1
|
Hata Y, Ohtsuka J, Hiwatashi Y, Naramoto S, Kyozuka J. Cytokinin and ALOG proteins regulate pluripotent stem cell identity in the moss Physcomitrium patens. SCIENCE ADVANCES 2024; 10:eadq6082. [PMID: 39196946 PMCID: PMC11352904 DOI: 10.1126/sciadv.adq6082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/23/2024] [Indexed: 08/30/2024]
Abstract
The shoot apical meristem (SAM) contains pluripotent stem cells that produce all the aerial parts of the plant. Stem cells undergo asymmetric cell divisions to self-renew and to produce differentiating cells. Our research focused on unraveling the mechanisms governing the specification of these two distinct cell fates following the stem cell division. For this purpose, we used the model organism Physcomitrium patens, which features a singular pluripotent stem cell known as the gametophore apical cell. We show that the activity of cytokinins, critical stem cell regulators, is restricted to the gametophore apical cell due to the specific localization of PpLOG, the enzyme responsible for cytokinin activation. In turn, PpTAW, which promotes differentiating cell identity of the merophyte, is excluded from the gametophore apical cell by the action of cytokinins. We propose a cytokinin-based model for the establishment of asymmetry in the pluripotent stem cell division.
Collapse
Affiliation(s)
- Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Juri Ohtsuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Yuji Hiwatashi
- School of Food Industrial Sciences, Miyagi University, Sendai 982-0215, Japan
| | - Satoshi Naramoto
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| |
Collapse
|
2
|
Possenti M, Sessa G, Alfè A, Turchi L, Ruzza V, Sassi M, Morelli G, Ruberti I. HD-Zip II transcription factors control distal stem cell fate in Arabidopsis roots by linking auxin signaling to the FEZ/SOMBRERO pathway. Development 2024; 151:dev202586. [PMID: 38563568 DOI: 10.1242/dev.202586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
In multicellular organisms, specialized tissues are generated by specific populations of stem cells through cycles of asymmetric cell divisions, where one daughter undergoes differentiation and the other maintains proliferative properties. In Arabidopsis thaliana roots, the columella - a gravity-sensing tissue that protects and defines the position of the stem cell niche - represents a typical example of a tissue whose organization is exclusively determined by the balance between proliferation and differentiation. The columella derives from a single layer of stem cells through a binary cell fate switch that is precisely controlled by multiple, independent regulatory inputs. Here, we show that the HD-Zip II transcription factors (TFs) HAT3, ATHB4 and AHTB2 redundantly regulate columella stem cell fate and patterning in the Arabidopsis root. The HD-Zip II TFs promote columella stem cell proliferation by acting as effectors of the FEZ/SMB circuit and, at the same time, by interfering with auxin signaling to counteract hormone-induced differentiation. Overall, our work shows that HD-Zip II TFs connect two opposing parallel inputs to fine-tune the balance between proliferation and differentiation in columella stem cells.
Collapse
Affiliation(s)
- Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome 00178, Italy
| | - Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Altea Alfè
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Luana Turchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Valentino Ruzza
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Massimiliano Sassi
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Rome 00178, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Rome 00185, Italy
| |
Collapse
|
3
|
Pardal R, Scheres B, Heidstra R. SCHIZORIZA domain-function analysis identifies requirements for its specific role in cell fate segregation. PLANT PHYSIOLOGY 2023; 193:1866-1879. [PMID: 37584278 PMCID: PMC10602604 DOI: 10.1093/plphys/kiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.
Collapse
Affiliation(s)
- Renan Pardal
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
4
|
Sakamoto R, Maeda YT. Unveiling the physics underlying symmetry breaking of the actin cytoskeleton: An artificial cell-based approach. Biophys Physicobiol 2023; 20:e200032. [PMID: 38124798 PMCID: PMC10728624 DOI: 10.2142/biophysico.bppb-v20.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/18/2023] [Indexed: 12/23/2023] Open
Abstract
Single-cell behaviors cover many biological functions, such as cell division during morphogenesis and tissue metastasis, and cell migration during cancer cell invasion and immune cell responses. Symmetry breaking of the positioning of organelles and the cell shape are often associated with these biological functions. One of the main players in symmetry breaking at the cellular scale is the actin cytoskeleton, comprising actin filaments and myosin motors that generate contractile forces. However, because the self-organization of the actomyosin network is regulated by the biochemical signaling in cells, how the mechanical contraction of the actin cytoskeleton induces diverse self-organized behaviors and drives the cell-scale symmetry breaking remains unclear. In recent times, to understand the physical underpinnings of the symmetry breaking exhibited in the actin cytoskeleton, artificial cell models encapsulating the cytoplasmic actomyosin networks covered with lipid monolayers have been developed. By decoupling the actomyosin mechanics from the complex biochemical signaling within living cells, this system allows one to study the self-organization of actomyosin networks confined in cell-sized spaces. We review the recent developments in the physics of confined actomyosin networks and provide future perspectives on the artificial cell-based approach. This review article is an extended version of the Japanese article, The Physical Principle of Cell Migration Under Confinement: Artificial Cell-based Bottom-up Approach, published in SEIBUTSU BUTSURI Vol. 63, p. 163-164 (2023).
Collapse
Affiliation(s)
- Ryota Sakamoto
- Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Yale University, Connecticut 06520, USA
- Systems Biology Institute, Yale University, Connecticut 06516, USA
| | - Yusuke T. Maeda
- Department of Physics, Graduate School of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
5
|
Zhang Y, Xu T, Dong J. Asymmetric cell division in plant development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:343-370. [PMID: 36610013 PMCID: PMC9975081 DOI: 10.1111/jipb.13446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/05/2023] [Indexed: 05/03/2023]
Abstract
Asymmetric cell division (ACD) is a fundamental process that generates new cell types during development in eukaryotic species. In plant development, post-embryonic organogenesis driven by ACD is universal and more important than in animals, in which organ pattern is preset during embryogenesis. Thus, plant development provides a powerful system to study molecular mechanisms underlying ACD. During the past decade, tremendous progress has been made in our understanding of the key components and mechanisms involved in this important process in plants. Here, we present an overview of how ACD is determined and regulated in multiple biological processes in plant development and compare their conservation and specificity among different model cell systems. We also summarize the molecular roles and mechanisms of the phytohormones in the regulation of plant ACD. Finally, we conclude with the overarching paradigms and principles that govern plant ACD and consider how new technologies can be exploited to fill the knowledge gaps and make new advances in the field.
Collapse
Affiliation(s)
- Yi Zhang
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tongda Xu
- Plant Synthetic Biology Center, Haixia Institute of Science and Technology, and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Juan Dong
- The Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, the State University of New Jersey, New Brunswick, NJ 08891, USA
| |
Collapse
|
6
|
Leonov A, Feldman R, Piano A, Arlia-Ciommo A, Junio JAB, Orfanos E, Tafakori T, Lutchman V, Mohammad K, Elsaser S, Orfali S, Rajen H, Titorenko VI. Diverse geroprotectors differently affect a mechanism linking cellular aging to cellular quiescence in budding yeast. Oncotarget 2022; 13:918-943. [PMID: 35937500 PMCID: PMC9348708 DOI: 10.18632/oncotarget.28256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Affiliation(s)
- Anna Leonov
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Rachel Feldman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Amanda Piano
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | | | | - Emmanuel Orfanos
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Tala Tafakori
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Vicky Lutchman
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Karamat Mohammad
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sarah Elsaser
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Sandra Orfali
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Harshvardhan Rajen
- Department of Biology, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | | |
Collapse
|
7
|
Wierenga H, Wolde PRT. Energetic constraints on filament-mediated cell polarization. Phys Rev E 2022; 105:064406. [PMID: 35854527 DOI: 10.1103/physreve.105.064406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Cell polarization underlies many cellular processes, such as differentiation, migration, and budding. Many living cells, such as budding yeast and fission yeast, use cytoskeletal structures to actively transport proteins to one location on the membrane and create a high-density spot of membrane-bound proteins. Yet, the thermodynamic constraints on filament-based cell polarization remain unknown. We show by mathematical modeling that cell polarization requires detailed balance to be broken, and we quantify the free-energy cost of maintaining a polarized state of the cell. Our study reveals that detailed balance cannot only be broken via the active transport of proteins along filaments but also via a chemical modification cycle, allowing detailed balance to be broken by the shuttling of proteins between the filament, membrane, and cytosol. Our model thus shows that cell polarization can be established via two distinct driving mechanisms, one based on active transport and one based on nonequilibrium binding. Furthermore, the model predicts that the driven binding process dissipates orders of magnitude less free energy than the transport-based process to create the same membrane spot. Active transport along filaments may be sufficient to create a polarized distribution of membrane-bound proteins, but an additional chemical modification cycle of the proteins themselves is more efficient and less sensitive to the physical exclusion of proteins on the transporting filaments, providing insight in the design principles of the Pom1/Tea1/Tea4 system in fission yeast and the Cdc42 system in budding yeast.
Collapse
|
8
|
Du Y, Roldan MVG, Haraghi A, Haili N, Izhaq F, Verdenaud M, Boualem A, Bendahmane A. Spatially expressed WIP genes control Arabidopsis embryonic root development. NATURE PLANTS 2022; 8:635-645. [PMID: 35710883 DOI: 10.1038/s41477-022-01172-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Development of plant organs is a highly organized process. In Arabidopsis, proper root development requires that distinct cell types and tissue layers are specified and formed in a restricted manner in space and over time. Despite its importance, genetic controls underlying such regularity remain elusive. Here we found that WIP genes expressed in the embryo and suspensor functionally oppose those expressed in the surrounding maternal tissues to orchestrate cell division orientation and cell fate specification in the embryonic root, thereby promoting regular root formation. The maternal WIPs act non-cell autonomously to repress root cell fate specification through SIMILAR TO RADICAL-INDUCED CELL DEATH ONE (SRO) family members. When losing all WIPs, root cells divide irregularly in the early embryo, but this barely alters their fate specification and the morphology of post-embryonic roots. Our results reveal cross-communication between the embryonic and maternal WIPs in controlling root development.
Collapse
Affiliation(s)
- Yujuan Du
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| | - Maria Victoria Gomez Roldan
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Aimen Haraghi
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Nawel Haili
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Farhaj Izhaq
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Marion Verdenaud
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Adnane Boualem
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris Cité, Gif sur Yvette, France.
| |
Collapse
|
9
|
Sakai Y, Higaki T, Ishizaki K, Nishihama R, Kohchi T, Hasezawa S. Migration of prospindle before the first asymmetric division in germinating spore of Marchantia polymorpha. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:5-12. [PMID: 35800969 PMCID: PMC9200083 DOI: 10.5511/plantbiotechnology.21.1217b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/17/2021] [Indexed: 05/11/2023]
Abstract
The development of the plant body starts with spore germination in bryophytes. In many cases, the first division of the spore occurs after germination and cell elongation of the spore. In Marchantia polymorpha, asymmetric division occurs upon spore germination to generate two daughter cells: the larger one retains the ability to divide and develops into the thallus via sporeling or protonema, while the smaller one maintains tip growth and differentiates into the first rhizoid, providing a scaffold for initial development. Although spore germination of M. polymorpha was described in the 19th century, the intracellular processes of the first asymmetric division of the spore have not been well characterized. In this study, we used live-cell imaging analyses to elucidate microtubule dynamics during the first asymmetric division concomitantly with germination. In particular, we demonstrated that the preprophase band was not formed in the spore and that the bipolar prospindle, which is a microtubule structure surrounding the nucleus during prophase, migrated from the center to the periphery in the spore, suggesting that it was the earliest visible sign of cell polarity. We also showed that the occurrence of asymmetric division depended on actin filaments. Our findings regarding the first division of the spore in M. polymorpha will lead to a better model for cell-autonomous asymmetric division in plants.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Graduate School of Sciences, Kobe University, Nada-ku, Kobe 657-8501, Japan
- E-mail: Tel: +81-78-803-5727
| | - Takumi Higaki
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto 860-8555 Japan
| | - Kimitsune Ishizaki
- Graduate School of Sciences, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
- Faculty of Science and Technology, Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Seiichiro Hasezawa
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
- Graduate School of Science and Engineering, Hosei University, Koganei, Tokyo 184-8584 Japan
| |
Collapse
|
10
|
Hiroguchi A, Nakamura K, Fujita T. Abscisic acid switches cell division modes of asymmetric cell division and symmetric cell division in stem cells of protonemal filaments in the moss Physcomitrium patens. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:13-17. [PMID: 35800966 PMCID: PMC9200082 DOI: 10.5511/plantbiotechnology.22.0107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
Multicellular organisms regulate cell numbers and cell fate by using asymmetric cell division (ACD) and symmetric cell division (SCD) during their development and to adapt to unfavorable environmental conditions. A stem cell self-renews and generates differentiated cells. In plants, various types of cells are produced by ACD or SCD; however, the molecular mechanisms of ACD or SCD and the cell division mode switch are largely unknown. The moss Physcomitrium (Physcomitrella) patens is a suitable model to study plant stem cells due to its simple anatomy. Here, we report the cell division mode switch induced by abscisic acid (ABA) in P. patens. ABA is synthesized in response to abiotic stresses and induces round-shape cells, called brood cells, from cylindrical protonemal cells. Although two daughter cells with distinct sizes were produced by ACD in a protonemal stem cell on ABA-free media, the sizes of two daughter cells became similar with ABA treatment. Actin microfilaments were spatially localized on the apices of apical stem cells in protonemata on ABA-free media, but the polar accumulation was lost under the condition of ABA treatment. Moreover, ABA treatment conferred an identical cell fate to the daughter cells in terms of cell division activity. Collectively, the results indicate ABA may suppress the ACD characteristics but evoke SCD in cells. We also noticed that ABA-induced brood cells not only self-renewed but regenerated protonemal cells when ABA was removed from the media, suggesting that brood cells are novel stem cells that are induced by environmental signals in P. patens.
Collapse
Affiliation(s)
- Akihiko Hiroguchi
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Kohei Nakamura
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Kita 10 Nishi 8 Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
11
|
Abstract
Ageing, death, and potential immortality lie at the heart of biology, but two seemingly incompatible paradigms coexist in different research communities and have done since the nineteenth century. The universal senescence paradigm sees senescence as inevitable in all cells. Damage accumulates. The potential immortality paradigm sees some cells as potentially immortal, especially unicellular organisms, germ cells and cancerous cells. Recent research with animal cells, yeasts and bacteria show that damaged cell constituents do in fact build up, but can be diluted by growth and cell division, especially by asymmetric cell division. By contrast, mammalian embryonic stem cells and many cancerous and 'immortalized' cell lines divide symmetrically, and yet replicate indefinitely. How do they acquire their potential immortality? I suggest they are rejuvenated by excreting damaged cell constituents in extracellular vesicles. If so, our understanding of cellular senescence, rejuvenation and potential immortality could be brought together in a new synthesis, which I call the cellular rejuvenation hypothesis: damaged cell constituents build up in all cells, but cells can be rejuvenated either by growth and cell division or, in 'immortal' cell lines, by excreting damaged cell constituents. In electronic supplementary material, appendix, I outline nine ways in which this hypothesis could be tested.
Collapse
|
12
|
Naramoto S, Hata Y, Fujita T, Kyozuka J. The bryophytes Physcomitrium patens and Marchantia polymorpha as model systems for studying evolutionary cell and developmental biology in plants. THE PLANT CELL 2022; 34:228-246. [PMID: 34459922 PMCID: PMC8773975 DOI: 10.1093/plcell/koab218] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/25/2021] [Indexed: 05/03/2023]
Abstract
Bryophytes are nonvascular spore-forming plants. Unlike in flowering plants, the gametophyte (haploid) generation of bryophytes dominates the sporophyte (diploid) generation. A comparison of bryophytes with flowering plants allows us to answer some fundamental questions raised in evolutionary cell and developmental biology. The moss Physcomitrium patens was the first bryophyte with a sequenced genome. Many cell and developmental studies have been conducted in this species using gene targeting by homologous recombination. The liverwort Marchantia polymorpha has recently emerged as an excellent model system with low genomic redundancy in most of its regulatory pathways. With the development of molecular genetic tools such as efficient genome editing, both P. patens and M. polymorpha have provided many valuable insights. Here, we review these advances with a special focus on polarity formation at the cell and tissue levels. We examine current knowledge regarding the cellular mechanisms of polarized cell elongation and cell division, including symmetric and asymmetric cell division. We also examine the role of polar auxin transport in mosses and liverworts. Finally, we discuss the future of evolutionary cell and developmental biological studies in plants.
Collapse
Affiliation(s)
| | - Yuki Hata
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Tomomichi Fujita
- Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
13
|
Connected function of PRAF/RLD and GNOM in membrane trafficking controls intrinsic cell polarity in plants. Nat Commun 2022; 13:7. [PMID: 35013279 PMCID: PMC8748900 DOI: 10.1038/s41467-021-27748-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Cell polarity is a fundamental feature underlying cell morphogenesis and organismal development. In the Arabidopsis stomatal lineage, the polarity protein BASL controls stomatal asymmetric cell division. However, the cellular machinery by which this intrinsic polarity site is established remains unknown. Here, we identify the PRAF/RLD proteins as BASL physical partners and mutating four PRAF members leads to defects in BASL polarization. Members of PRAF proteins are polarized in stomatal lineage cells in a BASL-dependent manner. Developmental defects of the praf mutants phenocopy those of the gnom mutants. GNOM is an activator of the conserved Arf GTPases and plays important roles in membrane trafficking. We further find PRAF physically interacts with GNOM in vitro and in vivo. Thus, we propose that the positive feedback of BASL and PRAF at the plasma membrane and the connected function of PRAF and GNOM in endosomal trafficking establish intrinsic cell polarity in the Arabidopsis stomatal lineage.
Collapse
|
14
|
Gorelova V, Sprakel J, Weijers D. Plant cell polarity as the nexus of tissue mechanics and morphogenesis. NATURE PLANTS 2021; 7:1548-1559. [PMID: 34887521 DOI: 10.1038/s41477-021-01021-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 10/13/2021] [Indexed: 05/20/2023]
Abstract
How reproducible body patterns emerge from the collective activity of individual cells is a key question in developmental biology. Plant cells are encaged in their walls and unable to migrate. Morphogenesis thus relies on directional cell division, by precise positioning of division planes, and anisotropic cellular growth, mediated by regulated mechanical inhomogeneity of the walls. Both processes require the prior establishment of cell polarity, marked by the formation of polar domains at the plasma membrane, in a number of developmental contexts. The establishment of cell polarity involves biochemical cues, but increasing evidence suggests that mechanical forces also play a prominent instructive role. While evidence for mutual regulation between cell polarity and tissue mechanics is emerging, the nature of this bidirectional feedback remains unclear. Here we review the role of cell polarity at the interface of tissue mechanics and morphogenesis. We also aim to integrate biochemistry-centred insights with concepts derived from physics and physical chemistry. Lastly, we propose a set of questions that will help address the fundamental nature of cell polarization and its mechanistic basis.
Collapse
Affiliation(s)
- Vera Gorelova
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University and Research, Wageningen, the Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, the Netherlands.
| |
Collapse
|
15
|
Campos R, Van Norman JM. Confocal Analysis of Arabidopsis Root Cell Divisions in 3D: A Focus on the Endodermis. Methods Mol Biol 2021; 2382:181-207. [PMID: 34705240 DOI: 10.1007/978-1-0716-1744-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The development of multicellular organisms requires coordinated cell divisions for the production of diverse cell types and body plan elaboration and growth. There are two main types of cell divisions: proliferative or symmetric divisions, which produce more cells of a given type, and formative or asymmetric divisions, which produce cells of different types. Because plant cells are surrounded by cell walls, the orientation of plant cell divisions is particularly important in cell fate specification and tissue or organ morphology. The cellular organization of the Arabidopsis thaliana root makes an excellent tool to study how oriented cell division contributes to tissue patterning during organ development. To understand how division plane orientation in a specific genotype or growth condition may impact organ or tissue development, a detailed characterization of cell division orientation is required. Here we describe a confocal microscopy-based, live imaging method for Arabidopsis root tips to examine the 3D orientations of cell division planes and quantify formative, proliferative, and atypical endodermal cell divisions.
Collapse
Affiliation(s)
- Roya Campos
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
16
|
Huang J, Dong J, Qu LJ. From birth to function: Male gametophyte development in flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2021; 63:102118. [PMID: 34625367 PMCID: PMC9039994 DOI: 10.1016/j.pbi.2021.102118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/13/2021] [Accepted: 08/25/2021] [Indexed: 05/08/2023]
Abstract
Male germline development in flowering plants involves two distinct and successive phases, microsporogenesis and microgametogenesis, which involve one meiosis followed by two rounds of mitosis. Many aspects of distinctions after mitosis between the vegetative cell and the male germ cells are seen, from morphology to structure, and the differential functions of the two cell types in the male gametophyte are differentially needed and required for double fertilization. The two sperm cells, carriers of the hereditary substances, depend on the vegetative cell/pollen tube to be delivered to the female gametophyte for double fertilization. Thus, the intercellular communication and coordinated activity within the male gametophyte probably represent the most subtle regulation in flowering plants to guarantee the success of reproduction. This review will focus on what we have known about the differentiation process and the functional diversification of the vegetative cell and the male germ cell, the most crucial cell types for plant fertility and crop production.
Collapse
Affiliation(s)
- Jiaying Huang
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA
| | - Juan Dong
- Waksman Institute of Microbiology, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Department of Plant Biology, Rutgers, the State University of New Jersey, Piscataway, NJ 08901, USA.
| | - Li-Jia Qu
- State Key Laboratory for Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences at the College of Life Sciences, Peking University, Beijing 100871, People's Republic of China; The National Plant Gene Research Center (Beijing), Beijing 100101, People's Republic of China.
| |
Collapse
|
17
|
The Rab Geranylgeranyl Transferase Beta Subunit Is Essential for Embryo and Seed Development in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22157907. [PMID: 34360673 PMCID: PMC8347404 DOI: 10.3390/ijms22157907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Auxin is a key regulator of plant development affecting the formation and maturation of reproductive structures. The apoplastic route of auxin transport engages influx and efflux facilitators from the PIN, AUX and ABCB families. The polar localization of these proteins and constant recycling from the plasma membrane to endosomes is dependent on Rab-mediated vesicular traffic. Rab proteins are anchored to membranes via posttranslational addition of two geranylgeranyl moieties by the Rab Geranylgeranyl Transferase enzyme (RGT), which consists of RGTA, RGTB and REP subunits. Here, we present data showing that seed development in the rgtb1 mutant, with decreased vesicular transport capacity, is disturbed. Both pre- and post-fertilization events are affected, leading to a decrease in seed yield. Pollen tube recognition at the stigma and its guidance to the micropyle is compromised and the seed coat forms incorrectly. Excess auxin in the sporophytic tissues of the ovule in the rgtb1 plants leads to an increased tendency of autonomous endosperm formation in unfertilized ovules and influences embryo development in a maternal sporophytic manner. The results show the importance of vesicular traffic for sexual reproduction in flowering plants, and highlight RGTB1 as a key component of sporophytic-filial signaling.
Collapse
|
18
|
Harnvanichvech Y, Gorelova V, Sprakel J, Weijers D. The Arabidopsis embryo as a quantifiable model for studying pattern formation. QUANTITATIVE PLANT BIOLOGY 2021; 2:e3. [PMID: 37077211 PMCID: PMC10095805 DOI: 10.1017/qpb.2021.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/15/2021] [Accepted: 02/21/2021] [Indexed: 05/03/2023]
Abstract
Phenotypic diversity of flowering plants stems from common basic features of the plant body pattern with well-defined body axes, organs and tissue organisation. Cell division and cell specification are the two processes that underlie the formation of a body pattern. As plant cells are encased into their cellulosic walls, directional cell division through precise positioning of division plane is crucial for shaping plant morphology. Since many plant cells are pluripotent, their fate establishment is influenced by their cellular environment through cell-to-cell signaling. Recent studies show that apart from biochemical regulation, these two processes are also influenced by cell and tissue morphology and operate under mechanical control. Finding a proper model system that allows dissecting the relationship between these aspects is the key to our understanding of pattern establishment. In this review, we present the Arabidopsis embryo as a simple, yet comprehensive model of pattern formation compatible with high-throughput quantitative assays.
Collapse
Affiliation(s)
- Yosapol Harnvanichvech
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Vera Gorelova
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Joris Sprakel
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
19
|
Ma J, Liu X, Liu P, Lu W, Shen X, Ma R, Zong H. Identification of a new p53 responsive element in the promoter region of anillin. Int J Mol Med 2020; 45:1563-1570. [PMID: 32323752 DOI: 10.3892/ijmm.2020.4527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/06/2019] [Indexed: 11/06/2022] Open
Abstract
The expression of anillin mRNA and protein is regulated in a cell cycle‑dependent manner. However, the mechanism underlying this process is unclear. Previous studies analyzing the sequence of the 5'‑untranslated region of anillin have unveiled several putative p53 binding sites. Therefore, the present study hypothesized that the anillin gene may be repressed by p53 and that the commonly observed mutation (or loss of function) of p53 may serve a role in this phenotype. Bioinformatic analysis of the anillin promoter region revealed potential p53 responsive elements. Of those identified, 2 were able to bind p53 protein, as determined via a chromatin immunoprecipitation assay. Although it was hypothesized that DNA damage and resultant p53 expression would repress anillin expression, the results revealed that anillin mRNA and protein expression levels were negatively regulated by DNA damage in the wild‑type p53 cells, but not in the isogenic p53 null cells. Furthermore, DNA sequences encompassing the p53 binding site downregulated luciferase transgenes in a p53 dependent manner. Taken together, these data indicated that anillin was negatively regulated by p53 and that anillin overexpression observed in cancer may be a p53‑mediated phenomenon. The data from the present study provided further evidence for the role of p53 in the biologically crucial process of cytokinesis.
Collapse
Affiliation(s)
- Jiao Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinying Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Pengyi Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Wenqing Lu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Xinxin Shen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Ruixiang Ma
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiaotong University Medical School, Shanghai 200025, P.R. China
| | - Hongliang Zong
- Shanghai PerHum Therapeutics Co. Ltd., Shanghai 200052, P.R. China
| |
Collapse
|
20
|
Tang H, Duijts K, Bezanilla M, Scheres B, Vermeer JEM, Willemsen V. Geometric cues forecast the switch from two- to three-dimensional growth in Physcomitrella patens. THE NEW PHYTOLOGIST 2020; 225:1945-1955. [PMID: 31639220 PMCID: PMC7027797 DOI: 10.1111/nph.16276] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/12/2019] [Indexed: 05/02/2023]
Abstract
During land colonization, plants acquired a range of body plan adaptations, of which the innovation of three-dimensional (3D) tissues increased organismal complexity and reproductivity. In the moss, Physcomitrella patens, a 3D leafy gametophore originates from filamentous cells that grow in a two-dimensional (2D) plane through a series of asymmetric cell divisions. Asymmetric cell divisions that coincide with different cell division planes and growth directions enable the developmental switch from 2D to 3D, but insights into the underlying mechanisms coordinating this switch are still incomplete. Using 2D and 3D imaging and image segmentation, we characterized two geometric cues, the width of the initial cell and the angle of the transition division plane, which sufficiently distinguished a gametophore initial cell from a branch initial cell. These identified cues were further confirmed in gametophore formation mutants. The identification of a fluorescent marker allowed us to successfully predict the gametophore initial cell with > 90% accuracy before morphological changes, supporting our hypothesis that, before the transition division, parental cells of the gametophore initials possess different properties from those of the branch initials. Our results suggest that the cell fate decision of the initial cell is determined in the parental cell, before the transition division.
Collapse
Affiliation(s)
- Han Tang
- Laboratory of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
- Laboratory of Cell BiologyWageningen University & Research6708 PEWageningenthe Netherlands
| | - Kilian Duijts
- Laboratory of Cell BiologyWageningen University & Research6708 PEWageningenthe Netherlands
| | | | - Ben Scheres
- Laboratory of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| | - Joop E. M. Vermeer
- Laboratory of Cell and Molecular BiologyInstitute of BiologyUniversity of Neuchâtel2000NeuchâtelSwitzerland
| | - Viola Willemsen
- Laboratory of Plant Developmental BiologyWageningen University & Research6708 PBWageningenthe Netherlands
| |
Collapse
|
21
|
A system-level mechanistic explanation for asymmetric stem cell fates: Arabidopsis thaliana root niche as a study system. Sci Rep 2020; 10:3525. [PMID: 32103059 PMCID: PMC7044435 DOI: 10.1038/s41598-020-60251-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/23/2019] [Indexed: 11/09/2022] Open
Abstract
Asymmetric divisions maintain long-term stem cell populations while producing new cells that proliferate and then differentiate. Recent reports in animal systems show that divisions of stem cells can be uncoupled from their progeny differentiation, and the outcome of a division could be influenced by microenvironmental signals. But the underlying system-level mechanisms, and whether this dynamics also occur in plant stem cell niches (SCN), remain elusive. This article presents a cell fate regulatory network model that contributes to understanding such mechanism and identify critical cues for cell fate transitions in the root SCN. Novel computational and experimental results show that the transcriptional regulator SHR is critical for the most frequent asymmetric division previously described for quiescent centre stem cells. A multi-scale model of the root tip that simulated each cell's intracellular regulatory network, and the dynamics of SHR intercellular transport as a cell-cell coupling mechanism, was developed. It revealed that quiescent centre cell divisions produce two identical cells, that may acquire different fates depending on the feedback between SHR's availability and the state of the regulatory network. Novel experimental data presented here validates our model, which in turn, constitutes the first proposed systemic mechanism for uncoupled SCN cell division and differentiation.
Collapse
|
22
|
Winkley K, Ward S, Reeves W, Veeman M. Iterative and Complex Asymmetric Divisions Control Cell Volume Differences in Ciona Notochord Tapering. Curr Biol 2019; 29:3466-3477.e4. [PMID: 31607534 DOI: 10.1016/j.cub.2019.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
The notochord of the invertebrate chordate Ciona forms a tapered rod at tailbud stages consisting of only 40 cylindrical cells in a single-file column. This tapered shape involves differences in notochord cell volume along the anterior-posterior axis. Here, we quantify sibling cell volume asymmetry throughout the developing notochord and find that there are distinctive patterns of unequal cleavage in all 4 bilateral pairs of A-line primary notochord founder cells and also in the B-line-derived secondary notochord founder cells. A quantitative model confirms that the observed patterns of unequal cleavage are sufficient to explain all the anterior-posterior variation in notochord cell volume. Many examples are known of cells that divide asymmetrically to give daughter cells of different size and fate. Here, by contrast, a series of subtle but iterative and finely patterned asymmetric divisions controls the shape of an entire organ. Quantitative 3D analysis of cell shape and spindle positioning allows us to infer multiple cellular mechanisms driving these unequal cleavages, including polarized displacements of the mitotic spindle, contributions from the shape of the mother cell, and late changes occurring between anaphase and abscission that potentially involve differential cortical contractility. We infer differential use of these mechanisms between different notochord blastomeres and also between different rounds of cell division. These results demonstrate a new role for asymmetric division in directly shaping a developing organ and point toward complex underlying mechanisms.
Collapse
Affiliation(s)
- Konner Winkley
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Spencer Ward
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
23
|
RBOH-Dependent ROS Synthesis and ROS Scavenging by Plant Specialized Metabolites To Modulate Plant Development and Stress Responses. Chem Res Toxicol 2019; 32:370-396. [PMID: 30781949 DOI: 10.1021/acs.chemrestox.9b00028] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species (ROS) regulate plant growth and development. ROS are kept at low levels in cells to prevent oxidative damage, allowing them to be effective signaling molecules upon increased synthesis. In plants and animals, NADPH oxidase/respiratory burst oxidase homolog (RBOH) proteins provide localized ROS bursts to regulate growth, developmental processes, and stress responses. This review details ROS production via RBOH enzymes in the context of plant development and stress responses and defines the locations and tissues in which members of this family function in the model plant Arabidopsis thaliana. To ensure that these ROS signals do not reach damaging levels, plants use an array of antioxidant strategies. In addition to antioxidant machineries similar to those found in animals, plants also have a variety of specialized metabolites that scavenge ROS. These plant specialized metabolites exhibit immense structural diversity and have highly localized accumulation. This makes them important players in plant developmental processes and stress responses that use ROS-dependent signaling mechanisms. This review summarizes the unique properties of plant specialized metabolites, including carotenoids, ascorbate, tocochromanols (vitamin E), and flavonoids, in modulating ROS homeostasis. Flavonols, a subclass of flavonoids with potent antioxidant activity, are induced during stress and development, suggesting that they have a role in maintaining ROS homeostasis. Recent results using genetic approaches have shown how flavonols regulate development and stress responses through their action as antioxidants.
Collapse
|
24
|
Facette MR, Rasmussen CG, Van Norman JM. A plane choice: coordinating timing and orientation of cell division during plant development. CURRENT OPINION IN PLANT BIOLOGY 2019; 47:47-55. [PMID: 30261337 DOI: 10.1016/j.pbi.2018.09.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, MA, United States.
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| | - Jaimie M Van Norman
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA, United States.
| |
Collapse
|
25
|
Houbaert A, Zhang C, Tiwari M, Wang K, de Marcos Serrano A, Savatin DV, Urs MJ, Zhiponova MK, Gudesblat GE, Vanhoutte I, Eeckhout D, Boeren S, Karimi M, Betti C, Jacobs T, Fenoll C, Mena M, de Vries S, De Jaeger G, Russinova E. POLAR-guided signalling complex assembly and localization drive asymmetric cell division. Nature 2018; 563:574-578. [DOI: 10.1038/s41586-018-0714-x] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 09/25/2018] [Indexed: 11/09/2022]
|
26
|
Abrash E, Anleu Gil MX, Matos JL, Bergmann DC. Conservation and divergence of YODA MAPKKK function in regulation of grass epidermal patterning. Development 2018; 145:dev.165860. [PMID: 29945871 DOI: 10.1242/dev.165860] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022]
Abstract
All multicellular organisms must properly pattern cell types to generate functional tissues and organs. The organized and predictable cell lineages of the Brachypodium leaf enabled us to characterize the role of the MAPK kinase kinase gene BdYODA1 in regulating asymmetric cell divisions. We find that YODA genes promote normal stomatal spacing patterns in both Arabidopsis and Brachypodium, despite species-specific differences in those patterns. Using lineage tracing and cell fate markers, we show that, unexpectedly, patterning defects in bdyoda1 mutants do not arise from faulty physical asymmetry in cell divisions but rather from improper enforcement of alternative cellular fates after division. These cross-species comparisons allow us to refine our understanding of MAPK activities during plant asymmetric cell divisions.
Collapse
Affiliation(s)
- Emily Abrash
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - M Ximena Anleu Gil
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Juliana L Matos
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305-5020, USA .,Howard Hughes Medical Institute (HHMI), Stanford University, Stanford, CA 94305-5020, USA
| |
Collapse
|
27
|
DiSUMO-LIKE Interacts with RNA-Binding Proteins and Affects Cell-Cycle Progression during Maize Embryogenesis. Curr Biol 2018; 28:1548-1560.e5. [DOI: 10.1016/j.cub.2018.03.066] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 03/01/2018] [Accepted: 03/28/2018] [Indexed: 12/18/2022]
|
28
|
Ma Q, Grones P, Robert S. Auxin signaling: a big question to be addressed by small molecules. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:313-328. [PMID: 29237069 PMCID: PMC5853230 DOI: 10.1093/jxb/erx375] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/16/2017] [Indexed: 05/20/2023]
Abstract
Providing a mechanistic understanding of the crucial roles of the phytohormone auxin has been an important and coherent aspect of plant biology research. Since its discovery more than a century ago, prominent advances have been made in the understanding of auxin action, ranging from metabolism and transport to cellular and transcriptional responses. However, there is a long road ahead before a thorough understanding of its complex effects is achieved, because a lot of key information is still missing. The availability of an increasing number of technically advanced scientific tools has boosted the basic discoveries in auxin biology. A plethora of bioactive small molecules, consisting of the synthetic auxin-like herbicides and the more specific auxin-related compounds, developed as a result of the exploration of chemical space by chemical biology, have made the tool box for auxin research more comprehensive. This review mainly focuses on the compounds targeting the auxin co-receptor complex, demonstrates the various ways to use them, and shows clear examples of important basic knowledge obtained by their usage. Application of these precise chemical tools, together with an increasing amount of structural information for the major components in auxin action, will certainly aid in strengthening our insights into the complexity and diversity of auxin response.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | - Peter Grones
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Sweden
| | | |
Collapse
|
29
|
Ojolo SP, Cao S, Priyadarshani SVGN, Li W, Yan M, Aslam M, Zhao H, Qin Y. Regulation of Plant Growth and Development: A Review From a Chromatin Remodeling Perspective. FRONTIERS IN PLANT SCIENCE 2018; 9:1232. [PMID: 30186301 PMCID: PMC6113404 DOI: 10.3389/fpls.2018.01232] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 08/03/2018] [Indexed: 05/04/2023]
Abstract
In eukaryotes, genetic material is packaged into a dynamic but stable nucleoprotein structure called chromatin. Post-translational modification of chromatin domains affects the expression of underlying genes and subsequently the identity of cells by conveying epigenetic information from mother to daughter cells. SWI/SNF chromatin remodelers are ATP-dependent complexes that modulate core histone protein polypeptides, incorporate variant histone species and modify nucleotides in DNA strands within the nucleosome. The present review discusses the SWI/SNF chromatin remodeler family, its classification and recent advancements. We also address the involvement of SWI/SNF remodelers in regulating vital plant growth and development processes such as meristem establishment and maintenance, cell differentiation, organ initiation, flower morphogenesis and flowering time regulation. Moreover, the role of chromatin remodelers in key phytohormone signaling pathways is also reviewed. The information provided in this review may prompt further debate and investigations aimed at understanding plant-specific epigenetic regulation mediated by chromatin remodeling under continuously varying plant growth conditions and global climate change.
Collapse
Affiliation(s)
- Simon P. Ojolo
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shijiang Cao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - S. V. G. N. Priyadarshani
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weimin Li
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Maokai Yan
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohammad Aslam
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Heming Zhao
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Qin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Yuan Qin, ;
| |
Collapse
|
30
|
van Haastert PJM, Keizer-Gunnink I, Kortholt A. The cytoskeleton regulates symmetry transitions in moving amoeboid cells. J Cell Sci 2018; 131:jcs.208892. [DOI: 10.1242/jcs.208892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/19/2018] [Indexed: 01/24/2023] Open
Abstract
Symmetry and symmetry breaking are essential in biology. Symmetry comes in different forms: rotational symmetry, mirror symmetry and alternating right/left symmetry. Especially the transitions between the different symmetry forms specify crucial points in cell biology, including gastrulation in development, formation of the cleavage furrow in cell division, or the front in cell polarity. However, the mechanisms of these symmetry transitions are not well understood. Here we have investigated the fundaments of symmetry and symmetry transitions of the cytoskeleton during cell movement. Our data show that the dynamic shape changes of amoeboid cells are far from random, but are the consequence of refined symmetries and symmetry changes that are orchestrated by small G-proteins and the cytoskeleton, with local stimulation by F-actin and Scar , and local inhibition by IQGAP2 and myosin.
Collapse
Affiliation(s)
- Peter J. M. van Haastert
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ineke Keizer-Gunnink
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Arjan Kortholt
- Department of Cell Biochemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
31
|
Mena A, Medina DA, García-Martínez J, Begley V, Singh A, Chávez S, Muñoz-Centeno MC, Pérez-Ortín JE. Asymmetric cell division requires specific mechanisms for adjusting global transcription. Nucleic Acids Res 2017; 45:12401-12412. [PMID: 29069448 PMCID: PMC5716168 DOI: 10.1093/nar/gkx974] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/10/2017] [Indexed: 12/19/2022] Open
Abstract
Most cells divide symmetrically into two approximately identical cells. There are many examples, however, of asymmetric cell division that can generate sibling cell size differences. Whereas physical asymmetric division mechanisms and cell fate consequences have been investigated, the specific problem caused by asymmetric division at the transcription level has not yet been addressed. In symmetrically dividing cells the nascent transcription rate increases in parallel to cell volume to compensate it by keeping the actual mRNA synthesis rate constant. This cannot apply to the yeast Saccharomyces cerevisiae, where this mechanism would provoke a never-ending increasing mRNA synthesis rate in smaller daughter cells. We show here that, contrarily to other eukaryotes with symmetric division, budding yeast keeps the nascent transcription rates of its RNA polymerases constant and increases mRNA stability. This control on RNA pol II-dependent transcription rate is obtained by controlling the cellular concentration of this enzyme.
Collapse
Affiliation(s)
- Adriana Mena
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Daniel A Medina
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - José García-Martínez
- Departamento de Genética and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| | - Victoria Begley
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Abhyudai Singh
- Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716, USA
| | - Sebastián Chávez
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mari C Muñoz-Centeno
- Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Virgen del Rocío-CSIC-Universidad de Sevilla, 41013 Sevilla, Spain
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and E.R.I. Biotecmed, Universitat de València, Dr. Moliner, 50, Burjassot 46100, Valencia, Spain
| |
Collapse
|
32
|
Shirakawa M, Ueda H, Shimada T, Hara-Nishimura I. FAMA: A Molecular Link between Stomata and Myrosin Cells. TRENDS IN PLANT SCIENCE 2016; 21:861-871. [PMID: 27477926 DOI: 10.1016/j.tplants.2016.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 06/24/2016] [Accepted: 07/04/2016] [Indexed: 05/04/2023]
Abstract
Plants use sophisticated defense strategies against herbivores, including the myrosinase-glucosinolate system in Brassicales plants. This system sequesters myrosinase in myrosin cells, which are idioblasts in inner leaf tissues, and produces a toxic compound when cells are damaged by herbivores. Although the molecular mechanisms underlying myrosin cell development are largely unknown, recent studies have revealed that two key components, a basic helix-loop-helix (bHLH) transcription factor (FAMA) and vesicle trafficking factors (such as SYNTAXIN OF PLANTS 22), regulate the differentiation and fate determination of myrosin cells. FAMA also functions as a master regulator of guard cell (GC) differentiation. In this review, we discuss how FAMA operates two distinct genetic programs: the generation of myrosin cells in inner plant tissue and GCs in the epidermis.
Collapse
Affiliation(s)
- Makoto Shirakawa
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Haruko Ueda
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Tomoo Shimada
- Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
33
|
Shao W, Dong J. Polarity in plant asymmetric cell division: Division orientation and cell fate differentiation. Dev Biol 2016; 419:121-131. [PMID: 27475487 DOI: 10.1016/j.ydbio.2016.07.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/18/2016] [Accepted: 07/26/2016] [Indexed: 01/04/2023]
Abstract
Asymmetric cell division (ACD) is universally required for the development of multicellular organisms. Unlike animal cells, plant cells have a rigid cellulosic extracellular matrix, the cell wall, which provides physical support and forms communication routes. This fundamental difference leads to some unique mechanisms in plants for generating asymmetries during cell division. However, plants also utilize intrinsically polarized proteins to regulate asymmetric signaling and cell division, a strategy similar to the differentiation mechanism found in animals. Current progress suggests that common regulatory modes, i.e. protein spontaneous clustering and cytoskeleton reorganization, underlie protein polarization in both animal and plant cells. Despite these commonalities, it is important to note that intrinsic mechanisms in plants are heavily influenced by extrinsic cues. To control physical asymmetry in cell division, although our understanding is fragmentary thus far, plants might have evolved novel polarization strategies to orientate cell division plane. Recent studies also suggest that the phytohormone auxin, one of the most pivotal small molecules in plant development, regulates ACD in plants.
Collapse
Affiliation(s)
- Wanchen Shao
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA
| | - Juan Dong
- Department of Plant Biology and Pathology, Rutgers the State University of New Jersey, NJ 08901, USA; Waksman Institute of Microbiology, Rutgers the State University of New Jersey, NJ 08854, USA.
| |
Collapse
|