, and palmitic acid (PA) rescued the spindle defects in the cell line treated transiently with the ACC inhibitor, TOFA. Furthermore, inhibition of protein palmitoylating or depalmitoylating enzymes also induced spindle defects. Together, these data suggested that precisely regulated cellular palmitate level and protein palmitoylation may be required for accurate spindle assembly. We then showed that tubulin was largely palmitoylated in interphase cells but less palmitoylated in mitotic cells. TOFA treatment diminished tubulin palmitoylation at doses that disrupt microtubule (MT) instability and cause spindle defects. Moreover, spindle MTs comprised of α-tubulins mutated at the reported palmitoylation site exhibited disrupted dynamic instability. We also found that TOFA enhanced the MT-targeting drug-induced spindle abnormalities and cytotoxicity. Thus, our study reveals that precise regulation of ACC during mitosis impacts tubulin palmitoylation to delicately control MT dynamic instability and spindle assembly, thereby safeguarding nuclear and cell division.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Oyundari Amartuvshin
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Hwei-Jan Hsu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan ,grid.28665.3f0000 0001 2287 1366Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan ,grid.260565.20000 0004 0634 0356Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Sih-Long Liu
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jhong-Syuan Yao
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- grid.506933.a0000 0004 0633 7835Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
5
|
HSP70 and TNF Loci Polymorphism Associated with the Posner-Schlossman Syndrome in a Southern Chinese Population. J Immunol Res 2022; 2022:5242948. [DOI: 10.1155/2022/5242948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that HLA gene polymorphisms are associated with the pathogenesis of the Posner-Schlossman syndrome (PSS). This study was aimed at evaluating the associations between HLA-III gene polymorphisms and PSS in a southern Chinese Han population. A total of 150 PSS patients and 183 healthy controls were included in this study. Twenty-one single nucleotide polymorphisms (SNPs) of HLA-III genes (including HSP70-1, HSP70-2, HSP70-hom, TNF-α, TNF-β, C2, and CFB) were genotyped using the SNaPshot technique. Our study showed that the frequencies of G allele at rs909253, A allele at rs1041981, and G allele at rs2844484 of TNF-β in the patient group were significantly higher than those in healthy controls (Corrected
,
;
,
;
,
, respectively). The frequency of T allele at rs12190359 of HSP70-1 was significantly lower in PSS patients than those in healthy controls (
and
). The frequencies of the CCT haplotype of HSP70-1 gene (rs1008438-rs562047-rs12190359) and the ACCCTTT haplotype of HSP70 gene (rs2227956-rs1043618-rs1008438-rs562047-rs12190359-rs2763979-rs6457452) were significantly lower in PSS patients than those in healthy controls (
,
;
,
, respectively). In conclusion, the G allele at rs909253, A allele at rs1041981, and G allele at rs2844484 of TNF-β gene might be risk factors for PSS, while the T allele at rs12190359 of HSP70-1 gene and specific haplotypes of the HSP70-1 and HSP70 genes might be protective factors for PSS.
Collapse
|
6
|
Kuo HH, Su ZR, Chuang JY, Yih LH. Heat shock factor 1 suppression induces spindle abnormalities and sensitizes cells to antimitotic drugs. Cell Div 2021; 16:8. [PMID: 34922589 PMCID: PMC8684068 DOI: 10.1186/s13008-021-00075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Heat shock factor 1 (HSF1) is the master regulator of the heat shock response and supports malignant cell transformation. Recent work has shown that HSF1 can access the promoters of heat shock proteins (HSPs) and allow HSP expression during mitosis. It also acts as a mitotic regulator, controlling chromosome segregation. In this study, we investigated whether the transactivation activity of HSF1 is required for the assembly of mitotic spindles. RESULTS Our results showed that phosphorylation of HSF1 at serine 326 (S326) and its transactivation activity were increased during mitosis. Inhibition of the transactivation activity of HSF1 by KRIBB11 or CCT251263 during mitosis significantly increased the proportion of mitotic cells with abnormal spindles. It also hampered the reassembly of spindle microtubules after nocodazole treatment and washout by impeding the formation of chromosomal microtubule asters. Depletion of HSF1 led to defects in mitotic spindle assembly, subsequently attenuating cell proliferation and anchorage-independent cell growth (AIG). These HSF1 depletion-induced effects could be rescued by ectopically expressing wild-type HSF1 or a constitutively active mutant (∆202-316, caHSF1) but not the S326A or dominant negative (∆361-529, dnHSF1) mutants. In addition, overexpression of HSP70 partially reduced HSF1 depletion-induced spindle abnormalities. These results indicate that HSF1 may support cell proliferation and AIG by maintaining spindle integrity through its transactivation activity. Furthermore, inhibition of HSF1 transactivation activity by KRIBB11 or CCT251236 can enhance diverse anti-mitosis drug-induced spindle defects and cell death. CONCLUSIONS The increased transactivation activity of HSF1 during mitosis appears to be required for accurate assembly of mitotic spindles, thereby supporting cell viability and probably AIG. In addition, inhibition of the transactivation activity of HSF1 may enhance the mitotic errors and cell death induced by anti-mitosis drugs.
Collapse
Affiliation(s)
- Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Zhi-Rou Su
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan.,Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Jing-Yuan Chuang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Roles of RACK1 in centrosome regulation and carcinogenesis. Cell Signal 2021; 90:110207. [PMID: 34843916 DOI: 10.1016/j.cellsig.2021.110207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/22/2022]
Abstract
Receptor for activated C kinase 1 (RACK1) regulates various cellular functions and signaling pathways by interacting with different proteins. Recently, we showed that RACK1 interacts with breast cancer gene 1 (BRCA1), which regulates centrosome duplication. RACK1 localizes to centrosomes and spindle poles and is involved in the proper centrosomal localization of BRCA1. The interaction between RACK1 and BRCA1 is critical for the regulation of centrosome number. In addition, RACK1 contributes to centriole duplication by regulating polo-like kinase 1 (PLK1) activity in S phase. RACK1 binds directly to PLK1 and Aurora A, promoting the phosphorylation of PLK1 and activating the Aurora A/PLK1 signaling axis. Overexpression of RACK1 causes centrosome amplification, especially in mammary gland epithelial cells, inducing overactivation of PLK1 followed by premature centriole disengagement and centriole re-duplication. Other proteins, including hypoxia-inducible factor α, von Hippel-Lindau protein, heat-shock protein 90, β-catenin, and glycogen synthase kinase-3β, interact with RACK1 and play roles in centrosome regulation. In this review, we focus on the roles and underlying molecular mechanisms of RACK1 in centrosome regulation mediated by its interaction with different proteins and the modulation of their functions.
Collapse
|
8
|
Luthold C, Lambert H, Guilbert SM, Rodrigue MA, Fuchs M, Varlet AA, Fradet-Turcotte A, Lavoie JN. CDK1-Mediated Phosphorylation of BAG3 Promotes Mitotic Cell Shape Remodeling and the Molecular Assembly of Mitotic p62 Bodies. Cells 2021; 10:cells10102638. [PMID: 34685619 PMCID: PMC8534064 DOI: 10.3390/cells10102638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/22/2021] [Accepted: 09/27/2021] [Indexed: 01/07/2023] Open
Abstract
The cochaperone BCL2-associated athanogene 3 (BAG3), in complex with the heat shock protein HSPB8, facilitates mitotic rounding, spindle orientation, and proper abscission of daughter cells. BAG3 and HSPB8 mitotic functions implicate the sequestosome p62/SQSTM1, suggesting a role for protein quality control. However, the interplay between this chaperone-assisted pathway and the mitotic machinery is not known. Here, we show that BAG3 phosphorylation at the conserved T285 is regulated by CDK1 and activates its function in mitotic cell shape remodeling. BAG3 phosphorylation exhibited a high dynamic at mitotic entry and both a non-phosphorylatable BAG3T285A and a phosphomimetic BAG3T285D protein were unable to correct the mitotic defects in BAG3-depleted HeLa cells. We also demonstrate that BAG3 phosphorylation, HSPB8, and CDK1 activity modulate the molecular assembly of p62/SQSTM1 into mitotic bodies containing K63 polyubiquitinated chains. These findings suggest the existence of a mitotically regulated spatial quality control mechanism for the fidelity of cell shape remodeling in highly dividing cells.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Herman Lambert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Solenn M. Guilbert
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Marc-Antoine Rodrigue
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Margit Fuchs
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Alice-Anaïs Varlet
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
| | - Amélie Fradet-Turcotte
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
| | - Josée N. Lavoie
- Centre de Recherche sur le Cancer, Université Laval, Quebec, QC G1R 3S3, Canada; (C.L.); (H.L.); (S.M.G.); (M.-A.R.); (M.F.); (A.-A.V.); (A.F.-T.)
- Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Quebec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Quebec, QC G1V0A6, Canada
- Correspondence:
| |
Collapse
|
9
|
The Pathophysiological Role of Heat Shock Response in Autoimmunity: A Literature Review. Cells 2021; 10:cells10102626. [PMID: 34685607 PMCID: PMC8533860 DOI: 10.3390/cells10102626] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Within the last two decades, there has been increasing evidence that heat-shock proteins can have a differential influence on the immune system. They can either provoke or ameliorate immune responses. This review focuses on outlining the stimulatory as well as the inhibitory effects of heat-shock proteins 27, 40, 70, 65, 60, and 90 in experimental and clinical autoimmune settings.
Collapse
|
10
|
Mdivi-1 induces spindle abnormalities and augments taxol cytotoxicity in MDA-MB-231 cells. Cell Death Discov 2021; 7:118. [PMID: 34016960 PMCID: PMC8137698 DOI: 10.1038/s41420-021-00495-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/03/2021] [Accepted: 04/23/2021] [Indexed: 01/19/2023] Open
Abstract
Taxol is a first-line chemotherapeutic for numerous cancers, including the highly refractory triple-negative breast cancer (TNBC). However, it is often associated with toxic side effects and chemoresistance in breast cancer patients, which greatly limits the clinical utility of the drug. Hence, compounds that act in concert with taxol to promote cytotoxicity may be useful to improve the efficacy of taxol-based chemotherapy. In this study, we demonstrated that mdivi-1, a putative inhibitor of mitochondrial fission protein Drp1, enhances the anticancer effects of taxol and overcomes taxol resistance in a TNBC cell line (MDA-MB-231). Not only did mdivi-1 induce mitotic spindle abnormalities and mitotic arrest when used alone, but it also enhanced taxol-induced antimitotic effects when applied in combination. In addition, mdivi-1 induced pronounced spindle abnormalities and cytotoxicity in a taxol-resistant cell line, indicating that it can overcome taxol resistance. Notably, the antimitotic effects of mdivi-1 were not accompanied by prominent morphological or functional alterations in mitochondria and were Drp1-independent. Instead, mdivi-1 exhibited affinity to tubulin at μM level, inhibited tubulin polymerization, and immediately disrupted spindle assembly when cells entered mitosis. Together, our results show that mdivi-1 associates with tubulin and impedes tubulin polymerization, actions which may underlie its antimitotic activity and its ability to enhance taxol cytotoxicity and overcome taxol resistance in MDA-MB-231 cells. Furthermore, our data imply a possibility that mdivi-1 could be useful to improve the therapeutic efficacy of taxol in breast cancer.
Collapse
|
11
|
Chen H, Tian A, Wu Y, Li R, Han R, Xu X, Cheng S. HSP70 expression before and after treatment and its clinical value in patients with acute angle-closure glaucoma. Exp Ther Med 2021; 21:253. [PMID: 33603860 DOI: 10.3892/etm.2021.9683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 11/20/2020] [Indexed: 01/26/2023] Open
Abstract
The present study aimed to explore the clinical role of heat shock protein 70 (HSP70) in patients with acute angle-closure glaucoma (AACG). Seventy-four AACG patients who were admitted to our hospital from April 2017 to April 2019 were enrolled as a study group (SG). A further 70 healthy people undergoing physical examinations during the same period were enrolled as a control group (CG). HSP70 concentration was compared between the two groups, and the clinical value of this protein in AACG was analyzed. HSP70 concentration in SG was significantly lower than that in CG (P<0.050). The sensitivity and specificity of HSP70 for diagnosing AACG were 79.73 and 74.29%, respectively (P<0.001). HSP70 concentration was positively correlated with central anterior chamber depth and peripheral anterior chamber depth, but negatively correlated with anterior angle and intraocular pressure (P<0.001). HSP70 had a relatively satisfactory predictive value for adverse reactions during the treatment (P<0.001). HSP70 concentration was markedly reduced in AACG patients, and its detection had a relatively satisfactory predictive value for AACG. Thus, HSP70 may be a potential and notable indicator for diagnosing and treating glaucoma in the future.
Collapse
Affiliation(s)
- Hong Chen
- Department of Glaucoma, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Aijun Tian
- Department of Glaucoma, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Yixiang Wu
- Department of Fundus Disease, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Rongrong Li
- Department of Glaucoma, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Ruijuan Han
- Department of Glaucoma, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Xiaowei Xu
- Department of Cataract Surgery,, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| | - Sumian Cheng
- Department of Glaucoma, Hebei Eye Hospital, Xingtai, Hebei 054000, P.R. China
| |
Collapse
|
12
|
Effects of vitrification and cryostorage duration on single-cell RNA-Seq profiling of vitrified-thawed human metaphase II oocytes. Front Med 2020; 15:144-154. [PMID: 32876878 DOI: 10.1007/s11684-020-0792-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 02/04/2023]
Abstract
Oocyte cryopreservation is widely used for clinical and social reasons. Previous studies have demonstrated that conventional slow-freezing cryopreservation procedures, but not storage time, can alter the gene expression profiles of frozen oocytes. Whether vitrification procedures and the related frozen storage durations have any effects on the transcriptomes of human metaphase II oocytes remain unknown. Four women (30-32 years old) who had undergone IVF treatment were recruited for this study. RNA-Seq profiles of 3 fresh oocytes and 13 surviving vitrified-thawed oocytes (3, 3, 4, and 3 oocytes were cryostored for 1,2, 3, and 12 months) were analyzed at a single-cell resolution. A total of 1987 genes were differentially expressed in the 13 vitrified-thawed oocytes. However, no differentially expressed genes were found between any two groups among the 1-, 2-, 3-, and 12-month storage groups. Further analysis revealed that the aberrant genes in the vitrified oocytes were closely related to oogenesis and development. Our findings indicated that the effects of vitrification on the transcriptomes of mature human oocytes are induced by the procedure itself, suggesting that long-term cryostorage of human oocytes is safe.
Collapse
|
13
|
Fang CT, Kuo HH, Hsu SC, Yih LH. HSP70 regulates Eg5 distribution within the mitotic spindle and modulates the cytotoxicity of Eg5 inhibitors. Cell Death Dis 2020; 11:715. [PMID: 32873777 PMCID: PMC7462862 DOI: 10.1038/s41419-020-02919-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The heat shock protein 70 (HSP70) is a conserved molecular chaperone and proteostasis regulator that protects cells from pharmacological stress and promotes drug resistance in cancer cells. In this study, we found that HSP70 may promote resistance to anticancer drugs that target the mitotic kinesin, Eg5, which is essential for assembly and maintenance of the mitotic spindle and cell proliferation. Our data show that loss of HSP70 activity enhances Eg5 inhibitor-induced cytotoxicity and spindle abnormalities. Furthermore, HSP70 colocalizes with Eg5 in the mitotic spindle, and inhibition of HSP70 disrupts this colocalization. Inhibition or depletion of HSP70 also causes Eg5 to accumulate at the spindle pole, altering microtubule dynamics and leading to chromosome misalignment. Using ground state depletion microscopy followed by individual molecule return (GSDIM), we found that HSP70 inhibition reduces the size of Eg5 ensembles and prevents their localization to the inter-polar region of the spindle. In addition, bis(maleimido)hexane-mediated protein-protein crosslinking and proximity ligation assays revealed that HSP70 inhibition deregulates the interaction between Eg5 tetramers and TPX2 at the spindle pole, leading to their accumulation in high-molecular-weight complexes. Finally, we showed that the passive substrate-binding activity of HSP70 is required for appropriate Eg5 distribution and function. Together, our results show that HSP70 substrate-binding activity may regulate proper assembly of Eg5 ensembles and Eg5-TPX2 complexes to modulate mitotic distribution/function of Eg5. Thus, HSP70 inhibition may sensitize cancer cells to Eg5 inhibitor-induced cytotoxicity.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- Department of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Shao-Chun Hsu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
14
|
Wang X, Xie W, Yao Y, Zhu Y, Zhou J, Cui Y, Guo X, Yuan Y, Zhou Z, Liu M. The heat shock protein family gene Hspa1l in male mice is dispensable for fertility. PeerJ 2020; 8:e8702. [PMID: 32231871 PMCID: PMC7098389 DOI: 10.7717/peerj.8702] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/06/2020] [Indexed: 12/22/2022] Open
Abstract
Background Heat shock protein family A member 1 like (Hspa1l) is a member of the 70kD heat shock protein (Hsp70) family. HSPA1L is an ancient, evolutionarily conserved gene with a highly conserved domain structure. The gene is highly abundant and constitutively expressed in the mice testes. However, the role of Hspa1l in the testes has still not been elucidated. Methods Hspa1l-mutant mice were generated using the CRISPR/Cas9 system. Histological and immunofluorescence staining were used to analyze the phenotypes of testis and epididymis. Apoptotic cells were detected through TUNEL assays. Fertility and sperm motilities were also tested. Quantitative RT-PCR was used for analyzing of candidate genes expression. Heat treatment was used to induce heat stress of the testis. Results We successfully generated Hspa1l knockout mice. Hspa1l -/- mice exhibited normal development and fertility. Further, Hspa1l -/- mice shown no significant difference in spermatogenesis, the number of apoptotic cells in testes epididymal histology, sperm count and sperm motility from Hspa1l +/+ mice. Moreover, heat stress does not exacerbate the cell apoptosis in Hspa1l -/- testes. These results revealed that HSPA1L is not essential for physiological spermatogenesis, nor is it involved in heat-induced stress responses, which provides a basis for further studies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Wenxiu Xie
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yejin Yao
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yunfei Zhu
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Jianli Zhou
- Animal Core Facility, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yiqiang Cui
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Xuejiang Guo
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yan Yuan
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Zuomin Zhou
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Mingxi Liu
- Department of Histology and Embryology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Lin TC, Kuo HH, Wu YC, Pan TS, Yih LH. Phosphatidylinositol-5-phosphate 4-kinase gamma accumulates at the spindle pole and prevents microtubule depolymerization. Cell Div 2019; 14:9. [PMID: 31452676 PMCID: PMC6702725 DOI: 10.1186/s13008-019-0053-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background A previous screen of a human kinase and phosphatase shRNA library to select genes that mediate arsenite induction of spindle abnormalities resulted in the identification of phosphatidylinositol-5-phosphate 4-kinase type-2 gamma (PIP4KIIγ), a phosphatidylinositol 4,5-bisphosphate (PIP2)-synthesizing enzyme. In this study, we explored how PIP4KIIγ regulates the assembly of mitotic spindles. Results PIP4KIIγ accumulates at the spindle pole before anaphase, and is required for the assembly of functional bipolar spindles. Depletion of PIP4KIIγ enhanced the spindle pole accumulation of mitotic centromere-associated kinesin (MCAK), a microtubule (MT)-depolymerizing kinesin, and resulted in a less stable spindle pole-associated MT. Depletion of MCAK can ameliorate PIP4KIIγ depletion-induced spindle abnormalities. In addition, PIP2 binds to polo-like kinase (PLK1) and reduces PLK1-mediated phosphorylation of MCAK. These results indicate that PIP4KIIγ and PIP2 may negatively regulate the MT depolymerization activity of MCAK by reducing PLK1-mediated phosphorylation of MCAK. Consequently, depletion of PLK1 has been shown to counteract the PIP4KIIγ depletion-induced instability of spindle pole-associated MT and cell resistance to arsenite. Conclusions Our current results imply that PIP4KIIγ may restrain MT depolymerization at the spindle pole through attenuating PLK1-mediated activation of MCAK before anaphase onset.
Collapse
Affiliation(s)
- Tz-Chi Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Yi-Chen Wu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Tiffany S Pan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
16
|
Rosas-Salvans M, Scrofani J, Modol A, Vernos I. DnaJB6 is a RanGTP-regulated protein required for microtubule organization during mitosis. J Cell Sci 2019; 132:jcs.227033. [PMID: 31064815 PMCID: PMC6589090 DOI: 10.1242/jcs.227033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022] Open
Abstract
Bipolar spindle organization is essential for the faithful segregation of chromosomes during cell division. This organization relies on the collective activities of motor proteins. The minus-end-directed dynein motor complex generates spindle inward forces and plays a major role in spindle pole focusing. The dynactin complex regulates many dynein functions, increasing its processivity and force production. Here, we show that DnaJB6 is a novel RanGTP-regulated protein. It interacts with the dynactin subunit p150Glued (also known as DCTN1) in a RanGTP-dependent manner specifically in M-phase, and promotes spindle pole focusing and dynein force generation. Our data suggest a novel mechanism by which RanGTP regulates dynein activity during M-phase. Summary: DnaJB6 is a novel RanGTP-regulated protein that appears to play an important role in dynein-dependent spindle organization and spindle assembly.
Collapse
Affiliation(s)
- Miquel Rosas-Salvans
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Jacopo Scrofani
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Aitor Modol
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Isabelle Vernos
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain .,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
17
|
Fang CT, Kuo HH, Hsu SC, Yih LH. HSP70 is required for the proper assembly of pericentriolar material and function of mitotic centrosomes. Cell Div 2019; 14:4. [PMID: 31110557 PMCID: PMC6511203 DOI: 10.1186/s13008-019-0047-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/30/2019] [Indexed: 12/03/2022] Open
Abstract
Background At the onset of mitosis, the centrosome expands and matures, acquiring enhanced activities for microtubule nucleation and assembly of a functional bipolar mitotic spindle. However, the mechanisms that regulate centrosome expansion and maturation are largely unknown. Previously, we demonstrated in an immortalized human cell line CGL2 and cancer cell line HeLa that the inducible form of heat shock protein 70 (HSP70) accumulates at the mitotic centrosome and is required for centrosome maturation and bipolar spindle assembly. Results In this study, we further show that HSP70 accumulated at the spindle pole in a PLK1-dependent manner. HSP70 colocalized with pericentrin (PCNT), CEP215 and γ-tubulin at the spindle pole and was required for the 3D assembly of these three proteins, which supports mitotic centrosome function. Loss of HSP70 disrupted mitotic centrosome structure, reduced pericentriolar material recruitment and induced fragmentation of spindle poles. In addition, HSP70 was necessary for the interaction between PCNT and CEP215 and also facilitated PLK1 accumulation and function at the spindle pole. Furthermore, we found that HSP70 chaperone activity is required for PCNT accumulation at the mitotic centrosome and assembly of mitotic spindles. Conclusion Our current results demonstrate that HSP70 is required for the accurate assembly of the pericentriolar material and proper functioning of mitotic centrosomes.
Collapse
Affiliation(s)
- Chieh-Ting Fang
- 1Department of Life Science, National Taiwan University, Taipei, Taiwan.,2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Hsiao-Hui Kuo
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Shao-Chun Hsu
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| | - Ling-Huei Yih
- 2Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, 115 Taiwan
| |
Collapse
|
18
|
Zhang RK, Wang P, Lu YC, Lang L, Wang L, Lee SC. Cadmium induces cell centrosome amplification via reactive oxygen species as well as endoplasmic reticulum stress pathway. J Cell Physiol 2019; 234:18230-18248. [DOI: 10.1002/jcp.28455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Rui Kai Zhang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Pu Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Yu Cheng Lu
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Lang Lang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Lan Wang
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
| | - Shao Chin Lee
- Department of Biology, School of Life Sciences Shanxi University Taiyuan Shanxi People's Republic of China
- Department of Biology, School of Life Sciences Jiangsu Normal University Xuzhou Jiangsu People's Republic of China
| |
Collapse
|