1
|
Hristov BH, Noble WS, Bertero A. Systematic identification of interchromosomal interaction networks supports the existence of specialized RNA factories. Genome Res 2024; 34:1610-1623. [PMID: 39322282 PMCID: PMC11529845 DOI: 10.1101/gr.278327.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Most studies of genome organization have focused on intrachromosomal (cis) contacts because they harbor key features such as DNA loops and topologically associating domains. Interchromosomal (trans) contacts have received much less attention, and tools for interrogating potential biologically relevant trans structures are lacking. Here, we develop a computational framework that uses Hi-C data to identify sets of loci that jointly interact in trans This method, trans-C, initiates probabilistic random walks with restarts from a set of seed loci to traverse an input Hi-C contact network, thereby identifying sets of trans-contacting loci. We validate trans-C in three increasingly complex models of established trans contacts: the Plasmodium falciparum var genes, the mouse olfactory receptor "Greek islands," and the human RBM20 cardiac splicing factory. We then apply trans-C to systematically test the hypothesis that genes coregulated by the same trans-acting element (i.e., a transcription or splicing factor) colocalize in three dimensions to form "RNA factories" that maximize the efficiency and accuracy of RNA biogenesis. We find that many loci with multiple binding sites of the same DNA-binding proteins interact with one another in trans, especially those bound by factors with intrinsically disordered domains. Similarly, clustered binding of a subset of RNA-binding proteins correlates with trans interaction of the encoding loci. We observe that these trans-interacting loci are close to nuclear speckles. These findings support the existence of trans- interacting chromatin domains (TIDs) driven by RNA biogenesis. Trans-C provides an efficient computational framework for studying these and other types of trans interactions, empowering studies of a poorly understood aspect of genome architecture.
Collapse
Affiliation(s)
| | - William Stafford Noble
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Alessandro Bertero
- Molecular Biotechnology Center "Guido Tarone," Department of Molecular Biotechnology and Health Sciences, University of Turin, 10126 Torino, Italy
| |
Collapse
|
2
|
Windisch R, Soliman S, Hoffmann A, Chen-Wichmann L, Danese A, Vosberg S, Bravo J, Lutz S, Kellner C, Fischer A, Gebhard C, Redondo Monte E, Hartmann L, Schneider S, Beier F, Strobl CD, Weigert O, Peipp M, Schündeln M, Stricker SH, Rehli M, Bernhagen J, Humpe A, Klump H, Brendel C, Krause DS, Greif PA, Wichmann C. Engineering an inducible leukemia-associated fusion protein enables large-scale ex vivo production of functional human phagocytes. Proc Natl Acad Sci U S A 2024; 121:e2312499121. [PMID: 38857395 PMCID: PMC11194515 DOI: 10.1073/pnas.2312499121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 03/20/2024] [Indexed: 06/12/2024] Open
Abstract
Ex vivo expansion of human CD34+ hematopoietic stem and progenitor cells remains a challenge due to rapid differentiation after detachment from the bone marrow niche. In this study, we assessed the capacity of an inducible fusion protein to enable sustained ex vivo proliferation of hematopoietic precursors and their capacity to differentiate into functional phagocytes. We fused the coding sequences of an FK506-Binding Protein 12 (FKBP12)-derived destabilization domain (DD) to the myeloid/lymphoid lineage leukemia/eleven nineteen leukemia (MLL-ENL) fusion gene to generate the fusion protein DD-MLL-ENL and retrovirally expressed the protein switch in human CD34+ progenitors. Using Shield1, a chemical inhibitor of DD fusion protein degradation, we established large-scale and long-term expansion of late monocytic precursors. Upon Shield1 removal, the cells lost self-renewal capacity and spontaneously differentiated, even after 2.5 y of continuous ex vivo expansion. In the absence of Shield1, stimulation with IFN-γ, LPS, and GM-CSF triggered terminal differentiation. Gene expression analysis of the obtained phagocytes revealed marked similarity with naïve monocytes. In functional assays, the novel phagocytes migrated toward CCL2, attached to VCAM-1 under shear stress, produced reactive oxygen species, and engulfed bacterial particles, cellular particles, and apoptotic cells. Finally, we demonstrated Fcγ receptor recognition and phagocytosis of opsonized lymphoma cells in an antibody-dependent manner. Overall, we have established an engineered protein that, as a single factor, is useful for large-scale ex vivo production of human phagocytes. Such adjustable proteins have the potential to be applied as molecular tools to produce functional immune cells for experimental cell-based approaches.
Collapse
Affiliation(s)
- Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sarah Soliman
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Adrian Hoffmann
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Linping Chen-Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Anna Danese
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Sebastian Vosberg
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz8010, Austria
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
| | - Sebastian Lutz
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Alexander Fischer
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
| | - Claudia Gebhard
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Enric Redondo Monte
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Luise Hartmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Stephanie Schneider
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Laboratory for Leukemia Diagnostics, Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Fabian Beier
- Department of Hematology, Oncology, Hemostaseology and Stem Cell Transplantation, Medical Faculty University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Carolin Dorothea Strobl
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Matthias Peipp
- Division of Antibody-Based Immunotherapy, Department of Medicine II, Christian Albrechts University of Kiel, Kiel24105, Germany
| | - Michael Schündeln
- Pediatric Hematology and Oncology, Department of Pediatrics III, University Hospital Essen and the University of Duisburg-Essen, Essen45147, Germany
| | - Stefan H. Stricker
- Biomedical Center, Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Michael Rehli
- Department of Internal Medicine III, University Hospital Regensburg, Regensburg93053, Germany
- Leibniz Institute for Immunotherapy, Regensburg93053, Germany
| | - Jürgen Bernhagen
- Vascular Biology, Institute for Stroke and Dementia Research, Ludwig-Maximilians-Universität München, Munich81377, Germany
- Munich Cluster for Systems Neurology, Munich81377, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, Essen45147, Germany
- Institute for Transfusion Medicine and Cell Therapeutics, University Hospital Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen52074, Germany
| | - Christian Brendel
- Division of Pediatric Hematology/Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA02115
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main60596, Germany
- Institute of General Pharmacology and Toxicology, University Hospital Frankfurt, Goethe-University, Frankfurt am Main60596, Germany
| | - Philipp A. Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
- German Cancer Consortium, Partner site Munich, Munich81377, Germany
- German Cancer Research Center, Heidelberg69120, Germany
| | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, Ludwig-Maximilians-Universität München, Munich81377, Germany
| |
Collapse
|
3
|
Zhang Z, Xu J, Liu J, Wang J, Lei L. SEC: A core hub during cell fate alteration. FASEB J 2024; 38:e23680. [PMID: 38758186 DOI: 10.1096/fj.202400514r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Pol II pause release is a rate-limiting step in gene transcription, influencing various cell fate alterations. Numerous proteins orchestrate Pol II pause release, thereby playing pivotal roles in the intricate process of cellular fate modulation. Super elongation complex (SEC), a large assembly comprising diverse protein components, has garnered attention due to its emerging significance in orchestrating physiological and pathological cellular identity changes by regulating the transcription of crucial genes. Consequently, SEC emerges as a noteworthy functional complex capable of modulating cell fate alterations. Therefore, a comprehensive review is warranted to systematically summarize the core roles of SEC in different types of cell fate alterations. This review focuses on elucidating the current understanding of the structural and functional basis of SEC. Additionally, we discuss the intricate regulatory mechanisms governing SEC in various models of cell fate alteration, encompassing both physiological and pathological contexts. Furthermore, leveraging the existing knowledge of SEC, we propose some insightful directions for future research, aiming to enhance our mechanistic and functional comprehension of SEC within the diverse landscape of cell fate alterations.
Collapse
Affiliation(s)
- Zhijing Zhang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jingyi Xu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiqiang Liu
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiaqiang Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang Province, China
| | - Lei Lei
- Department of Histology and Embryology, Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
4
|
Kreissig S, Windisch R, Wichmann C. Deciphering Acute Myeloid Leukemia Associated Transcription Factors in Human Primary CD34+ Hematopoietic Stem/Progenitor Cells. Cells 2023; 13:78. [PMID: 38201282 PMCID: PMC10777941 DOI: 10.3390/cells13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hemato-oncological diseases account for nearly 10% of all malignancies and can be classified into leukemia, lymphoma, myeloproliferative diseases, and myelodysplastic syndromes. The causes and prognosis of these disease entities are highly variable. Most entities are not permanently controllable and ultimately lead to the patient's death. At the molecular level, recurrent mutations including chromosomal translocations initiate the transformation from normal stem-/progenitor cells into malignant blasts finally floating the patient's bone marrow and blood system. In acute myeloid leukemia (AML), the so-called master transcription factors such as RUNX1, KMT2A, and HOX are frequently disrupted by chromosomal translocations, resulting in neomorphic oncogenic fusion genes. Triggering ex vivo expansion of primary human CD34+ stem/progenitor cells represents a distinct characteristic of such chimeric AML transcription factors. Regarding oncogenic mechanisms of AML, most studies focus on murine models. However, due to biological differences between mice and humans, findings are only partly transferable. This review focuses on the genetic manipulation of human CD34+ primary hematopoietic stem/progenitor cells derived from healthy donors to model acute myeloid leukemia cell growth. Analysis of defined single- or multi-hit human cellular AML models will elucidate molecular mechanisms of the development, maintenance, and potential molecular intervention strategies to counteract malignant human AML blast cell growth.
Collapse
Affiliation(s)
| | | | - Christian Wichmann
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, LMU University Hospital, LMU Munich, 81377 Munich, Germany; (S.K.)
| |
Collapse
|
5
|
Cugliari G. FKBP5, a Modulator of Stress Responses Involved in Malignant Mesothelioma: The Link between Stress and Cancer. Int J Mol Sci 2023; 24:ijms24098183. [PMID: 37175892 PMCID: PMC10179631 DOI: 10.3390/ijms24098183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare tumour characterized by a long latency period after asbestos exposure and poor survival [...].
Collapse
Affiliation(s)
- Giovanni Cugliari
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
6
|
Aryal S, Zhang Y, Wren S, Li C, Lu R. Molecular regulators of HOXA9 in acute myeloid leukemia. FEBS J 2023; 290:321-339. [PMID: 34743404 DOI: 10.1111/febs.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/30/2021] [Accepted: 11/05/2021] [Indexed: 02/05/2023]
Abstract
Dysregulation of the oncogenic transcription factor HOXA9 is a prominent feature for most aggressive acute myeloid leukemia cases and a strong indicator of poor prognosis in patients. Leukemia subtypes with hallmark overexpression of HOXA9 include those carrying MLL gene rearrangements, NPM1c mutations, and other genetic alternations. A growing body of evidence indicates that HOXA9 dysregulation is both sufficient and necessary for leukemic transformation. The HOXA9 mRNA and protein regulation includes multilayered controls by transcription factors (such as CDX2/4 and USF2/1), epigenetic factors (such as MLL-menin-LEDGF, DOT1L, ENL, HBO1, NPM1c-XPO1, and polycomb proteins), microRNAs (such as miR-126 and miR-196b), long noncoding RNAs (such as HOTTIP), three-dimensional chromatin interactions, and post-translational protein modifications. Recently, insights into the dynamic regulation of HOXA9 have led to an advanced understanding of the HOXA9 regulome and provided new cancer therapeutic opportunities, including developing inhibitors targeting DOT1L, menin, and ENL proteins. This review summarizes recent advances in understanding the molecular mechanisms controlling HOXA9 regulation and the pharmacological approaches that target HOXA9 regulators to treat HOXA9-driven acute myeloid leukemia.
Collapse
Affiliation(s)
- Sajesan Aryal
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Yang Zhang
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Spencer Wren
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| | - Chunliang Li
- Department of Tumor Cell Biology & Cancer Biology Program/Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui Lu
- Division of Hematology and Oncology & O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
7
|
Liu C, Li X, Xiong F, Wang L, Chen K, Wu P, Hua L, Zhang Z. Down-regulation of MLLT1 super elongation complex subunit impairs the anti-tumor activity of natural killer cells in esophageal cancer. Immunobiology 2022; 227:152238. [PMID: 35763909 DOI: 10.1016/j.imbio.2022.152238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 11/05/2022]
Abstract
Natural killer (NK) cells actively participate in anti-tumor immunity and are thus regarded as a promising tool in immunotherapy against esophageal cancer (EC). However, the mechanisms regulating NK cell activation and exhaustion have not been completely elucidated. In this study, we characterized the expression and function of MLLT1 super elongation complex subunit (MLLT1) in esophageal NK cells in a mouse EC model. MLLT1 was down-regulated in esophageal NK cells, especially NK cells expressing both T cell immunoglobulin and mucin-domain containing-3 (TIM-3) and lymphocyte activation gene3(LAG-3). In vitro knockdown of MLLT1 in NK cells resulted in significant decreases in the expression of IFN-γ and perforin, as well as impaired NK cell cytotoxicity on tumor cells. Adoptive transfer of MLLT-deficient NK cells into EC-bearing mice showed consistent impairment of NK cell anti-tumor activity, as evidenced by decreases in IFN-γ and perforin but not granzyme B. Furthermore, EC tissue cells, which were enriched from the esophagus of EC-bearing mice, induced down-regulation of MLLT1 in splenic NK cells. This down-regulation was partially restored by a TIM-3 blocking antibody. Therefore, this study indicated that TIM-3 signaling down-regulated MLLT1 in esophageal NK cells, and MLLT1 down-regulation undermined the tumoricidal function of NK cells in EC. Our study unveils a novel mechanism underlying NK cell exhaustion/dysfunction in the EC microenvironment. MLLT1 could be a potential target in future NK cell-mediated immunotherapy against EC.
Collapse
Affiliation(s)
- Chong Liu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Xueman Li
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Fei Xiong
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Lingying Wang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Kang Chen
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Pingshang Wu
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Li Hua
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Zhuo Zhang
- The Department of Thoracic Surgery, Tongren Hospital of Wuhan University, 241 Pengliuyang Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
8
|
Li X, Liu S, Li X, Li XD. YEATS Domains as Novel Epigenetic Readers: Structures, Functions, and Inhibitor Development. ACS Chem Biol 2022; 18:994-1013. [PMID: 35041380 DOI: 10.1021/acschembio.1c00945] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Interpretation of the histone posttranslational modifications (PTMs) by effector proteins, or readers, is an important epigenetic mechanism to regulate gene function. YEATS domains have been recently identified as novel readers of histone lysine acetylation and a variety of nonacetyl acylation marks. Accumulating evidence has revealed the association of dysregulated interactions between YEATS domains and histone PTMs with human diseases, suggesting the therapeutic potential of YEATS domain inhibition. Here, we discuss the molecular mechanisms adopted by YEATS domains in recognizing their preferred histone marks and the biological significance of such recognitions in normal cell physiology and pathogenesis of human diseases. Recent progress in the development of YEATS domain inhibitors is also discussed.
Collapse
Affiliation(s)
- Xin Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Sha Liu
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| | - Xiang David Li
- Departments of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong G01, China
| |
Collapse
|
9
|
Exome sequencing of glioblastoma-derived cancer stem cells reveals rare clinically relevant frameshift deletion in MLLT1 gene. Cancer Cell Int 2022; 22:9. [PMID: 34996478 PMCID: PMC8740446 DOI: 10.1186/s12935-021-02419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/19/2021] [Indexed: 11/21/2022] Open
Abstract
Background Glioblastoma multiforme (GBM) is a heterogeneous CNS neoplasm which causes significant morbidity and mortality. One reason for the poor prognostic outcome of GBM is attributed to the presence of cancer stem cells (CSC) which confer resistance against standard chemo- and radiotherapeutics modalities. Two types of GBM-associated CSC were isolated from the same patient: tumor core- (c-CSC) and peritumor tissue-derived cancer stem cells (p-CSC). Our experiments are focused on glioblastoma–IDH-wild type, and no disease-defining alterations were present in histone, BRAF or other genes. Methods In the present study, potential differences in genetic variants between c-CSC versus p-CSC derived from four GBM patients were investigated with the aims of (1) comparing the exome sequences between all the c-CSC or p-CSC to identify the common variants; (2) identifying the variants affecting the function of genes known to be involved in cancer origin and development. Results By comparative analyses, we identified common gene single nucleotide variants (SNV) in all GBM c-CSC and p-CSC, a potentially deleterious variant was a frameshift deletion at Gln461fs in the MLLT1 gene, that was encountered only in p-CSC samples with different allelic frequency. Conclusions We discovered a potentially harmful frameshift deletion at Gln461fs in the MLLT1 gene. Further investigation is required to confirm the presence of the identified mutations in patient tissue samples, as well as the significance of the frameshift mutation in the MLLT1 gene on GBM biology and response to therapy based on genomic functional experiments. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02419-4.
Collapse
|
10
|
Gao M, Deng C, Dang F. Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr Res 2021; 65:3602. [PMID: 34776832 PMCID: PMC8559449 DOI: 10.29219/fnr.v65.3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Although sorafenib (Sor) is the only effective drug for hepatocellular carcinoma (HCC), its therapeutic potential to date is mainly limited to the low tumor response. This study was designed to explore whether resveratrol (Res) could potentiate the anticancerous activity of Sor. We used HepG2 and Huh7 HCC cell lines and BALB/c nude mice for in vitro and in vivo studies, respectively. The cultured cell lines and tumor induction in the mice were treated with different concentrations of Res and Sor alone, and the combination of Res and Sor to observe the antitumor effects. Significant inhibitory effects were observed in the combined treatment of Res and Sor compared to Res and Sor alone treatments both in vitro and in vivo as demonstrated by significantly high number of S phase cells and apoptotic cells. Moreover, these findings were accompanied by the reduction of CDK2, CDC25A, PKA, p-AMPK, and eEF2K protein levels and the increment of cyclin A, cleavage caspase-3, caspase-8, and caspase-9 protein levels. The combinational treatment exhibited more significant anticancerous effect than the Res and Sor alone treatments in mice-bearing HepG2 xenograft. Overall, our results suggest that PKA/AMPK/eEF2K pathway is involved in the synergistic anticancerous activity of Res and Sor combination treatment in HCC cells. Thus, Res and Sor combination therapy may be promising in increasing the tumor response of Sor in the future.
Collapse
Affiliation(s)
- Meili Gao
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Chun Deng
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Fan Dang
- Department of Biological Science and Engineering, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Weidle UH, Birzele F. Bladder Cancer-related microRNAs With In Vivo Efficacy in Preclinical Models. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:245-263. [PMID: 35403137 PMCID: PMC8988954 DOI: 10.21873/cdp.10033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 06/14/2023]
Abstract
Progressive and metastatic bladder cancer remain difficult to treat. In this review, we critique seven up-regulated and 25 down-regulated microRNAs in order to identify new therapeutic entities and corresponding targets. These microRNAs were selected with respect to their efficacy in bladder cancer-related preclinical in vivo models. MicroRNAs and related targets interfering with chemoresistance, cell-cycle, signaling, apoptosis, autophagy, transcription factor modulation, epigenetic modification and metabolism are described. In addition, we highlight microRNAs targeting transmembrane receptors and secreted factors. We discuss druggability issues for the identified targets.
Collapse
Affiliation(s)
- Ulrich H Weidle
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | - Fabian Birzele
- Roche Pharma Research and Early Development, Pharmaceutical Sciences,Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
12
|
New DNA Methylation Signals for Malignant Pleural Mesothelioma Risk Assessment. Cancers (Basel) 2021; 13:cancers13112636. [PMID: 34071989 PMCID: PMC8199167 DOI: 10.3390/cancers13112636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Our study investigated DNA methylation differences in easily accessible white blood cells (WBCs) between malignant pleural mesothelioma (MPM) cases and asbestos-exposed cancer-free controls. A multiple regression model highlighted that the methylation level of two single CpGs (cg03546163 in FKBP5 and cg06633438 in MLLT1) are independent MPM markers. The epigenetic changes at the FKBP5 and MLLT1 genes were robustly associated with MPM in asbestos-exposed subjects. Interaction analyses showed that MPM cases and cancer-free controls showed DNAm differences which may be linked to asbestos exposure. Abstract Malignant pleural mesothelioma (MPM) is a rare and aggressive neoplasm. Patients are usually diagnosed when current treatments have limited benefits, highlighting the need for noninvasive tests aimed at an MPM risk assessment tool that might improve life expectancy. Three hundred asbestos-exposed subjects (163 MPM cases and 137 cancer-free controls), from the same geographical region in Italy, were recruited. The evaluation of asbestos exposure was conducted considering the frequency, the duration and the intensity of occupational, environmental and domestic exposure. A genome-wide methylation array was performed to identify novel blood DNA methylation (DNAm) markers of MPM. Multiple regression analyses adjusting for potential confounding factors and interaction between asbestos exposure and DNAm on the MPM odds ratio were applied. Epigenome-wide analysis (EWAS) revealed 12 single-CpGs associated with the disease. Two of these showed high statistical power (99%) and effect size (>0.05) after false discovery rate (FDR) multiple comparison corrections: (i) cg03546163 in FKBP5, significantly hypomethylated in cases (Mean Difference in beta values (MD) = −0.09, 95% CI = −0.12|−0.06, p = 1.2 × 10−7), and (ii) cg06633438 in MLLT1, statistically hypermethylated in cases (MD = 0.07, 95% CI = 0.04|0.10, p = 1.0 × 10−6). Based on the interaction analysis, asbestos exposure and epigenetic profile together may improve MPM risk assessment. Above-median asbestos exposure and hypomethylation of cg03546163 in FKBP5 (OR = 20.84, 95% CI = 8.71|53.96, p = 5.5 × 10−11) and hypermethylation of cg06633438 in MLLT1 (OR = 11.71, 95% CI = 4.97|29.64, p = 5.9 × 10−8) genes compared to below-median asbestos exposure and hyper/hypomethylation of single-CpG DNAm, respectively. Receiver Operation Characteristics (ROC) for Case-Control Discrimination showed a significant increase in MPM discrimination when DNAm information was added in the model (baseline model, BM: asbestos exposure, age, gender and white blood cells); area under the curve, AUC = 0.75; BM + cg03546163 at FKBP5. AUC = 0.89, 2.1 × 10−7; BM + cg06633438 at MLLT1. AUC = 0.89, 6.3 × 10−8. Validation and replication procedures, considering independent sample size and a different DNAm analysis technique, confirmed the observed associations. Our results suggest the potential application of DNAm profiles in blood to develop noninvasive tests for MPM risk assessment in asbestos-exposed subjects.
Collapse
|
13
|
Linhares BM, Grembecka J, Cierpicki T. Targeting epigenetic protein-protein interactions with small-molecule inhibitors. Future Med Chem 2020; 12:1305-1326. [PMID: 32551894 PMCID: PMC7421387 DOI: 10.4155/fmc-2020-0082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 05/01/2020] [Indexed: 02/07/2023] Open
Abstract
Epigenetic protein-protein interactions (PPIs) play essential roles in regulating gene expression, and their dysregulations have been implicated in many diseases. These PPIs are comprised of reader domains recognizing post-translational modifications on histone proteins, and of scaffolding proteins that maintain integrities of epigenetic complexes. Targeting PPIs have become focuses for development of small-molecule inhibitors and anticancer therapeutics. Here we summarize efforts to develop small-molecule inhibitors targeting common epigenetic PPI domains. Potent small molecules have been reported for many domains, yet small domains that recognize methylated lysine side chains on histones are challenging in inhibitor development. We posit that the development of potent inhibitors for difficult-to-prosecute epigenetic PPIs may be achieved by interdisciplinary approaches and extensive explorations of chemical space.
Collapse
Affiliation(s)
- Brian M Linhares
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Jolanta Grembecka
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Tomasz Cierpicki
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
14
|
Jia Y, Chng WJ, Zhou J. Super-enhancers: critical roles and therapeutic targets in hematologic malignancies. J Hematol Oncol 2019; 12:77. [PMID: 31311566 PMCID: PMC6636097 DOI: 10.1186/s13045-019-0757-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/14/2019] [Indexed: 12/11/2022] Open
Abstract
Super-enhancers (SEs) in a broad range of human cell types are large clusters of enhancers with aberrant high levels of transcription factor binding, which are central to drive expression of genes in controlling cell identity and stimulating oncogenic transcription. Cancer cells acquire super-enhancers at oncogene and cancerous phenotype relies on these abnormal transcription propelled by SEs. Furthermore, specific inhibitors targeting SEs assembly and activation have offered potential targets for treating various tumors including hematological malignancies. Here, we first review the identification, functional significance of SEs. Next, we summarize recent findings of SEs and SE-driven gene regulation in normal hematopoiesis and hematologic malignancies. The importance and various modes of SE-mediated MYC oncogene amplification are illustrated. Finally, we highlight the progress of SEs as selective therapeutic targets in basic research and clinical trials. Some open questions regarding functional significance and future directions of targeting SEs in the clinic will be discussed too.
Collapse
Affiliation(s)
- Yunlu Jia
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.,Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, Zhejiang, China
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.,Department of Hematology-Oncology, National University Cancer Institute of Singapore (NCIS), The National University Health System (NUHS), 1E, Kent Ridge Road, Singapore, 119228, Republic of Singapore
| | - Jianbiao Zhou
- Cancer Science Institute of Singapore, National University of Singapore, 14 Medical Drive, Centre for Translational Medicine, Singapore, 117599, Republic of Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Republic of Singapore.
| |
Collapse
|
15
|
Hernandez-Valladares M, Wangen R, Berven FS, Guldbrandsen A. Protein Post-Translational Modification Crosstalk in Acute Myeloid Leukemia Calls for Action. Curr Med Chem 2019; 26:5317-5337. [PMID: 31241430 DOI: 10.2174/0929867326666190503164004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/23/2018] [Accepted: 02/01/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Post-translational modification (PTM) crosstalk is a young research field. However, there is now evidence of the extraordinary characterization of the different proteoforms and their interactions in a biological environment that PTM crosstalk studies can describe. Besides gene expression and phosphorylation profiling of acute myeloid leukemia (AML) samples, the functional combination of several PTMs that might contribute to a better understanding of the complexity of the AML proteome remains to be discovered. OBJECTIVE By reviewing current workflows for the simultaneous enrichment of several PTMs and bioinformatics tools to analyze mass spectrometry (MS)-based data, our major objective is to introduce the PTM crosstalk field to the AML research community. RESULTS After an introduction to PTMs and PTM crosstalk, this review introduces several protocols for the simultaneous enrichment of PTMs. Two of them allow a simultaneous enrichment of at least three PTMs when using 0.5-2 mg of cell lysate. We have reviewed many of the bioinformatics tools used for PTM crosstalk discovery as its complex data analysis, mainly generated from MS, becomes challenging for most AML researchers. We have presented several non-AML PTM crosstalk studies throughout the review in order to show how important the characterization of PTM crosstalk becomes for the selection of disease biomarkers and therapeutic targets. CONCLUSION Herein, we have reviewed the advances and pitfalls of the emerging PTM crosstalk field and its potential contribution to unravel the heterogeneity of AML. The complexity of sample preparation and bioinformatics workflows demands a good interaction between experts of several areas.
Collapse
Affiliation(s)
- Maria Hernandez-Valladares
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Rebecca Wangen
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Jonas Lies vei 87, N-5021 Bergen, Norway.,The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Department of Internal Medicine, Hematology Section, Haukeland University Hospital, Jonas Lies vei 65, N-5021 Bergen, Norway
| | - Frode S Berven
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway
| | - Astrid Guldbrandsen
- The Proteomics Unit at the University of Bergen, Department of Biomedicine, Building for Basic Biology, Faculty of Medicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.,Computational Biology Unit, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Bergen, Thormøhlensgt 55, N-5008 Bergen, Norway
| |
Collapse
|