1
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. mBio 2024:e0351124. [PMID: 39727417 DOI: 10.1128/mbio.03511-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to the formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point toward their having a joint role in controlling metabolism, cell division, and cell growth.IMPORTANCECell division is a fundamental biological process, and the mechanisms that control it in Escherichia coli have been the subject of intense research scrutiny for many decades. Similarly, both the (p)ppGpp-dependent stringent response and inorganic polyphosphate (polyP) synthesis are well-studied, evolutionarily ancient, and widely conserved pathways in diverse bacteria. Our results indicate that these systems, normally studied as stress-response mechanisms, play a coordinated and novel role in regulating cell division, morphology, and metabolism even under non-stress conditions.
Collapse
Affiliation(s)
- Christopher W Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Kanwa N, Kohyama S, Fröhlich L, Desai A, Schwille P. Mutual Dependence between Membrane Phase Separation and Bacterial Division Protein Dynamics in Synthetic Cell Models. Angew Chem Int Ed Engl 2024:e202417800. [PMID: 39623974 DOI: 10.1002/anie.202417800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 12/12/2024]
Abstract
Cell membranes in bacteria are laterally polarized to produce specific environments for membrane proteins, e.g., proteins involved in cell division which accumulate at mid-cell or the cell poles. An interesting result of such membrane-lipid interplay is the reorganization of lipid domains together with membrane-bound proteins at the onset of cell division, suggesting functional significance of membrane compartments in the cell cycle. Here, by adopting the key bacterial division proteins MinC, MinD, MinE, FtsA and FtsZ as an archetypal spatial patterning system, we present a simple vesicle-based in vitro model to explore the mutual dependence of protein pattern formation and membrane heterogeneity. Like many other peripheral membrane proteins, Min proteins exhibit preferential binding and macro-scale pattern formation at Ld domains, which leads to altered oscillation mode selection in phase-separated membrane compartments (GUVs). Moreover, incorporating bacterial division proteins within phase-separated GUVs leads to blebbing-like membrane deformations followed by the reorganization of Lo domains aligning at the neck region of the bleb, which agrees well with the domain rearrangement in bacterial membranes immediately preceding the radial constriction process. Overall, the presented in vitro model system showcases a basic framework to better comprehend the cellular division mechanism in consideration of complex cellular lipid environments.
Collapse
Affiliation(s)
- Nishu Kanwa
- Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Shunshi Kohyama
- Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan
| | - Leonard Fröhlich
- Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Amogh Desai
- Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max-Planck-Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
3
|
Reverte-López M, Kanwa N, Qutbuddin Y, Belousova V, Jasnin M, Schwille P. Self-organized spatial targeting of contractile actomyosin rings for synthetic cell division. Nat Commun 2024; 15:10415. [PMID: 39614082 DOI: 10.1038/s41467-024-54807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/18/2024] [Indexed: 12/01/2024] Open
Abstract
A key challenge for bottom-up synthetic biology is engineering a minimal module for self-division of synthetic cells. Actin-based cytokinetic rings are considered a promising structure to produce the forces required for the controlled excision of cell-like compartments such as giant unilamellar vesicles (GUVs). Despite prior demonstrations of actin ring targeting to GUV membranes and myosin-induced constriction, large-scale vesicle deformation has been precluded due to the lacking spatial control of these contractile structures. Here we show the combined reconstitution of actomyosin rings and the bacterial MinDE protein system within GUVs. Incorporating this spatial positioning tool, able to induce active transport of membrane-attached diffusible molecules, yields self-organized equatorial assembly of actomyosin rings in vesicles. Remarkably, the synergistic effect of Min oscillations and the contractility of actomyosin bundles induces mid-vesicle deformations and vesicle blebbing. Our system showcases how functional machineries from various organisms may be combined in vitro, leading to the emergence of functionalities towards a synthetic division system.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Nishu Kanwa
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Yusuf Qutbuddin
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Viktoriia Belousova
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Marion Jasnin
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany; Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
4
|
Norton MM, Grover P. Mechanochemical topological defects in an active nematic. Phys Rev E 2024; 110:054605. [PMID: 39690574 DOI: 10.1103/physreve.110.054605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 12/19/2024]
Abstract
We propose a reaction-diffusion system that converts topological information of an active nematic into chemical signals. We show that a curvature-activated reaction dipole is sufficient for creating a system that dynamically senses topology by producing a concentration field possessing local extrema coinciding with ±1/2 defects. The enabling term is analogous to polarization charge density seen in dielectric materials. We demonstrate the ability of this system to identify defects in both passive and active nematics. Our results illustrate that a relatively simple feedback scheme, expressed as a system of partial differential equations, is capable of producing chemical signals in response to inherently nonlocal structures in anisotropic media. We posit that such coarse-grained systems can help generate testable hypotheses for regulated processes in biological systems, such as morphogenesis, and motivate the creation of bio-inspired materials that utilize dynamic coupling between nematic structure and biochemistry.
Collapse
|
5
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Updegrove TB, Ferreira CN, Ibrahim AM, Tai CH, Kruhlak MJ, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. PcdA promotes orthogonal division plane selection in Staphylococcus aureus. Nat Microbiol 2024; 9:2997-3012. [PMID: 39468247 DOI: 10.1038/s41564-024-01821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 08/30/2024] [Indexed: 10/30/2024]
Abstract
The bacterial pathogen, Staphylococcus aureus, grows by dividing in two alternating orthogonal planes. How these cell division planes are positioned correctly is not known. Here we used chemical genetic screening to identify PcdA as a division plane placement factor. Molecular biology and imaging approaches revealed non-orthogonal division plane selection for pcdA mutant bacteria. PcdA is a structurally and functionally altered member of the McrB AAA+ NTPase family, which are often found as restriction enzyme subunits. PcdA interacts with the tubulin-like divisome component, FtsZ, and the structural protein, DivIVA; it also localizes to future cell division sites. PcdA multimerization, localization and function are NTPase activity-dependent. We propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Although pcdA deletion did not affect S. aureus growth in several laboratory conditions, its clustered growth pattern was disrupted, sensitivity to cell-wall-targeting antibiotics increased and virulence in mice decreased. We propose that the characteristic clustered growth pattern of S. aureus, which emerges from dividing in alternating orthogonal division planes, might protect the bacterium from host defences.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brandon R Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Taylor B Updegrove
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Colby N Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Amany M Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael J Kruhlak
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique M Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Jodi L Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Hamm CW, Gray MJ. Inorganic polyphosphate and the stringent response coordinately control cell division and cell morphology in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612536. [PMID: 39314361 PMCID: PMC11419118 DOI: 10.1101/2024.09.11.612536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes. Escherichia coli also makes inorganic polyphosphate (polyP), an ancient molecule evolutionary conserved across most bacteria and other cells, in response to a variety of stress conditions, including amino acid starvation. PolyP can act as an energy and phosphate storage pool, metal chelator, regulatory signal, and chaperone, among other functions. Here we report that E. coli lacking both (p)ppGpp and polyP have a complex phenotype indicating previously unknown overlapping roles for (p)ppGpp and polyP in regulating cell division, cell morphology, and metabolism. Disruption of either (p)ppGpp or polyP synthesis led to formation of filamentous cells, but simultaneous disruption of both pathways resulted in cells with heterogenous cell morphologies, including highly branched cells, severely mislocalized Z-rings, and cells containing substantial void spaces. These mutants also failed to grow when nutrients were limited, even when amino acids were added. These results provide new insights into the relationship between polyP synthesis and the stringent response in bacteria and point towards their having a joint role in controlling metabolism, cell division, and cell growth.
Collapse
Affiliation(s)
- Christopher W. Hamm
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael J. Gray
- Department of Microbiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
7
|
Burkart T, Müller BJ, Frey E. Dimensionality reduction in bulk-boundary reaction-diffusion systems. Phys Rev E 2024; 110:034412. [PMID: 39425305 DOI: 10.1103/physreve.110.034412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/26/2024] [Indexed: 10/21/2024]
Abstract
Intracellular protein patterns regulate many vital cellular functions, such as the processing of spatiotemporal information or the control of shape deformations. To do so, pattern-forming systems can be sensitive to the cell geometry by means of coupling the protein dynamics on the cell membrane to dynamics in the cytosol. Recent studies demonstrated that modeling the cytosolic dynamics in terms of an averaged protein pool disregards possibly crucial aspects of the pattern formation, most importantly concentration gradients normal to the membrane. At the same time, the coupling of two domains (surface and volume) with different dimensions renders many standard tools for the numerical analysis of self-organizing systems inefficient. Here, we present a generic framework for projecting the cytosolic dynamics onto the lower-dimensional surface that respects the influence of cytosolic concentration gradients in static and evolving geometries. This method uses a priori physical information about the system to approximate the cytosolic dynamics by a small number of dominant characteristic concentration profiles (basis), akin to basis transformations of finite element methods. As a proof of concept, we apply our framework to a toy model for volume-dependent interrupted coarsening, evaluate the accuracy of the results for various basis choices, and discuss the optimal basis choice for biologically relevant systems. Our analysis presents an efficient yet accurate method for analyzing pattern formation with surface-volume coupling in evolving geometries.
Collapse
|
8
|
Meindlhumer S, Brauns F, Finžgar JR, Kerssemakers J, Dekker C, Frey E. Addendum: Directing Min protein patterns with advective bulk flow. Nat Commun 2024; 15:6522. [PMID: 39095392 PMCID: PMC11297173 DOI: 10.1038/s41467-024-50256-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Affiliation(s)
- Sabrina Meindlhumer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jernej Rudi Finžgar
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539, Munich, Germany.
| |
Collapse
|
9
|
Gavrilović S, Brüggenthies GA, Weck JM, Heuer-Jungemann A, Schwille P. Protein-Assisted Large-Scale Assembly and Differential Patterning of DNA Origami Lattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309680. [PMID: 38229553 DOI: 10.1002/smll.202309680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/20/2023] [Indexed: 01/18/2024]
Abstract
Nanofabrication has experienced a big boost with the invention of DNA origami, enabling the production and assembly of complex nanoscale structures that may be able to unlock fully new functionalities in biology and beyond. The remarkable precision with which these structures can be designed and produced is, however, not yet matched by their assembly dynamics, which can be extremely slow, particularly when attached to biological templates, such as membranes. Here, the rapid and controlled formation of DNA origami lattices on the scale of hundreds of micrometers in as little as 30 minutes is demonstrated, utilizing active patterning by the E.coli Min protein system, thereby yielding a remarkable improvement over conventional passive diffusion-based assembly methods. Various patterns, including spots, inverse spots, mazes, and meshes can be produced at different scales, tailored through the shape and density of the assembled structures. The differential positioning accomplished by Min-induced diffusiophoresis even allows the introduction of "pseudo-colors", i.e., complex core-shell patterns, by simultaneously patterning different DNA origami species. Beyond the targeted functionalization of biological surfaces, this approach may also be promising for applications in plasmonics, catalysis, and molecular sensing.
Collapse
Affiliation(s)
- Svetozar Gavrilović
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | | | - Johann Moritz Weck
- Research Group DNA Hybridnanomaterials, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Amelie Heuer-Jungemann
- Research Group DNA Hybridnanomaterials, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
10
|
Pulianmackal LT, Vecchiarelli AG. Positioning of cellular components by the ParA/MinD family of ATPases. Curr Opin Microbiol 2024; 79:102485. [PMID: 38723344 PMCID: PMC11407121 DOI: 10.1016/j.mib.2024.102485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
The ParA/MinD (A/D) family of ATPases spatially organize an array of genetic- and protein-based cellular cargos across the bacterial and archaeal domains of life. By far, the two best-studied members, and family namesake, are ParA and MinD, involved in bacterial DNA segregation and divisome positioning, respectively. ParA and MinD make protein waves on the nucleoid or membrane to segregate chromosomes and position the divisome. Less studied is the growing list of A/D ATPases widespread across bacteria and implicated in the subcellular organization of diverse protein-based complexes and organelles involved in myriad biological processes, from metabolism to pathogenesis. Here we describe mechanistic commonality, variation, and coordination among the most widespread family of positioning ATPases used in the subcellular organization of disparate cargos across bacteria and archaea.
Collapse
Affiliation(s)
- Lisa T Pulianmackal
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G Vecchiarelli
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
11
|
Köhler R, Murray SM. Plasmid partitioning driven by collective migration of ParA between nucleoid lobes. Proc Natl Acad Sci U S A 2024; 121:e2319205121. [PMID: 38652748 PMCID: PMC11067062 DOI: 10.1073/pnas.2319205121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
The ParABS system is crucial for the faithful segregation and inheritance of many bacterial chromosomes and low-copy-number plasmids. However, despite extensive research, the spatiotemporal dynamics of the ATPase ParA and its connection to the dynamics and positioning of the ParB-coated cargo have remained unclear. In this study, we utilize high-throughput imaging, quantitative data analysis, and computational modeling to explore the in vivo dynamics of ParA and its interaction with ParB-coated plasmids and the nucleoid. As previously observed, we find that F-plasmid ParA undergoes collective migrations ("flips") between cell halves multiple times per cell cycle. We reveal that a constricting nucleoid is required for these migrations and that they are triggered by a plasmid crossing into the cell half with greater ParA. Using simulations, we show that these dynamics can be explained by the combination of nucleoid constriction and cooperative ParA binding to the DNA, in line with the behavior of other ParA proteins. We further show that these ParA flips act to equally partition plasmids between the two lobes of the constricted nucleoid and are therefore important for plasmid stability, especially in fast growth conditions for which the nucleoid constricts early in the cell cycle. Overall, our work identifies a second mode of action of the ParABS system and deepens our understanding of how this important segregation system functions.
Collapse
Affiliation(s)
- Robin Köhler
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and Centre for Synthetic Microbiology (SYNMIKRO), Marburg35043, Germany
| | - Seán M. Murray
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and Centre for Synthetic Microbiology (SYNMIKRO), Marburg35043, Germany
| |
Collapse
|
12
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
13
|
Xu Z, Angstmann CN, Wu Y, Stefen H, Parić E, Fath T, Curmi PM. Location of the axon initial segment assembly can be predicted from neuronal shape. iScience 2024; 27:109264. [PMID: 38450155 PMCID: PMC10915628 DOI: 10.1016/j.isci.2024.109264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/21/2023] [Accepted: 02/14/2024] [Indexed: 03/08/2024] Open
Abstract
The axon initial segment (AIS) is located at the proximal axon demarcating the boundary between axonal and somatodendritic compartments. The AIS facilitates the generation of action potentials and maintenance of neuronal polarity. In this study, we show that the location of AIS assembly, as marked by Ankyrin G, corresponds to the nodal plane of the lowest-order harmonic of the Laplace-Beltrami operator solved over the neuronal shape. This correlation establishes a coupling between location of AIS assembly and neuronal cell morphology. We validate this correlation for neurons with atypical morphology and neurons containing multiple AnkG clusters on distinct neurites, where the nodal plane selects the appropriate axon showing enriched Tau. Based on our findings, we propose that Turing patterning systems are candidates for dynamically governing AIS location. Overall, this study highlights the importance of neuronal cell morphology in determining the precise localization of the AIS within the proximal axon.
Collapse
Affiliation(s)
- Zhuang Xu
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Christopher N. Angstmann
- School of Mathematics and Statistics, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuhuang Wu
- Infection Analytics Program, Kirby Institute for Infection and Immunity, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Esmeralda Parić
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Paul M.G. Curmi
- School of Physics, The University of New South Wales, Sydney, NSW 2052, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
14
|
Kohyama S, Frohn BP, Babl L, Schwille P. Machine learning-aided design and screening of an emergent protein function in synthetic cells. Nat Commun 2024; 15:2010. [PMID: 38443351 PMCID: PMC10914801 DOI: 10.1038/s41467-024-46203-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
Recently, utilization of Machine Learning (ML) has led to astonishing progress in computational protein design, bringing into reach the targeted engineering of proteins for industrial and biomedical applications. However, the design of proteins for emergent functions of core relevance to cells, such as the ability to spatiotemporally self-organize and thereby structure the cellular space, is still extremely challenging. While on the generative side conditional generative models and multi-state design are on the rise, for emergent functions there is a lack of tailored screening methods as typically needed in a protein design project, both computational and experimental. Here we describe a proof-of-principle of how such screening, in silico and in vitro, can be achieved for ML-generated variants of a protein that forms intracellular spatiotemporal patterns. For computational screening we use a structure-based divide-and-conquer approach to find the most promising candidates, while for the subsequent in vitro screening we use synthetic cell-mimics as established by Bottom-Up Synthetic Biology. We then show that the best screened candidate can indeed completely substitute the wildtype gene in Escherichia coli. These results raise great hopes for the next level of synthetic biology, where ML-designed synthetic proteins will be used to engineer cellular functions.
Collapse
Affiliation(s)
- Shunshi Kohyama
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Béla P Frohn
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Leon Babl
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, D-82152, Germany.
| |
Collapse
|
15
|
Radler P, Loose M. A dynamic duo: Understanding the roles of FtsZ and FtsA for Escherichia coli cell division through in vitro approaches. Eur J Cell Biol 2024; 103:151380. [PMID: 38218128 DOI: 10.1016/j.ejcb.2023.151380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Bacteria divide by binary fission. The protein machine responsible for this process is the divisome, a transient assembly of more than 30 proteins in and on the surface of the cytoplasmic membrane. Together, they constrict the cell envelope and remodel the peptidoglycan layer to eventually split the cell into two. For Escherichia coli, most molecular players involved in this process have probably been identified, but obtaining the quantitative information needed for a mechanistic understanding can often not be achieved from experiments in vivo alone. Since the discovery of the Z-ring more than 30 years ago, in vitro reconstitution experiments have been crucial to shed light on molecular processes normally hidden in the complex environment of the living cell. In this review, we summarize how rebuilding the divisome from purified components - or at least parts of it - have been instrumental to obtain the detailed mechanistic understanding of the bacterial cell division machinery that we have today.
Collapse
Affiliation(s)
- Philipp Radler
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria; University of Vienna, Djerassiplatz 1, 1030 Wien, Austria.
| | - Martin Loose
- Institute for Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
16
|
Valenzuela-Ibaceta F, Torres-Olea N, Ramos-Zúñiga J, Dietz-Vargas C, Navarro CA, Pérez-Donoso JM. Minicells as an Escherichia coli mechanism for the accumulation and disposal of fluorescent cadmium sulphide nanoparticles. J Nanobiotechnology 2024; 22:78. [PMID: 38414055 PMCID: PMC10900627 DOI: 10.1186/s12951-024-02348-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Bacterial biosynthesis of fluorescent nanoparticles or quantum dots (QDs) has emerged as a unique mechanism for heavy metal tolerance. However, the physiological pathways governing the removal of QDs from bacterial cells remains elusive. This study investigates the role of minicells, previously identified as a means of eliminating damaged proteins and enhancing bacterial resistance to stress. Building on our prior work, which unveiled the formation of minicells during cadmium QDs biosynthesis in Escherichia coli, we hypothesize that minicells serve as a mechanism for the accumulation and detoxification of QDs in bacterial cells. RESULTS Intracellular biosynthesis of CdS QDs was performed in E. coli mutants ΔminC and ΔminCDE, known for their minicell-producing capabilities. Fluorescence microscopy analysis demonstrated that the generated minicells exhibited fluorescence emission, indicative of QD loading. Transmission electron microscopy (TEM) confirmed the presence of nanoparticles in minicells, while energy dispersive spectroscopy (EDS) revealed the coexistence of cadmium and sulfur. Cadmium quantification through flame atomic absorption spectrometry (FAAS) demonstrated that minicells accumulated a higher cadmium content compared to rod cells. Moreover, fluorescence intensity analysis suggested that minicells accumulated a greater quantity of fluorescent nanoparticles, underscoring their efficacy in QD removal. Biosynthesis dynamics in minicell-producing strains indicated that biosynthesized QDs maintained high fluorescence intensity even during prolonged biosynthesis times, suggesting continuous QD clearance in minicells. CONCLUSIONS These findings support a model wherein E. coli utilizes minicells for the accumulation and removal of nanoparticles, highlighting their physiological role in eliminating harmful elements and maintaining cellular fitness. Additionally, this biosynthesis system presents an opportunity for generating minicell-coated nanoparticles with enhanced biocompatibility for diverse applications.
Collapse
Affiliation(s)
- Felipe Valenzuela-Ibaceta
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Nicolás Torres-Olea
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio Dietz-Vargas
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - Claudio A Navarro
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República # 330, Santiago, Chile.
| |
Collapse
|
17
|
Wellner SM, Alobaidallah MSA, Fei X, Herrero-Fresno A, Olsen JE. Genome-wide identification of fitness-genes in aminoglycoside-resistant Escherichia coli during antibiotic stress. Sci Rep 2024; 14:4163. [PMID: 38378700 PMCID: PMC10879529 DOI: 10.1038/s41598-024-54169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/09/2024] [Indexed: 02/22/2024] Open
Abstract
Resistance against aminoglycosides is widespread in bacteria. This study aimed to identify genes that are important for growth of E. coli during aminoglycoside exposure, since such genes may be targeted to re-sensitize resistant E. coli to treatment. We constructed three transposon mutant libraries each containing > 230.000 mutants in E. coli MG1655 strains harboring streptomycin (aph(3″)-Ib/aph(6)-Id), gentamicin (aac(3)-IV), or neomycin (aph(3″)-Ia) resistance gene(s). Transposon Directed Insertion-site Sequencing (TraDIS), a combination of transposon mutagenesis and high-throughput sequencing, identified 56 genes which were deemed important for growth during streptomycin, 39 during gentamicin and 32 during neomycin exposure. Most of these fitness-genes were membrane-located (n = 55) and involved in either cell division, ATP-synthesis or stress response in the streptomycin and gentamicin exposed libraries, and enterobacterial common antigen biosynthesis or magnesium sensing/transport in the neomycin exposed library. For validation, eight selected fitness-genes/gene-clusters were deleted (minCDE, hflCK, clsA and cpxR associated with streptomycin and gentamicin resistance, and phoPQ, wecA, lpp and pal associated with neomycin resistance), and all mutants were shown to be growth attenuated upon exposure to the corresponding antibiotics. In summary, we identified genes that are advantageous in aminoglycoside-resistant E. coli during antibiotic stress. In addition, we increased the understanding of how aminoglycoside-resistant E. coli respond to antibiotic exposure.
Collapse
Affiliation(s)
- Sandra Marina Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Mosaed Saleh A Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences, 21423, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, 22384, Jeddah, Saudi Arabia
| | - Xiao Fei
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, Universidade da Santiago de Compostela (USC), Campus Terra, 27002, Lugo, Spain.
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870, Frederiksberg, Denmark.
| |
Collapse
|
18
|
Nishikawa S, Sato G, Takada S, Kohyama S, Honda G, Yanagisawa M, Hori Y, Doi N, Yoshinaga N, Fujiwara K. Multimolecular Competition Effect as a Modulator of Protein Localization and Biochemical Networks in Cell-Size Space. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308030. [PMID: 38054641 PMCID: PMC10853730 DOI: 10.1002/advs.202308030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Cells are small, closed spaces filled with various types of macromolecules. Although it is shown that the characteristics of biochemical reactions in vitro are quite different from those in living cells, the role of the co-existence of various macromolecules in cell-size space remains still elusive. Here, using a constructive approach, it is demonstrated that the co-existence of various macromolecules themselves has the ability to tune protein localization for spatiotemporal regulation and a biochemical reaction system in a cell-size space. Both experimental and theoretical analyses reveal that enhancement of interfacial effects by a large surface-area-to-volume ratio facilitates membrane localization of molecules in the cell-size space, and the interfacial effects are alleviated by competitive binding to lipid membranes among multiple proteins even if their membrane affinities are weak. These results indicate that competition for membrane binding among various macromolecules in the cell-size space plays a role in regulating the spatiotemporal molecular organization and biochemical reaction networks. These findings shed light on the importance of surrounding molecules for biochemical reactions using purified elements in small spaces.
Collapse
Affiliation(s)
- Saki Nishikawa
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Gaku Sato
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Sakura Takada
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Shunshi Kohyama
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
- Present address:
Department for Cellular and Molecular BiophysicsMax Planck Institute for BiochemistryAm Klopferspitz 18D‐82152MartinsriedGermany
| | - Gen Honda
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Miho Yanagisawa
- Komaba Institute for ScienceGraduate School of Arts and SciencesThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
- Graduate School of ScienceThe University of TokyoHongo 7‐3‐1BunkyoTokyo113‐0033Japan
- Center for Complex Systems BiologyUniversal Biology InstituteThe University of TokyoKomaba 3‐8‐1MeguroTokyo153‐8902Japan
| | - Yutaka Hori
- Department of Applied Physics and Physico‐informaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Nobuhide Doi
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| | - Natsuhiko Yoshinaga
- WPI Advanced Institute for Materials Research (WPI‐AIMR)Tohoku UniversityKatahira 2‐1‐1, Aoba‐KuSendai980‐8577Japan
- MathAM‐OILAISTSendai980‐8577Japan
| | - Kei Fujiwara
- Department of Biosciences and InformaticsFaculty of Science and TechnologyKeio University3‐14‐1 Hiyoshi, Kohoku‐kuYokohamaKanagawa223‐8522Japan
| |
Collapse
|
19
|
Kannaiah S, Goldberger O, Alam N, Barnabas G, Pozniak Y, Nussbaum-Shochat A, Schueler-Furman O, Geiger T, Amster-Choder O. MinD-RNase E interplay controls localization of polar mRNAs in E. coli. EMBO J 2024; 43:637-662. [PMID: 38243117 PMCID: PMC10897333 DOI: 10.1038/s44318-023-00026-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024] Open
Abstract
The E. coli transcriptome at the cell's poles (polar transcriptome) is unique compared to the membrane and cytosol. Several factors have been suggested to mediate mRNA localization to the membrane, but the mechanism underlying polar localization of mRNAs remains unknown. Here, we combined a candidate system approach with proteomics to identify factors that mediate mRNAs localization to the cell poles. We identified the pole-to-pole oscillating protein MinD as an essential factor regulating polar mRNA localization, although it is not able to bind RNA directly. We demonstrate that RNase E, previously shown to interact with MinD, is required for proper localization of polar mRNAs. Using in silico modeling followed by experimental validation, the membrane-binding site in RNase E was found to mediate binding to MinD. Intriguingly, not only does MinD affect RNase E interaction with the membrane, but it also affects its mode of action and dynamics. Polar accumulation of RNase E in ΔminCDE cells resulted in destabilization and depletion of mRNAs from poles. Finally, we show that mislocalization of polar mRNAs may prevent polar localization of their protein products. Taken together, our findings show that the interplay between MinD and RNase E determines the composition of the polar transcriptome, thus assigning previously unknown roles for both proteins.
Collapse
Affiliation(s)
- Shanmugapriya Kannaiah
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Nawsad Alam
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Georgina Barnabas
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Pathology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Yair Pozniak
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 6997801, Tel-Aviv, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, 76100001, Rehovot, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, P.O.Box 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
20
|
Rajasekaran R, Chang CC, Weix EWZ, Galateo TM, Coyle SM. A programmable reaction-diffusion system for spatiotemporal cell signaling circuit design. Cell 2024; 187:345-359.e16. [PMID: 38181787 PMCID: PMC10842744 DOI: 10.1016/j.cell.2023.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/14/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.
Collapse
Affiliation(s)
- Rohith Rajasekaran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Elliott W Z Weix
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Thomas M Galateo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
21
|
Govers SK, Campos M, Tyagi B, Laloux G, Jacobs-Wagner C. Apparent simplicity and emergent robustness in the control of the Escherichia coli cell cycle. Cell Syst 2024; 15:19-36.e5. [PMID: 38157847 DOI: 10.1016/j.cels.2023.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/15/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
To examine how bacteria achieve robust cell proliferation across diverse conditions, we developed a method that quantifies 77 cell morphological, cell cycle, and growth phenotypes of a fluorescently labeled Escherichia coli strain and >800 gene deletion derivatives under multiple nutrient conditions. This approach revealed extensive phenotypic plasticity and deviating mutant phenotypes were often nutrient dependent. From this broad phenotypic landscape emerged simple and robust unifying rules (laws) that connect DNA replication initiation, nucleoid segregation, FtsZ ring formation, and cell constriction to specific aspects of cell size (volume, length, or added length) at the population level. Furthermore, completion of cell division followed the initiation of cell constriction after a constant time delay across strains and nutrient conditions, identifying cell constriction as a key control point for cell size determination. Our work provides a population-level description of the governing principles by which E. coli integrates cell cycle processes and growth rate with cell size to achieve its robust proliferative capability. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sander K Govers
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; de Duve Institute, UCLouvain, Brussels, Belgium; Department of Biology, KU Leuven, Leuven, Belgium
| | - Manuel Campos
- Centre de Biologie Intégrative de Toulouse, Laboratoire de Microbiologie et Génétique Moléculaires, Université de Toulouse, Toulouse, France
| | - Bhavyaa Tyagi
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA; Department of Biology, Stanford University, Stanford, CA 94305, USA; Sarafan Chemistry, Engineering Medicine for Human Health Institute, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
22
|
Kaufmann A, Vigogne M, Neuendorf TA, Reverte-López M, Rivas G, Thiele J. Studying Nucleoid-Associated Protein-DNA Interactions Using Polymer Microgels as Synthetic Mimics. ACS Synth Biol 2023; 12:3695-3703. [PMID: 37965889 DOI: 10.1021/acssynbio.3c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Microfluidically fabricated polymer microgels are used as an experimental platform to analyze protein-DNA interactions regulating bacterial cell division. In particular, we focused on the nucleoid-associated protein SlmA, which forms a nucleoprotein complex with short DNA binding sequences (SBS) that acts as a negative regulator of the division ring stability in Escherichia coli. To mimic the bacterial nucleoid as a dense DNA region of a bacterial cell and investigate the influence of charge and permeability on protein binding and diffusion in there, we have chosen nonionic polyethylene glycol and anionic hyaluronic acid as precursor materials for hydrogel formation, previously functionalized with SBS. SlmA binds specifically to the coupled SBS for both types of microgels while preferentially accumulating at the microgels' surface. We could control the binding specificity by adjusting the buffer composition of the DNA-functionalized microgels. The microgel charge did not impact protein binding; however, hyaluronic acid-based microgels exhibit a higher permeability, promoting protein diffusion; thus, they were the preferred choice for preparing nucleoid mimics. The approaches described here provide attractive tools for bottom-up reconstitution of essential cellular processes in media that more faithfully reproduce intracellular environments.
Collapse
Affiliation(s)
- Anika Kaufmann
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Michelle Vigogne
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Talika A Neuendorf
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
- Institute of Chemistry, Otto von Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
23
|
Rombouts J, Elliott J, Erzberger A. Forceful patterning: theoretical principles of mechanochemical pattern formation. EMBO Rep 2023; 24:e57739. [PMID: 37916772 PMCID: PMC10792592 DOI: 10.15252/embr.202357739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Biological pattern formation is essential for generating and maintaining spatial structures from the scale of a single cell to tissues and even collections of organisms. Besides biochemical interactions, there is an important role for mechanical and geometrical features in the generation of patterns. We review the theoretical principles underlying different types of mechanochemical pattern formation across spatial scales and levels of biological organization.
Collapse
Affiliation(s)
- Jan Rombouts
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Developmental Biology Unit, European Molecular Biology Laboratory
(EMBL)HeidelbergGermany
| | - Jenna Elliott
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| | - Anna Erzberger
- Cell Biology and Biophysics
UnitEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
- Department of Physics and
AstronomyHeidelberg UniversityHeidelbergGermany
| |
Collapse
|
24
|
Reverte-López M, Gavrilovic S, Merino-Salomón A, Eto H, Yagüe Relimpio A, Rivas G, Schwille P. Protein-Based Patterning to Spatially Functionalize Biomimetic Membranes. SMALL METHODS 2023; 7:e2300173. [PMID: 37350500 DOI: 10.1002/smtd.202300173] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/08/2023] [Indexed: 06/24/2023]
Abstract
The bottom-up reconstitution of proteins for their modular engineering into synthetic cellular systems can reveal hidden protein functions in vitro. This is particularly evident for the bacterial Min proteins, a paradigm for self-organizing reaction-diffusion systems that displays an unexpected functionality of potential interest for bioengineering: the directional active transport of any diffusible cargo molecule on membranes. Here, the MinDE protein system is reported as a versatile surface patterning tool for the rational design of synthetically assembled 3D systems. Employing two-photon lithography, microswimmer-like structures coated with tailored lipid bilayers are fabricated and demonstrate that Min proteins can uniformly pattern bioactive molecules on their surface. Moreover, it is shown that the MinDE system can form stationary patterns inside lipid vesicles, which allow the targeting and distinctive clustering of higher-order protein structures on their inner leaflet. Given their facile use and robust function, Min proteins thus constitute a valuable molecular toolkit for spatially patterned functionalization of artificial biosystems like cell mimics and microcarriers.
Collapse
Affiliation(s)
- María Reverte-López
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Svetozar Gavrilovic
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Adrián Merino-Salomón
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Hiromune Eto
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht, 3584 CT, The Netherlands
| | - Ana Yagüe Relimpio
- Department of Cellular Biophysics, Max Planck for Medical Research, 69120, Heidelberg, Germany
| | - Germán Rivas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28040, Spain
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
25
|
Harpring M, Cox JV. Plasticity in the cell division processes of obligate intracellular bacteria. Front Cell Infect Microbiol 2023; 13:1205488. [PMID: 37876871 PMCID: PMC10591338 DOI: 10.3389/fcimb.2023.1205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Most bacteria divide through a highly conserved process called binary fission, in which there is symmetric growth of daughter cells and the synthesis of peptidoglycan at the mid-cell to enable cytokinesis. During this process, the parental cell replicates its chromosomal DNA and segregates replicated chromosomes into the daughter cells. The mechanisms that regulate binary fission have been extensively studied in several model organisms, including Eschericia coli, Bacillus subtilis, and Caulobacter crescentus. These analyses have revealed that a multi-protein complex called the divisome forms at the mid-cell to enable peptidoglycan synthesis and septation during division. In addition, rod-shaped bacteria form a multi-protein complex called the elongasome that drives sidewall peptidoglycan synthesis necessary for the maintenance of rod shape and the lengthening of the cell prior to division. In adapting to their intracellular niche, the obligate intracellular bacteria discussed here have eliminated one to several of the divisome gene products essential for binary fission in E. coli. In addition, genes that encode components of the elongasome, which were mostly lost as rod-shaped bacteria evolved into coccoid organisms, have been retained during the reductive evolutionary process that some coccoid obligate intracellular bacteria have undergone. Although the precise molecular mechanisms that regulate the division of obligate intracellular bacteria remain undefined, the studies summarized here indicate that obligate intracellular bacteria exhibit remarkable plasticity in their cell division processes.
Collapse
Affiliation(s)
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
26
|
Wang N, Sun H, Zhao K, Shi R, Wang S, Zhou Y, Zhai M, Huang C, Chen Y. The C-terminal domain of MinC, a cell division regulation protein, is sufficient to form a copolymer with MinD. FEBS J 2023; 290:4921-4932. [PMID: 37329190 DOI: 10.1111/febs.16890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/19/2023] [Accepted: 06/15/2023] [Indexed: 06/18/2023]
Abstract
Assembly of cell division protein FtsZ into the Z-ring at the division site is a key step in bacterial cell division. The Min proteins can restrict the Z-ring to the middle of the cell. MinC is the main protein that obstructs Z-ring formation by inhibiting FtsZ assembly. Its N-terminal domain (MinCN ) regulates the localization of the Z-ring by inhibiting FtsZ polymerization, while its C-terminal domain (MinCC ) binds to MinD as well as to FtsZ. Previous studies have shown that MinC and MinD form copolymers in vitro. This copolymer may greatly enhance the binding of MinC to FtsZ, and/or prevent FtsZ filaments from diffusing to the ends of the cell. Here, we investigated the assembly properties of MinCC -MinD of Pseudomonas aeruginosa. We found that MinCC is sufficient to form the copolymers. Although MinCC -MinD assembles into larger bundles, most likely because MinCC is spatially more readily bound to MinD, its copolymerization has similar dynamic properties: the concentration of MinD dominates their copolymerization. The critical concentration of MinD is around 3 μm and when MinD concentration is high enough, a low concentration MinCC could still be copolymerized. We also found that MinCC -MinD can still rapidly bind to FtsZ protofilaments, providing direct evidence that MinCC also interacts directly with FtsZ. However, although the presence of minCC can slightly improve the division defect of minC-knockout strains and shorten the cell length from an average of 12.2 ± 6.7 to 6.6 ± 3.6 μm, it is still insufficient for the normal growth and division of bacteria.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Haiyu Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Kairui Zhao
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Runqing Shi
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Shenping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yao Zhou
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Meiting Zhai
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| | - Chenghao Huang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yaodong Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, China
| |
Collapse
|
27
|
Vashistha H, Jammal-Touma J, Singh K, Rabin Y, Salman H. Bacterial cell-size changes resulting from altering the relative expression of Min proteins. Nat Commun 2023; 14:5710. [PMID: 37714867 PMCID: PMC10504268 DOI: 10.1038/s41467-023-41487-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/06/2023] [Indexed: 09/17/2023] Open
Abstract
The timing of cell division, and thus cell size in bacteria, is determined in part by the accumulation dynamics of the protein FtsZ, which forms the septal ring. FtsZ localization depends on membrane-associated Min proteins, which inhibit FtsZ binding to the cell pole membrane. Changes in the relative concentrations of Min proteins can disrupt FtsZ binding to the membrane, which in turn can delay cell division until a certain cell size is reached, in which the dynamics of Min proteins frees the cell membrane long enough to allow FtsZ ring formation. Here, we study the effect of Min proteins relative expression on the dynamics of FtsZ ring formation and cell size in individual Escherichia coli bacteria. Upon inducing overexpression of minE, cell size increases gradually to a new steady-state value. Concurrently, the time required to initiate FtsZ ring formation grows as the size approaches the new steady-state, at which point the ring formation initiates as early as before induction. These results highlight the contribution of Min proteins to cell size control, which may be partially responsible for the size fluctuations observed in bacterial populations, and may clarify how the size difference acquired during asymmetric cell division is offset.
Collapse
Affiliation(s)
- Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Joanna Jammal-Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kulveer Singh
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Rabin
- Department of Physics and Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
28
|
Ramos-León F, Anjuwon-Foster BR, Anantharaman V, Ferreira CN, Ibrahim AM, Tai CH, Missiakas DM, Camberg JL, Aravind L, Ramamurthi KS. Protein coopted from a phage restriction system dictates orthogonal cell division plane selection in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.03.556088. [PMID: 37886572 PMCID: PMC10602043 DOI: 10.1101/2023.09.03.556088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The spherical bacterium Staphylococcus aureus, a leading cause of nosocomial infections, undergoes binary fission by dividing in two alternating orthogonal planes, but the mechanism by which S. aureus correctly selects the next cell division plane is not known. To identify cell division placement factors, we performed a chemical genetic screen that revealed a gene which we termed pcdA. We show that PcdA is a member of the McrB family of AAA+ NTPases that has undergone structural changes and a concomitant functional shift from a restriction enzyme subunit to an early cell division protein. PcdA directly interacts with the tubulin-like central divisome component FtsZ and localizes to future cell division sites before membrane invagination initiates. This parallels the action of another McrB family protein, CTTNBP2, which stabilizes microtubules in animals. We show that PcdA also interacts with the structural protein DivIVA and propose that the DivIVA/PcdA complex recruits unpolymerized FtsZ to assemble along the proper cell division plane. Deletion of pcdA conferred abnormal, non-orthogonal division plane selection, increased sensitivity to cell wall-targeting antibiotics, and reduced virulence in a murine infection model. Targeting PcdA could therefore highlight a treatment strategy for combatting antibiotic-resistant strains of S. aureus.
Collapse
Affiliation(s)
- Félix Ramos-León
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Brandon R. Anjuwon-Foster
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Colby N. Ferreira
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - Amany M. Ibrahim
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Dominique M. Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, USA
| | - Jodi L. Camberg
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, USA
| | - Kumaran S. Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, USA
| |
Collapse
|
29
|
Würthner L, Goychuk A, Frey E. Geometry-induced patterns through mechanochemical coupling. Phys Rev E 2023; 108:014404. [PMID: 37583206 DOI: 10.1103/physreve.108.014404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/15/2023] [Indexed: 08/17/2023]
Abstract
Intracellular protein patterns regulate a variety of vital cellular processes such as cell division and motility, which often involve dynamic cell-shape changes. These changes in cell shape may in turn affect the dynamics of pattern-forming proteins, hence leading to an intricate feedback loop between cell shape and chemical dynamics. While several computational studies have examined the rich resulting dynamics, the underlying mechanisms are not yet fully understood. To elucidate some of these mechanisms, we explore a conceptual model for cell polarity on a dynamic one-dimensional manifold. Using concepts from differential geometry, we derive the equations governing mass-conserving reaction-diffusion systems on time-evolving manifolds. Analyzing these equations mathematically, we show that dynamic shape changes of the membrane can induce pattern-forming instabilities in parts of the membrane, which we refer to as regional instabilities. Deformations of the local membrane geometry can also (regionally) suppress pattern formation and spatially shift already existing patterns. We explain our findings by applying and generalizing the local equilibria theory of mass-conserving reaction-diffusion systems. This allows us to determine a simple onset criterion for geometry-induced pattern-forming instabilities, which is linked to the phase-space structure of the reaction-diffusion system. The feedback loop between membrane shape deformations and reaction-diffusion dynamics then leads to a surprisingly rich phenomenology of patterns, including oscillations, traveling waves, and standing waves, even if these patterns do not occur in systems with a fixed membrane shape. Our paper reveals that the local conformation of the membrane geometry acts as an important dynamical control parameter for pattern formation in mass-conserving reaction-diffusion systems.
Collapse
Affiliation(s)
- Laeschkir Würthner
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience (CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 Munich, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
30
|
Ramm B, Schumacher D, Harms A, Heermann T, Klos P, Müller F, Schwille P, Søgaard-Andersen L. Biomolecular condensate drives polymerization and bundling of the bacterial tubulin FtsZ to regulate cell division. Nat Commun 2023; 14:3825. [PMID: 37380708 PMCID: PMC10307791 DOI: 10.1038/s41467-023-39513-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 06/07/2023] [Indexed: 06/30/2023] Open
Abstract
Cell division is spatiotemporally precisely regulated, but the underlying mechanisms are incompletely understood. In the social bacterium Myxococcus xanthus, the PomX/PomY/PomZ proteins form a single megadalton-sized complex that directly positions and stimulates cytokinetic ring formation by the tubulin homolog FtsZ. Here, we study the structure and mechanism of this complex in vitro and in vivo. We demonstrate that PomY forms liquid-like biomolecular condensates by phase separation, while PomX self-assembles into filaments generating a single large cellular structure. The PomX structure enriches PomY, thereby guaranteeing the formation of precisely one PomY condensate per cell through surface-assisted condensation. In vitro, PomY condensates selectively enrich FtsZ and nucleate GTP-dependent FtsZ polymerization and bundle FtsZ filaments, suggesting a cell division site positioning mechanism in which the single PomY condensate enriches FtsZ to guide FtsZ-ring formation and division. This mechanism shares features with microtubule nucleation by biomolecular condensates in eukaryotes, supporting this mechanism's ancient origin.
Collapse
Affiliation(s)
- Beatrice Ramm
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Tamara Heermann
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Philipp Klos
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Franziska Müller
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043, Marburg, Germany.
| |
Collapse
|
31
|
McNamara HM, Ramm B, Toettcher JE. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Semin Cell Dev Biol 2023; 141:33-42. [PMID: 35484026 PMCID: PMC10332110 DOI: 10.1016/j.semcdb.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Beatrice Ramm
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
32
|
Diverse Partners of the Partitioning ParB Protein in Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0428922. [PMID: 36622167 PMCID: PMC9927451 DOI: 10.1128/spectrum.04289-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.
Collapse
|
33
|
Cayron J, Dedieu-Berne A, Lesterlin C. Bacterial filaments recover by successive and accelerated asymmetric divisions that allow rapid post-stress cell proliferation. Mol Microbiol 2023; 119:237-251. [PMID: 36527185 DOI: 10.1111/mmi.15016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Filamentation is a reversible morphological change triggered in response to various stresses that bacteria might encounter in the environment, during host infection or antibiotic treatments. Here we re-visit the dynamics of filament formation and recovery using a consistent framework based on live-cells microscopy. We compare the fate of filamentous Escherichia coli induced by cephalexin that inhibits cell division or by UV-induced DNA-damage that additionally perturbs chromosome segregation. We show that both filament types recover by successive and accelerated rounds of divisions that preferentially occur at the filaments' tip, thus resulting in the rapid production of multiple daughter cells with tightly regulated size. The DNA content, viability and further division of the daughter cells essentially depends on the coordination between chromosome segregation and division within the mother filament. Septum positioning at the filaments' tip depends on the Min system, while the nucleoid occlusion protein SlmA regulates the timing of division to prevent septum closure on unsegregated chromosomes. Our results not only recapitulate earlier conclusions but provide a higher level of detail regarding filaments division and the fate of the daughter cells. Together with previous reports, this work uncovers how filamentation recovery allows for a rapid cell proliferation after stress treatment.
Collapse
Affiliation(s)
- Julien Cayron
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Annick Dedieu-Berne
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| | - Christian Lesterlin
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), Université Lyon 1, CNRS, Inserm, UMR5086, Lyon, France
| |
Collapse
|
34
|
Meindlhumer S, Brauns F, Finžgar JR, Kerssemakers J, Dekker C, Frey E. Directing Min protein patterns with advective bulk flow. Nat Commun 2023; 14:450. [PMID: 36707506 PMCID: PMC9883515 DOI: 10.1038/s41467-023-35997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
The Min proteins constitute the best-studied model system for pattern formation in cell biology. We theoretically predict and experimentally show that the propagation direction of in vitro Min protein patterns can be controlled by a hydrodynamic flow of the bulk solution. We find downstream propagation of Min wave patterns for low MinE:MinD concentration ratios, upstream propagation for large ratios, but multistability of both propagation directions in between. Whereas downstream propagation can be described by a minimal model that disregards MinE conformational switching, upstream propagation can be reproduced by a reduced switch model, where increased MinD bulk concentrations on the upstream side promote protein attachment. Our study demonstrates that a differential flow, where bulk flow advects protein concentrations in the bulk, but not on the surface, can control surface-pattern propagation. This suggests that flow can be used to probe molecular features and to constrain mathematical models for pattern-forming systems.
Collapse
Affiliation(s)
- Sabrina Meindlhumer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Jernej Rudi Finžgar
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Munich, Germany.
- Max Planck School Matter to Life, Hofgartenstraße 8, 80539, Munich, Germany.
| |
Collapse
|
35
|
Voedts H, Kennedy SP, Sezonov G, Arthur M, Hugonnet JE. Genome-wide identification of genes required for alternative peptidoglycan cross-linking in Escherichia coli revealed unexpected impacts of β-lactams. Nat Commun 2022; 13:7962. [PMID: 36575173 PMCID: PMC9794725 DOI: 10.1038/s41467-022-35528-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/06/2022] [Indexed: 12/28/2022] Open
Abstract
The D,D-transpeptidase activity of penicillin-binding proteins (PBPs) is the well-known primary target of β-lactam antibiotics that block peptidoglycan polymerization. β-lactam-induced bacterial killing involves complex downstream responses whose causes and consequences are difficult to resolve. Here, we use the functional replacement of PBPs by a β-lactam-insensitive L,D-transpeptidase to identify genes essential to mitigate the effects of PBP inactivation by β-lactams in actively dividing bacteria. The functions of the 179 conditionally essential genes identified by this approach extend far beyond L,D-transpeptidase partners for peptidoglycan polymerization to include proteins involved in stress response and in the assembly of outer membrane polymers. The unsuspected effects of β-lactams include loss of the lipoprotein-mediated covalent bond that links the outer membrane to the peptidoglycan, destabilization of the cell envelope in spite of effective peptidoglycan cross-linking, and increased permeability of the outer membrane. The latter effect indicates that the mode of action of β-lactams involves self-promoted penetration through the outer membrane.
Collapse
Affiliation(s)
- Henri Voedts
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Sean P. Kennedy
- Institut Pasteur, Université Paris Cité, Département Biologie Computationnelle, F-75015 Paris, France
| | - Guennadi Sezonov
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Michel Arthur
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| | - Jean-Emmanuel Hugonnet
- grid.417925.cCentre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
36
|
Kai L, Sonal, Heermann T, Schwille P. Reconstitution of a Reversible Membrane Switch via Prenylation by One-Pot Cell-Free Expression. ACS Synth Biol 2022; 12:108-119. [PMID: 36445320 PMCID: PMC9872162 DOI: 10.1021/acssynbio.2c00406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible membrane targeting of proteins is one of the key regulators of cellular interaction networks, for example, for signaling and polarization. So-called "membrane switches" are thus highly attractive targets for the design of minimal cells but have so far been tricky to reconstitute in vitro. Here, we introduce cell-free prenylated protein synthesis (CFpPS), which enables the synthesis and membrane targeting of proteins in a single reaction mix including the prenylation machinery. CFpPS can confer membrane affinity to any protein via addition of a 4-peptide motif to its C-terminus and offers robust production of prenylated proteins not only in their soluble forms but also in the direct vicinity of biomimetic membranes. Thus, CFpPS enabled us to reconstitute the prenylated polarity hub Cdc42 and its regulatory protein in vitro, implementing a key membrane switch. We propose CFpPS to be a versatile and effective platform for engineering complex features, such as polarity induction, in synthetic cells.
Collapse
Affiliation(s)
- Lei Kai
- Department
of Cellular and Molecular Biophysics, Max
Planck Institute of Biochemistry, D-82152 Martinsried, Germany,School
of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116 Xuzhou, P. R. China,. Phone: +86 15852001351
| | - Sonal
- Department
of Cellular and Molecular Biophysics, Max
Planck Institute of Biochemistry, D-82152 Martinsried, Germany,Biosciences
Division, University College London, Gower Street, WC1E 6BT London, U.K.
| | - Tamara Heermann
- Department
of Cellular and Molecular Biophysics, Max
Planck Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Petra Schwille
- Department
of Cellular and Molecular Biophysics, Max
Planck Institute of Biochemistry, D-82152 Martinsried, Germany,. Phone: +49 89 8578 2900
| |
Collapse
|
37
|
Bauermann J, Laha S, McCall PM, Jülicher F, Weber CA. Chemical Kinetics and Mass Action in Coexisting Phases. J Am Chem Soc 2022; 144:19294-19304. [PMID: 36241174 PMCID: PMC9620980 DOI: 10.1021/jacs.2c06265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 11/29/2022]
Abstract
The kinetics of chemical reactions are determined by the law of mass action, which has been successfully applied to homogeneous, dilute mixtures. At nondilute conditions, interactions among the components can give rise to coexisting phases, which can significantly alter the kinetics of chemical reactions. Here, we derive a theory for chemical reactions in coexisting phases at phase equilibrium. We show that phase equilibrium couples the rates of chemical reactions of components with their diffusive exchanges between the phases. Strikingly, the chemical relaxation kinetics can be represented as a flow along the phase equilibrium line in the phase diagram. A key finding of our theory is that differences in reaction rates between coexisting phases stem solely from phase-dependent reaction rate coefficients. Our theory is key to interpreting how concentration levels of reactive components in condensed phases control chemical reaction rates in synthetic and biological systems.
Collapse
Affiliation(s)
- Jonathan Bauermann
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Sudarshana Laha
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Patrick M. McCall
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Max
Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Jülicher
- Max
Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- Center
for Systems Biology Dresden, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Cluster
of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Christoph A. Weber
- Faculty
of Mathematics, Natural Sciences, and Materials Engineering: Institute
of Physics, University of Augsburg, Universitätsstr. 1, 86159 Augsburg, Germany
| |
Collapse
|
38
|
In vitro assembly, positioning and contraction of a division ring in minimal cells. Nat Commun 2022; 13:6098. [PMID: 36243816 PMCID: PMC9569390 DOI: 10.1038/s41467-022-33679-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023] Open
Abstract
Constructing a minimal machinery for autonomous self-division of synthetic cells is a major goal of bottom-up synthetic biology. One paradigm has been the E. coli divisome, with the MinCDE protein system guiding assembly and positioning of a presumably contractile ring based on FtsZ and its membrane adaptor FtsA. Here, we demonstrate the full in vitro reconstitution of this machinery consisting of five proteins within lipid vesicles, allowing to observe the following sequence of events in real time: 1) Assembly of an isotropic filamentous FtsZ network, 2) its condensation into a ring-like structure, along with pole-to-pole mode selection of Min oscillations resulting in equatorial positioning, and 3) onset of ring constriction, deforming the vesicles from spherical shape. Besides demonstrating these essential features, we highlight the importance of decisive experimental factors, such as macromolecular crowding. Our results provide an exceptional showcase of the emergence of cell division in a minimal system, and may represent a step towards developing a synthetic cell.
Collapse
|
39
|
Yanagisawa M, Watanabe C, Yoshinaga N, Fujiwara K. Cell-Size Space Regulates the Behavior of Confined Polymers: From Nano- and Micromaterials Science to Biology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11811-11827. [PMID: 36125172 DOI: 10.1021/acs.langmuir.2c01397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer micromaterials in a liquid or gel phase covered with a surfactant membrane are widely used materials in pharmaceuticals, cosmetics, and foods. In particular, cell-sized micromaterials of biopolymer solutions covered with a lipid membrane have been studied as artificial cells to understand cells from a physicochemical perspective. The characteristics and phase transitions of polymers confined to a microscopic space often differ from those in bulk systems. The effect that causes this difference is referred to as the cell-size space effect (CSE), but the specific physicochemical factors remain unclear. This study introduces the analysis of CSE on molecular diffusion, nanostructure transition, and phase separation and presents their main factors, i.e., short- and long-range interactions with the membrane surface and small volume (finite element nature). This serves as a guide for determining the dominant factors of CSE. Furthermore, we also introduce other factors of CSE such as spatial closure and the relationships among space size, the characteristic length of periodicity, the structure size, and many others produced by biomolecular assemblies through the analysis of protein reaction-diffusion systems and biochemical reactions.
Collapse
Affiliation(s)
- Miho Yanagisawa
- Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
| | - Chiho Watanabe
- School of Integrated Arts and Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 9808577, Japan
- MathAM-OIL, National Institute of Advanced Industrial Science and Technology, Sendai 980-8577, Japan
| | - Kei Fujiwara
- Department of Biosciences & Informatics, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
40
|
Würthner L, Brauns F, Pawlik G, Halatek J, Kerssemakers J, Dekker C, Frey E. Bridging scales in a multiscale pattern-forming system. Proc Natl Acad Sci U S A 2022; 119:e2206888119. [PMID: 35960842 PMCID: PMC9388104 DOI: 10.1073/pnas.2206888119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/13/2022] [Indexed: 01/08/2023] Open
Abstract
Self-organized pattern formation is vital for many biological processes. Reaction-diffusion models have advanced our understanding of how biological systems develop spatial structures, starting from homogeneity. However, biological processes inherently involve multiple spatial and temporal scales and transition from one pattern to another over time, rather than progressing from homogeneity to a pattern. To deal with such multiscale systems, coarse-graining methods are needed that allow the dynamics to be reduced to the relevant degrees of freedom at large scales, but without losing information about the patterns at small scales. Here, we present a semiphenomenological approach which exploits mass conservation in pattern formation, and enables reconstruction of information about patterns from the large-scale dynamics. The basic idea is to partition the domain into distinct regions (coarse grain) and determine instantaneous dispersion relations in each region, which ultimately inform about local pattern-forming instabilities. We illustrate our approach by studying the Min system, a paradigmatic model for protein pattern formation. By performing simulations, we first show that the Min system produces multiscale patterns in a spatially heterogeneous geometry. This prediction is confirmed experimentally by in vitro reconstitution of the Min system. Using a recently developed theoretical framework for mass-conserving reaction-diffusion systems, we show that the spatiotemporal evolution of the total protein densities on large scales reliably predicts the pattern-forming dynamics. Our approach provides an alternative and versatile theoretical framework for complex systems where analytical coarse-graining methods are not applicable, and can, in principle, be applied to a wide range of systems with an underlying conservation law.
Collapse
Affiliation(s)
- Laeschkir Würthner
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
| | - Grzegorz Pawlik
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Jacob Halatek
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Research Department, Oxford BioMedica Ltd., Oxford OX4 6LT, United Kingdom
| | - Jacob Kerssemakers
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, 2629 HZ Delft, The Netherlands
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, D-80333 München, Germany
- Max Planck School Matter to Life, D-80539 Munich, Germany
| |
Collapse
|
41
|
Wagner AM, Eto H, Joseph A, Kohyama S, Haraszti T, Zamora RA, Vorobii M, Giannotti MI, Schwille P, Rodriguez-Emmenegger C. Dendrimersome Synthetic Cells Harbor Cell Division Machinery of Bacteria. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202364. [PMID: 35579491 DOI: 10.1002/adma.202202364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/11/2022] [Indexed: 06/15/2023]
Abstract
The integration of active cell machinery with synthetic building blocks is the bridge toward developing synthetic cells with biological functions and beyond. Self-replication is one of the most important tasks of living systems, and various complex machineries exist to execute it. In Escherichia coli, a contractile division ring is positioned to mid-cell by concentration oscillations of self-organizing proteins (MinCDE), where it severs membrane and cell wall. So far, the reconstitution of any cell division machinery has exclusively been tied to liposomes. Here, the reconstitution of a rudimentary bacterial divisome in fully synthetic bicomponent dendrimersomes is shown. By tuning the membrane composition, the interaction of biological machinery with synthetic membranes can be tailored to reproduce its dynamic behavior. This constitutes an important breakthrough in the assembly of synthetic cells with biological elements, as tuning of membrane-divisome interactions is the key to engineering emergent biological behavior from the bottom-up.
Collapse
Affiliation(s)
- Anna M Wagner
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hiromune Eto
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Anton Joseph
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Shunshi Kohyama
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Tamás Haraszti
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Ricardo A Zamora
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
| | - Mariia Vorobii
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Network Biomedical Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, 28029, Spain
- University of Barcelona, Department of Materials Science and Physical Chemistry, Martí i Franquès 10, Barcelona, 08028, Spain
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Department of Cellular and Molecular Biophysics, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Cesar Rodriguez-Emmenegger
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
42
|
Takada S, Yoshinaga N, Doi N, Fujiwara K. Mode selection mechanism in traveling and standing waves revealed by Min wave reconstituted in artificial cells. SCIENCE ADVANCES 2022; 8:eabm8460. [PMID: 35675408 PMCID: PMC9177070 DOI: 10.1126/sciadv.abm8460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Reaction-diffusion coupling (RDc) generates spatiotemporal patterns, including two dynamic wave modes: traveling and standing waves. Although mode selection plays a substantial role in the spatiotemporal organization of living cell molecules, the mechanism for selecting each wave mode remains elusive. Here, we investigated a wave mode selection mechanism using Min waves reconstituted in artificial cells, emerged by the RDc of MinD and MinE. Our experiments and theoretical analysis revealed that the balance of membrane binding and dissociation from the membrane of MinD determines the mode selection of the Min wave. We successfully demonstrated that the transition of the wave modes can be regulated by controlling this balance and found hysteresis characteristics in the wave mode transition. These findings highlight a previously unidentified role of the balance between activators and inhibitors as a determinant of the mode selection of waves by RDc and depict an unexplored mechanism in intracellular spatiotemporal pattern formations.
Collapse
Affiliation(s)
- Sakura Takada
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Natsuhiko Yoshinaga
- Mathematical Science Group, WPI Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-Ku, Sendai 980-8577, Japan
- MathAM-OIL, AIST, Sendai 980-8577, Japan
- Corresponding author. (N.Y.); (K.F.)
| | - Nobuhide Doi
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kei Fujiwara
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
- Corresponding author. (N.Y.); (K.F.)
| |
Collapse
|
43
|
Datta A, Ghosh S, Kondev J. How to assemble a scale-invariant gradient. eLife 2022; 11:71365. [PMID: 35311649 PMCID: PMC8986316 DOI: 10.7554/elife.71365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intracellular protein gradients serve a variety of functions, such as the establishment of cell polarity or to provide positional information for gene expression in developing embryos. Given that cell size in a population can vary considerably, for the protein gradients to work properly they often have to be scaled to the size of the cell. Here, we examine a model of protein gradient formation within a cell that relies on cytoplasmic diffusion and cortical transport of proteins toward a cell pole. We show that the shape of the protein gradient is determined solely by the cell geometry. Furthermore, we show that the length scale over which the protein concentration in the gradient varies is determined by the linear dimensions of the cell, independent of the diffusion constant or the transport speed. This gradient provides scale-invariant positional information within a cell, which can be used for assembly of intracellular structures whose size is scaled to the linear dimensions of the cell, such as the cytokinetic ring and actin cables in budding yeast cells.
Collapse
Affiliation(s)
- Arnab Datta
- Department of Physics, Brandeis University, Waltham, United States
| | - Sagnik Ghosh
- Department of Physics, Brandeis University, Waltham, United States
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, United States
| |
Collapse
|
44
|
Schwille P, Frohn BP. Hidden protein functions and what they may teach us. Trends Cell Biol 2021; 32:102-109. [PMID: 34654605 DOI: 10.1016/j.tcb.2021.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 11/15/2022]
Abstract
Bottom-up synthetic biology is a new research field with the goal of constructing living systems from a minimal number of functional components. The key challenges are, first, to identify a necessary canon of functions for a system to be considered alive, and second, to reconstitute these respective modules in vitro. When using proteins as obvious candidates, it appears that not only some of their described physiological functions fail to unfold outside the cellular context, but that completely new and unexpected functions are being observed. We put these insights in the context of other recent findings on protein functionality and discuss their potential role in the emergence and evolution of life.
Collapse
Affiliation(s)
- Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany.
| | - Béla P Frohn
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, D-82152 Martinsried, Germany
| |
Collapse
|
45
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 DOI: 10.1101/2021.02.11.430593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 05/25/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
46
|
Vazquez DS, Schilbert HM, Dodero VI. Molecular and Structural Parallels between Gluten Pathogenic Peptides and Bacterial-Derived Proteins by Bioinformatics Analysis. Int J Mol Sci 2021; 22:9278. [PMID: 34502187 PMCID: PMC8430993 DOI: 10.3390/ijms22179278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Gluten-related disorders (GRDs) are a group of diseases that involve the activation of the immune system triggered by the ingestion of gluten, with a worldwide prevalence of 5%. Among them, Celiac disease (CeD) is a T-cell-mediated autoimmune disease causing a plethora of symptoms from diarrhea and malabsorption to lymphoma. Even though GRDs have been intensively studied, the environmental triggers promoting the diverse reactions to gluten proteins in susceptible individuals remain elusive. It has been proposed that pathogens could act as disease-causing environmental triggers of CeD by molecular mimicry mechanisms. Additionally, it could also be possible that unrecognized molecular, structural, and physical parallels between gluten and pathogens have a relevant role. Herein, we report sequence, structural and physical similarities of the two most relevant gluten peptides, the 33-mer and p31-43 gliadin peptides, with bacterial pathogens using bioinformatics going beyond the molecular mimicry hypothesis. First, a stringent BLASTp search using the two gliadin peptides identified high sequence similarity regions within pathogen-derived proteins, e.g., extracellular proteins from Streptococcus pneumoniae and Granulicatella sp. Second, molecular dynamics calculations of an updated α-2-gliadin model revealed close spatial localization and solvent-exposure of the 33-mer and p31-43 peptide, which was compared with the pathogen-related proteins by homology models and localization predictors. We found putative functions of the identified pathogen-derived sequence by identifying T-cell epitopes and SH3/WW-binding domains. Finally, shape and size parallels between the pathogens and the superstructures of gliadin peptides gave rise to novel hypotheses about activation of innate immunity and dysbiosis. Based on our structural findings and the similarities with the bacterial pathogens, evidence emerges that these pathologically relevant gluten-derived peptides could behave as non-replicating pathogens opening new research questions in the interface of innate immunity, microbiome, and food research.
Collapse
Affiliation(s)
- Diego S. Vazquez
- Grupo de Biología Estructural y Biotecnología (GBEyB-IMBICE), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, Bernal B1876BXD, Buenos Aires, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, Ciudad Autónoma C1033AAJ, Buenos Aires, Argentina
| | - Hanna M. Schilbert
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| | - Veronica I. Dodero
- Department of Chemistry, Organic Chemistry OCIII, Universität Bielefeld, Universitätsstraße 25, 33615 Bielefeld, Germany;
| |
Collapse
|
47
|
Merino-Salomón A, Babl L, Schwille P. Self-organized protein patterns: The MinCDE and ParABS systems. Curr Opin Cell Biol 2021; 72:106-115. [PMID: 34399108 DOI: 10.1016/j.ceb.2021.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/04/2021] [Accepted: 07/07/2021] [Indexed: 12/24/2022]
Abstract
Self-organized protein patterns are of tremendous importance for biological decision-making processes. Protein patterns have been shown to identify the site of future cell division, establish cell polarity, and organize faithful DNA segregation. Intriguingly, several key concepts of pattern formation and regulation apply to a variety of different protein systems. Herein, we explore recent advances in the understanding of two prokaryotic pattern-forming systems: the MinCDE system, positioning the FtsZ ring precisely at the midcell, and the ParABS system, distributing newly synthesized DNA along with the cell. Despite differences in biological functionality, these two systems have remarkably similar molecular components, mechanisms, and strategies to achieve biological robustness.
Collapse
Affiliation(s)
- Adrián Merino-Salomón
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Leon Babl
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany
| | - Petra Schwille
- Dept. Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, 82152, Germany.
| |
Collapse
|
48
|
Olivi L, Berger M, Creyghton RNP, De Franceschi N, Dekker C, Mulder BM, Claassens NJ, Ten Wolde PR, van der Oost J. Towards a synthetic cell cycle. Nat Commun 2021; 12:4531. [PMID: 34312383 PMCID: PMC8313558 DOI: 10.1038/s41467-021-24772-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
49
|
Jalal ASB, Tran NT, Wu LJ, Ramakrishnan K, Rejzek M, Gobbato G, Stevenson CEM, Lawson DM, Errington J, Le TBK. CTP regulates membrane-binding activity of the nucleoid occlusion protein Noc. Mol Cell 2021; 81:3623-3636.e6. [PMID: 34270916 PMCID: PMC8429893 DOI: 10.1016/j.molcel.2021.06.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity. CTP is required for Noc to form a higher-order nucleoprotein complex on DNA CTP binding switches DNA-entrapped Noc to a membrane-active state CTP hydrolysis likely reverses the association between Noc-DNA and the membrane The membrane-targeting helix adopts an autoinhibitory conformation in apo-Noc
Collapse
Affiliation(s)
- Adam S B Jalal
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ngat T Tran
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Ling J Wu
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | | | - Martin Rejzek
- Chemistry Platform, John Innes Centre, Norwich, NR4 7UH, UK
| | - Giulia Gobbato
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK
| | | | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Biosciences Institute, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4AX, UK
| | - Tung B K Le
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, UK.
| |
Collapse
|
50
|
Eto H, Franquelim HG, Heymann M, Schwille P. Membrane-coated 3D architectures for bottom-up synthetic biology. SOFT MATTER 2021; 17:5456-5466. [PMID: 34106121 DOI: 10.1039/d1sm00112d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One of the great challenges of bottom-up synthetic biology is to recreate the cellular geometry and surface functionality required for biological reactions. Of particular interest are lipid membrane interfaces where many protein functions take place. However, cellular 3D geometries are often complex, and custom-shaping stable lipid membranes on relevant spatial scales in the micrometer range has been hard to accomplish reproducibly. Here, we use two-photon direct laser writing to 3D print microenvironments with length scales relevant to cellular processes and reactions. We formed lipid bilayers on the surfaces of these printed structures, and we evaluated multiple combinatorial scenarios, where physiologically relevant membrane compositions were generated on several different polymer surfaces. Functional dynamic protein systems were reconstituted in vitro and their self-organization was observed in response to the 3D geometry. This method proves very useful to template biological membranes with an additional spatial dimension, and thus allows a better understanding of protein function in relation to the complex morphology of cells and organelles.
Collapse
Affiliation(s)
- Hiromune Eto
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Henri G Franquelim
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| | - Michael Heymann
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany. and Department of Intelligent Biointegrative Systems, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Petra Schwille
- Department for Cellular and Molecular Biophysics, Max Planck Institute for Biochemistry, Am Klopferspitz 18, D-82152, Martinsried, Germany.
| |
Collapse
|