1
|
Li Z, Liu Y, Wang H, Xu G. Transcription factor SMAD5 upregulates ALG5 to alleviate osteoporosis development by inducing osteogenic differentiation. J Orthop 2025; 61:140-149. [PMID: 39588532 PMCID: PMC11585819 DOI: 10.1016/j.jor.2024.10.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/30/2024] [Indexed: 11/27/2024] Open
Abstract
Background Impaired osteogenic differentiation ability of mesenchymal stem cells (MSCs) plays a pathogenic role in osteoporosis (OP). ALG5, a key glucosyltransferase, participates in the synthesis of the glucose-residue donor. However, little is known about the role of ALG5 in OP pathogenesis and osteogenic differentiation. Methods The GSE35956 dataset was used to observe OP-associated factors. ALG5 and SMAD5 mRNA analysis was performed by quantitative PCR. Induction of osteoblastic differentiation of human MSCs (hMSCs) was done using specific media for 14 days. The ovariectomy (OVX)-induced osteoporotic mouse model was established. Calcium deposition was detected by alkaline phosphatase (ALP) activity assay and Alizarin Red staining. Protein expression was evaluated by immunoblot analysis. The relationship of SMAD5 with the ALG5 promoter was predicted by the online tool JASPAR and validated by luciferase assay. Results In bone marrow of OP, ALG5 and SMAD5 levels were decreased. Overexpression of ALG5 acted for in vitro enhancement of osteogenic differentiation and autophagy of hMSCs. Mechanistically, SMAD5 enhanced ALG5 transcription to increase ALG5 expression. Moreover, increased SMAD5 expression promoted in vitro osteogenic differentiation of hMSCs through ALG5. ALG5 and SMAD5 were also underexpressed in bone samples of OVX-osteoporotic mice. Furthermore, increased SMAD5 expression alleviated OP development of OVX mice by inducing osteogenic differentiation by upregulating ALG5. Conclusion Our findings demonstrate that increased SMAD5 expression upregulates ALG5 to enhance osteogenic differentiation of hMSCs and thus alleviates OP development, providing novel potential approaches to combat OP.
Collapse
Affiliation(s)
- Zhenhua Li
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Yifei Liu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Haiping Wang
- Department of Outpatient, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| | - Guohua Xu
- Department of Spine Surgery, Shanghai Changzheng Hospital, Naval Medical University, 200003, Shanghai City, China
| |
Collapse
|
2
|
Luzardo ML. Effects of higher dietary acid load: a narrative review with special emphasis in children. Pediatr Nephrol 2025; 40:25-37. [PMID: 39093454 DOI: 10.1007/s00467-024-06466-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
Metabolic effects of high diet acid load (DAL) have been studied for years in adults, although only recently in children. Contemporary diets, especially those of Western societies, owe their acidogenic effect to high animal-origin protein content and low contribution of base-forming elements, such as fruits and vegetables. This imbalance, where dietary acid precursors exceed the body's buffering capacity, results in an acid-retaining state known by terms such as "eubicarbonatemic metabolic acidosis," "low-grade metabolic acidosis," "subclinical acidosis," or "acid stress". Its consequences have been linked to chronic systemic inflammation, contributing to various noncommunicable diseases traditionally considered more common in adulthood, but now have been recognized to originate at much earlier ages. In children, effects of high DAL are not limited to growth impairment caused by alterations of bone and muscle metabolism, but also represent a risk factor for conditions such as obesity, insulin resistance, diabetes, hypertension, urolithiasis, and chronic kidney disease (CKD). The possibility that high DAL may be a cause of chronic acid-retaining states in children with growth impairment should alert pediatricians and pediatric nephrologists, since its causes have been attributed traditionally to inborn errors of metabolism and renal pathologies such as CKD and renal tubular acidosis. The interplay between DAL, overall diet quality, and its cascading effects on children's health necessitates comprehensive nutritional assessments and interventions. This narrative review explores the clinical relevance of diet-induced acid retention in children and highlights the potential for prevention through dietary modifications, particularly by increasing fruit and vegetable intake alongside appropriate protein consumption.
Collapse
|
3
|
V G R, Ellur G, A Gaber A, Govindappa PK, Elfar JC. 4-aminopyridine attenuates inflammation and apoptosis and increases angiogenesis to promote skin regeneration following a burn injury in mice. Cell Death Discov 2024; 10:428. [PMID: 39366954 PMCID: PMC11452548 DOI: 10.1038/s41420-024-02199-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024] Open
Abstract
Severe thermal skin burns are complicated by inflammation and apoptosis, which delays wound healing and contributes to significant morbidity. Diverse treatments demonstrate limited success in mitigating these processes to accelerate healing. Agents that alter cell behavior to improve healing would alter treatment paradigms. We repurposed 4-aminopyridine (4-AP), a drug approved by the US FDA for multiple sclerosis, to treat severe burns in mice (10-week-old C57BL/6 J male mice weighing 25 ± 3 g). We found that 4-AP, in the early stages of burn healing, significantly reduced the expression of pro-inflammatory cytokines IL1β and TNFα while increasing the expression of anti-inflammatory markers CD206, ARG-1, and IL10. We demonstrated increased intracellular calcium effects of 4-AP through Orai1-pSTAT6 signaling, where 4-AP significantly mitigated inflammatory effects by promoting M2 macrophage differentiation in in-vitro macrophages and post-skin burn tissues. 4-AP attenuated apoptosis, with decreases in apoptotic markers BAX, caspase-9, and caspase-3 and increases in anti-apoptotic markers BCL2 and BCL-XL. Furthermore, 4-AP promoted angiogenesis through increases in the expression of CD31, VEGF, and eNOS. Together, these likely contributed to accelerated burn wound closure, as demonstrated in increased keratinocyte proliferation (K14) and differentiation (K10) markers. In the later stages of burn healing, 4-AP increased TGFβ and FGF levels, which are known to mark the transformation of fibroblasts to myofibroblasts. This was further demonstrated by an increased expression of α-SMA and vimentin, as well as higher levels of collagen I and III, MMP 3, and 9 in mice treated with 4-AP. Our findings support the idea that 4-AP may have a novel, clinically relevant therapeutic use in promoting burn wound healing.
Collapse
Affiliation(s)
- Rahul V G
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Govindaraj Ellur
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Amir A Gaber
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Prem Kumar Govindappa
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| | - John C Elfar
- Department of Orthopaedics and Sports Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA.
| |
Collapse
|
4
|
Zhang J, Mao Y, Rao J. The SPI1/SMAD5 cascade in the promoting effect of icariin on osteogenic differentiation of MC3T3-E1 cells: a mechanism study. J Orthop Surg Res 2024; 19:444. [PMID: 39075522 PMCID: PMC11285181 DOI: 10.1186/s13018-024-04933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/19/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Dysregulation of osteogenic differentiation is a crucial event during osteoporosis. The bioactive phytochemical icariin has become an anti-osteoporosis candidate. Here, we elucidated the mechanisms underlying the promoting function of icariin in osteogenic differentiation. METHODS Murine pre-osteoblast MC3T3-E1 cells were stimulated with dexamethasone (DEX) to induce osteogenic differentiation, which was evaluated by an Alizarin Red staining assay and ALP activity measurement. The mRNA amounts of SPI1 and SMAD5 were detected by real-time quantitative PCR. Expression analysis of proteins, including osteogenic markers (OPN, OCN and RUNX2) and autophagy-associated proteins (LC3, Beclin-1, and ATG5), was performed by immunoblotting. The binding of SPI1 and the SMAD5 promoter was predicted by the Jaspar2024 algorithm and confirmed by chromatin immunoprecipitation (ChIP) experiments. The regulation of SPI1 in SMAD5 was examined by luciferase assays. RESULTS During osteogenic differentiation of MC3T3-E1 cells, SPI1 and SMAD5 were upregulated. Functionally, SPI1 overexpression enhanced autophagy and osteogenic differentiation of MC3T3-E1 cells, while SMAD5 downregulation exhibited opposite effects. Mechanistically, SPI1 could enhance SMAD5 transcription and expression. Downregulation of SMAD5 also reversed SPI1 overexpression-induced autophagy and osteogenic differentiation in MC3T3-E1 cells. In MC3T3-E1 cells under DEX stimulation, icariin increased SMAD5 expression by upregulating SPI1. Furthermore, icariin could attenuate SPI1 depletion-imposed inhibition of autophagy and osteogenic differentiation of MC3T3-E1 cells. CONCLUSION Our findings demonstrate that the SPI1/SMAD5 cascade, with the ability to enhance osteogenic differentiation, underlies the promoting effect of icariin on osteogenic differentiation of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Junchao Zhang
- Department of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Avenue, Quzhou, 324000, Zhejiang, P.R. China.
| | - Yi Mao
- Department of Spine Surgery, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, No.100 Minjiang Avenue, Quzhou, 324000, Zhejiang, P.R. China
| | - Jianwei Rao
- Department of Spine Surgery, Jiangshan People's Hospital, Jiangshan, Quzhou, 324100, Zhejiang, P.R. China
| |
Collapse
|
5
|
Kanwate BW, Patel K, Karkal SS, Rajoriya D, Sharan K, Kudre TG. Production of Antioxidant, Angiotensin-Converting Enzyme Inhibitory and Osteogenic Gelatin Hydrolysate from Labeo rohita Swim Bladder. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:404-420. [PMID: 38558367 DOI: 10.1007/s10126-024-10305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
Optimization of antioxidants and angiotensin-converting enzyme (ACE) inhibitory potential gelatin hydrolysate production from Labeo rohita (rohu) swim bladder (SBGH) by alcalase using central composite design (CCD) of response surface methodology (RSM) was investigated. The maximum degree of hydrolysis (DH), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS), total antioxidants (TAO), and ACE inhibitory activity were achieved at 0.1:1.0 (w/w) enzyme to substrate ratio, 61 °C hydrolysis temperature, and 94-min hydrolysis time. The resulting SBGH obtained at 19.92% DH exhibited the DPPH (24.28 µM TE/mg protein), ABTS (34.47 µM TE/mg protein), TAO (12.01 µg AAE/mg protein), and ACE inhibitory (4.91 µg/mg protein) activity. Furthermore, SBGH at 100 µg/ml displayed osteogenic property without any toxic effects on MC3T3-E1 cells. Besides, the protein content of rohu swim bladder gelatin (SBG) and SBGH was 93.68% and 94.98%, respectively. Both SBG and SBGH were rich in glycine, proline, glutamic acid, alanine, arginine, and hydroxyproline amino acids. Therefore, SBGH could be an effective nutraceutical in functional food development.
Collapse
Affiliation(s)
- Balaji Wamanrao Kanwate
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sandesh Suresh Karkal
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deependra Rajoriya
- Food Engineering Department, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tanaji G Kudre
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru-570 020, Karnataka, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Xiong T, Wu Y, Hu J, Xu S, Li Y, Kong B, Zhang Z, Chen L, Tang Y, Yao P, Xiong J, Li Y. Associations between High Protein Intake, Linear Growth, and Stunting in Children and Adolescents: A Cross-Sectional Study. Nutrients 2023; 15:4821. [PMID: 38004215 PMCID: PMC10675685 DOI: 10.3390/nu15224821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Childhood and adolescence are critical periods for linear growth and preventing stunting. Current evidence indicates that dietary protein intake in children and adolescents is often two to three times higher than the recommendations in many regions worldwide. However, few studies have focused on the association between high protein intake and linear growth and stunting in this population. We aim to investigate this association in children and adolescents aged 6 to 18 years in a population with relatively high protein consumption. METHODS We conducted a large cross-sectional study involving 3299 participants from Shenzhen, a modern metropolis of China. Protein intake, including total protein, animal protein, and plant protein, was evaluated by a food-frequency questionnaire and expressed as grams per kilogram of body weight per day (g·kg-1·d-1) and as a percentage of total energy intake (%E). The primary outcomes were body height and height-for-age Z score (HAZ). Generalized linear models and logistic regression analyses were employed to examine the associations between protein intake and outcomes. We also conducted stratified analyses across different genders and pubertal stages in the aforementioned associations. RESULTS The mean protein intake was 1.81 g·kg-1·d-1 (17% E). After adjusting for serum calcium, zinc, vitamin D3, vitamin A levels, birth outcomes, lifestyle, and parental characteristics, each standard deviation increase of 1 in protein intake (0.64 kg-1·d-1) is found to be associated with a -5.78 cm change in body height (95% CI: -6.12, -5.45) and a -0.79 change in HAZ (95% CI: -0.84, -0.74). Consistent results were observed when protein intake was expressed as %E or specifically as animal or plant protein. Moreover, the relationship between protein intake and linear growth remained consistent across genders in different pubertal stages, similar to that of the overall participants. CONCLUSIONS Our findings highlight the potential hazards of high protein intake on linear growth in children and adolescents. Caution should be exercised when promoting increased protein consumption in children and adolescents who already have a high intake of protein.
Collapse
Affiliation(s)
- Ting Xiong
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (T.X.); (Y.W.); (J.H.); (S.X.)
| | - Yuanjue Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (T.X.); (Y.W.); (J.H.); (S.X.)
| | - Jiazhen Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (T.X.); (Y.W.); (J.H.); (S.X.)
| | - Shiqi Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangzhou Medical University, Guangzhou 511436, China; (T.X.); (Y.W.); (J.H.); (S.X.)
| | - Yan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China;
| | - Binxuan Kong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.K.); (Z.Z.); (L.C.); (Y.T.); (P.Y.)
| | - Zhuangyu Zhang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.K.); (Z.Z.); (L.C.); (Y.T.); (P.Y.)
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.K.); (Z.Z.); (L.C.); (Y.T.); (P.Y.)
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.K.); (Z.Z.); (L.C.); (Y.T.); (P.Y.)
| | - Ping Yao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety and the Ministry of Education (MOE) Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (B.K.); (Z.Z.); (L.C.); (Y.T.); (P.Y.)
| | - Jingfan Xiong
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China;
| | - Yanyan Li
- Shenzhen Center for Chronic Disease Control, Shenzhen 518020, China;
| |
Collapse
|
7
|
Zhang S, Zhang Y, Yang D, Zhi W, Li J, Liu M, Lu Y, Han J. Circ_KIAA0922 regulates Saos-2 cell proliferation and osteogenic differentiation by regulating the miR-148a-3p/SMAD5 axis and activating the TGF-β signaling pathway. Intractable Rare Dis Res 2023; 12:222-233. [PMID: 38024586 PMCID: PMC10680163 DOI: 10.5582/irdr.2023.01076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Circular RNAs (circRNAs) are emerging as important regulators in human disease, but their function in osteoporosis (OP) is not sufficiently known. The aim of this study was to identify the possible molecular mechanism of circ_KIAA0922 in osteogenic differentiation of Saos-2 cells in vitro and the interactions among circ_KIAA0922, miR-148a-3p, and SMAD family member 5 (SMAD5). Circ_ KIAA0922, miR-148a-3p, and SMAD5 were overexpressed by transient transfection. Dual-luciferase reporter assay system was used to analyze the combination among circ_KIAA0922, miR-148a-3p, and SMAD5. In addition, the levels of circ_KIAA0922, miR-148a-3p, SMAD5, osteocalcin (OCN), and runt-related transcription factor 2 (RUNX2) were detected using RT-qPCR or western blot analysis. Alizarin red staining was performed to analyze the degree of osteogenic differentiation under the control of circ_KIAA0922, miR-148a-3p, and SMAD5. We found that circ_KIAA0922 knockdown inhibited the proliferation and osteogenic differentiation of Saos-2 cells. Circ_KIAA0922 directly targeted miR-148a-3p, and miR-148a-3p inhibition reversed the effects of circ_KIAA0922 knockdown on the proliferation and osteogenic differentiation of Saos-2 cells. Overexpression of SMAD5 promoted the proliferation and osteogenic differentiation of Saos-2 cells and attenuated the inhibitory effect of miR-148a-3p on cell proliferation and osteogenic differentiation. In conclusion, circ_ KIAA0922 facilitated Saos-2 cell proliferation and osteogenic differentiation via the circ_KIAA0922/ miR-148a-3p/ SMAD5 axes in vitro, thus providing insights into the mechanism of osteogenic differentiation by circ_ KIAA0922.
Collapse
Affiliation(s)
- Shanshan Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yongtao Zhang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Dan Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Wei Zhi
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Junfeng Li
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Meilin Liu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Yanqin Lu
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| |
Collapse
|
8
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Sesamol improves bone mass in ovary intact growing and adult rats but accelerates bone deterioration in the ovariectomized rats. J Nutr Biochem 2023:109384. [PMID: 37209954 DOI: 10.1016/j.jnutbio.2023.109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/03/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
Sesamol, an active component in sesame seeds, is known for its health benefits. However, its effect on bone metabolism remains unexplored. The present study aims to investigate the effect of sesamol on growing, adult and osteoporotic skeleton and its mechanism of action. Sesamol at various doses were administered orally to growing, ovariectomized, and ovary-intact rats. Alterations in bone parameters were examined using micro-CT and histological studies. Western blot and mRNA expression from long bones were performed. We further evaluated the effect of sesamol on osteoblast and osteoclast function and its mode of action in the cell culture system. These data showed that sesamol was able to promote peak bone mass in growing rats. However, sesamol had the opposite effect in ovariectomized rats, evident from gross deterioration of trabecular and cortical microarchitecture. Concurrently, it improved the bone mass in adult rats. In vitro results revealed that sesamol enhances the bone formation by stimulating osteoblast differentiation through MAPK, AKT, and BMP-2 signaling. In contrast, it enhances osteoclast differentiation and expression of osteoclast-specific genes in osteoclast differentiation medium. Interestingly, in presence of estrogen, the effect reversed and sesamol decreased osteoclast differentiation, in vitro. Sesamol improves bone microarchitecture in growing and ovary-intact rats, whereas it enhances the bone deterioration in ovariectomized rats. While sesamol promotes bone formation, its opposing effect on the skeleton can be attributed to its dual effect on osteoclastogenesis in presence and absence of estrogen. These findings in the preclinical context suggests a special attention towards the detrimental effect of sesamol in postmenopausal women.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Loh HY, Norman BP, Lai KS, Cheng WH, Nik Abd Rahman NMA, Mohamed Alitheen NB, Osman MA. Post-Transcriptional Regulatory Crosstalk between MicroRNAs and Canonical TGF-β/BMP Signalling Cascades on Osteoblast Lineage: A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24076423. [PMID: 37047394 PMCID: PMC10094338 DOI: 10.3390/ijms24076423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 04/14/2023] Open
Abstract
MicroRNAs (miRNAs) are a family of small, single-stranded, and non-protein coding RNAs about 19 to 22 nucleotides in length, that have been reported to have important roles in the control of bone development. MiRNAs have a strong influence on osteoblast differentiation through stages of lineage commitment and maturation, as well as via controlling the activities of osteogenic signal transduction pathways. Generally, miRNAs may modulate cell stemness, proliferation, differentiation, and apoptosis by binding the 3'-untranslated regions (3'-UTRs) of the target genes, which then can subsequently undergo messenger RNA (mRNA) degradation or protein translational repression. MiRNAs manage the gene expression in osteogenic differentiation by regulating multiple signalling cascades and essential transcription factors, including the transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP), Wingless/Int-1(Wnt)/β-catenin, Notch, and Hedgehog signalling pathways; the Runt-related transcription factor 2 (RUNX2); and osterix (Osx). This shows that miRNAs are essential in regulating diverse osteoblast cell functions. TGF-βs and BMPs transduce signals and exert diverse functions in osteoblastogenesis, skeletal development and bone formation, bone homeostasis, and diseases. Herein, we highlighted the current state of in vitro and in vivo research describing miRNA regulation on the canonical TGF-β/BMP signalling, their effects on osteoblast linage, and understand their mechanism of action for the development of possible therapeutics. In this review, particular attention and comprehensive database searches are focused on related works published between the years 2000 to 2022, using the resources from PubMed, Google Scholar, Scopus, and Web of Science.
Collapse
Affiliation(s)
- Hui-Yi Loh
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Brendan P Norman
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates
| | - Wan-Hee Cheng
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Negeri Sembilan, Malaysia
| | - Nik Mohd Afizan Nik Abd Rahman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Azuraidi Osman
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
10
|
Vamadeva SG, Patel K, Ravi Mangu S, Ellur G, Sukhdeo SV, Sharan K. Maternal omega-3 LC-PUFA supplementation programs an improved bone mass in the offspring with a more pronounced effect in females than males at adulthood. J Nutr Biochem 2023; 113:109245. [PMID: 36473540 DOI: 10.1016/j.jnutbio.2022.109245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/17/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Early balanced nutrition is vital in achieving optimal skeletal mass and its maintenance. Although a lower omega-6 (n-6): omega-3 (n-3) long-chain polyunsaturated fatty acid (LC-PUFA) ratio is strongly linked with bone health, its maternal effect in the programming of the offspring's skeleton remains to be elucidated. Plugged C57BL/6 mice were fed either n-3 LC-PUFA Enriched Diet (LED) or a control diet (C) throughout their gestation and lactation. Offspring born to both the groups were weaned onto C till 6, 12, and 24 weeks of their age. Offspring's skeleton metabolism and serum fatty acid composition was studied. In humans, seventy-five mother-female newborns pairs from term gestation were tested for their maternal LC-PUFA status relationships to venous cord blood bone biomarkers. Offspring of maternal LED supplemented mice exhibited a superior bone phenotype over C, more prominent in females than males. A lower serum n-6/n-3 LC-PUFA in the LED group offspring was strongly associated with blood biomarkers of bone metabolism. Sexual dimorphism evidenced had a strong correlation between offspring's LC-PUFA levels and bone turnover markers in serum. A higher potential for osteoblastic differentiation in both LED offspring genders and reduced osteoclastogenesis in females was cell-autonomous effect. The human cross-sectional study also showed a positive correlation between maternal n-3 PUFA and cord blood markers of bone formation in female newborns at birth. Maternal dietary n-6/ n-3 fat quality determines offspring's bone growth and development. Our data suggest that the skeleton of female offspring is likely to be more sensitive to this early exposure.
Collapse
Affiliation(s)
- Sowmya Giriyapura Vamadeva
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Govindraj Ellur
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, Karnataka, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, Karnataka, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
11
|
Vamadeva SG, Bhattacharyya N, Sharan K. Maternal Plasma Glycerophospholipids LC-PUFA Levels Have a Sex-Specific Association with the Offspring's Cord Plasma Glycerophospholipids-Fatty Acid Desaturation Indices at Birth. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14850. [PMID: 36429569 PMCID: PMC9691092 DOI: 10.3390/ijerph192214850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Fatty acid desaturases, the enzymes responsible for the production of unsaturated fatty acids (FA) in fetal tissues, are known to be influenced by maternal-placental supply of nutrients and hormones for their function. We hypothesize that there could be a gender-specific regulation of unsaturated FA metabolism at birth, dependent on the maternal fatty acid levels. In this study, 153 mother-newborn pairs of uncomplicated and 'full-term' pregnancies were selected and the FA composition of plasma glycerophospholipids (GP) was quantified by gas chromatography. The FA composition of mother blood plasma (MB) was compared with the respective cord blood plasma (CB) of male newborns or female newborns. Product to substrate ratios were estimated to calculate delta 5 desaturase (D5D), delta 6 desaturase (D6D) and delta 9 stearoyl-CoA-desaturase (D9D/SCD) indices. Pearson correlations and linear regression analyses were employed to determine the associations between MB and CB pairs. In the results, the male infant's MB-CB association was positively correlated with the SCD index of carbon-16 FA, while no correlation was seen for the SCD index of carbon-18 FA. Unlike for males, the CB-D5D index of female neonates presented a strong positive association with the maternal n-6 long chain-polyunsaturated FA (LC-PUFA), arachidonic acid. In addition, the lipogenic desaturation index of SCD18 in the CB of female new-borns was negatively correlated with their MB n-3 DHA. In conclusion, sex-related differences in new-borns' CB desaturation indices are associated with maternal LC-PUFA status at the time of the birth. This examined relationship appears to predict the origin of sex-specific unsaturated FA metabolism seen in later life.
Collapse
Affiliation(s)
- Sowmya Giriyapura Vamadeva
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | | | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru 570020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Mangu SR, Patel K, Sukhdeo SV, Savitha MR, Sharan K. Maternal high-cholesterol diet negatively programs offspring bone development and downregulates hedgehog signaling in osteoblasts. J Biol Chem 2022; 298:102324. [PMID: 35931113 PMCID: PMC9440389 DOI: 10.1016/j.jbc.2022.102324] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cholesterol is one of the essential intrauterine factors required for fetal growth and development. Maternal high cholesterol levels are known to be detrimental for offspring health. However, its long-term effect on offspring skeletal development remains to be elucidated. We performed our studies in two strains of mice (C57BL6/J and Swiss Albino) and human subjects (65 mother-female newborn dyads) to understand the regulation of offspring skeletal growth by maternal high cholesterol. We found that mice offspring from high-cholesterol-fed dams had low birth weight, smaller body length, and delayed skeletal ossification at the E18.5 embryonic stage. Moreover, we observed that the offspring did not recover from the reduced skeletal mass and exhibited a low bone mass phenotype throughout their life. We attributed this effect to reduced osteoblast cell activity with a concomitant increase in the osteoclast cell population. Our investigation of the molecular mechanism revealed that offspring from high-cholesterol-fed dams had a decrease in the expression of ligands and proteins involved in hedgehog signaling. Further, our cross-sectional study of human subjects showed a significant inverse correlation between maternal blood cholesterol levels and cord blood bone formation markers. Moreover, the bone formation markers were significantly lower in the female newborns of hypercholesterolemic mothers compared with mothers with normal cholesterolemic levels. Together, our results suggest that maternal high cholesterol levels deleteriously program offspring bone mass and bone quality and downregulate the hedgehog signaling pathway in their osteoblasts.
Collapse
Affiliation(s)
- Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - M R Savitha
- Department of Paediatrics, Mysore Medical College and Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
13
|
Osteoblastic microRNAs in skeletal diseases: Biological functions and therapeutic implications. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
14
|
Patel K, Mangu SR, Sukhdeo SV, Sharan K. Ethanolic extract from the root and leaf of Sida cordifolia promotes osteoblast activity and prevents ovariectomy-induced bone loss in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 99:154024. [PMID: 35263671 DOI: 10.1016/j.phymed.2022.154024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/22/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Sida cordifolia is traditionally found in the Indian system of medicine, well known for its medicinal and nutritional properties among local natives. PURPOSE The present study aims to investigate the osteo-protective effect of root and leaf ethanolic extract of S. cordifolia (RE and LE) and its underlying mechanism. METHODS Antioxidant activity of RE and LE was assessed. Total phenolic and flavonoid content were determined. HPLC profiling of RE and LE was performed to examine the polyphenol content. The effect of RE and LE on osteoblast cells proliferation, differentiation, mineralization, and expression of the protein associated with osteogenesis were evaluated using primary calvarial osteoblast culture. Skeletal effects of RE and LE of S. cordifolia were investigated in C57BL/6J ovariectomized mice. Micro CT was employed to evaluate the alteration in trabecular and cortical bone microarchitecture. Histology studies were performed on the isolated vertebra. qPCR analysis and western blotting was done to check the key bone markers. RESULTS RE and LE showed a potent antioxidant activity, owing to a notable polyphenol content. Both RE and LE did not alter the cell viability but significantly increased the osteoblast cell proliferation, differentiation, and mineralization. Moreover, they enhanced the mRNA expression of osteogenic genes. Both RE and LE stimulated the activation of ERK, AKT, and CREB. Both RE and LE had no direct effect on osteoclastogenesis, but both increased Opg/Rankl ratio expression in osteoblast cells. Both RE and LE at 750 mg/kg/day significantly improved the trabecular and cortical microarchitecture of femur and tibia by increasing bone mineral density, bone volume fraction, trabecular number, and trabecular thickness, and decreasing trabecular separation and structural model index in ovariectomized mice. Furthermore, vertebral histology of lumbar vertebrae revealed that RE and LE significantly enhance the vertebral bone mass and exert osteo-protective effects by stimulating osteoblast function and inhibiting osteoclast function. CONCLUSION In conclusion, both RE and LE stimulate osteoblast differentiation through activating ERK, AKT, and CREB signalling pathways and indirectly inhibits osteoclast differentiation. RE and LE also improve the trabecular and cortical microarchitecture of ovariectomized mice, making it a promising agent to prevent postmenopausal bone loss.
Collapse
Affiliation(s)
- Kalpana Patel
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Svvs Ravi Mangu
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shinde Vijay Sukhdeo
- Department of Meat and Marine Sciences, CSIR- Central Food Technological Research Institute, Mysuru, India
| | - Kunal Sharan
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
MicroRNA Profile Alterations in Parathyroid Carcinoma: Latest Updates and Perspectives. Cancers (Basel) 2022; 14:cancers14040876. [PMID: 35205624 PMCID: PMC8869975 DOI: 10.3390/cancers14040876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/02/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Despite the considerable development of diagnostic tools, distinguishing between benign and malignant parathyroid tumors poses a significant diagnostic challenge. Epigenetic regulations, including noncoding microRNAs (miRNAs), have recently emerged as a new and promising source of biomarkers. MiRNAs are post-transcriptional regulators of gene expression. These tissue-specific molecules are known to be deregulated between cancer and normal cells. This review delineates changes in miRNA expression in parathyroid carcinoma (PC), advancing our understanding of PC tumorigenesis and emphasizing, at the same time, that miRNAs can be further exploited for diagnostic and therapeutic purposes. Abstract Parathyroid tumors are a genetically heterogenous group with a significant variability in clinical features. Due to a lack of specific signs and symptoms and uncertain histopathological criteria, parathyroid carcinomas (PCs) are challenging to diagnose, both before and after surgery. There is a great interest in searching for accurate molecular biomarkers for early detection, disease monitoring, and clinical management. Due to improvements in molecular pathology, the latest studies have reported that PC tumorigenesis is strongly linked to the epigenetic regulation of gene expression. MicroRNA (miRNA) profiling may serve as a helpful adjunct in distinguishing parathyroid adenoma (PAd) from PC and provide further insight into regulatory pathways involved in PTH release and parathyroid tumorigenesis. So far, only a few studies have attempted to show the miRNA signature for PC, and very few overlaps could be found between these relatively similar studies. A global miRNA downregulation was detected in PC compared with normal glands among differentially expressed miRNAs. This review summarizes changes in miRNA expression in PC and discusses the future research directions in this area.
Collapse
|
16
|
Buckels EJ, Bolam SM, Tay ML, Matthews BG. The Impact of Maternal High-Fat Diet on Bone Microarchitecture in Offspring. Front Nutr 2021; 8:730037. [PMID: 34527691 PMCID: PMC8435578 DOI: 10.3389/fnut.2021.730037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
The incidence of obesity in women of reproductive age has significantly increased over the past 100 years. There is a well-established connection between maternal obesity during pregnancy and an increased risk of developing non-communicable cardiometabolic diseases in her offspring. This mini-review focuses on evidence examining the effect of maternal high-fat diet (HFD) on skeletal development and bone health in later life in offspring. The majority of rodent studies indicate that maternal HFD generally negatively affects both embryonic bone development and bone volume in adult animals. Details surrounding the mechanisms of action that drive changes in the skeleton in offspring remain unclear, although numerous studies suggest that some effects are sex-specific. Human studies in this area are limited but also suggest that HFD during pregnancy may impair bone formation and increase fracture risk during childhood. Given the consequences of low bone mass and deranged bone microarchitecture for offspring, advances in our understanding of the developmental origins of bone health is critical in the battle against osteoporosis.
Collapse
Affiliation(s)
- Emma J Buckels
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand.,Department of Orthopaedic Surgery, Auckland City Hospital, Auckland, New Zealand
| | - Mei Lin Tay
- Department of Surgery, School of Medicine, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
17
|
Yu Y, Zhang J, Wang J, Sun B. MicroRNAs: The novel mediators for nutrient-modulating biological functions. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Zhu H, Chen H, Ding D, Wang S, Dai X, Zhu Y. The interaction of miR-181a-5p and sirtuin 1 regulated human bone marrow mesenchymal stem cells differentiation and apoptosis. Bioengineered 2021; 12:1426-1435. [PMID: 33904366 PMCID: PMC8806353 DOI: 10.1080/21655979.2021.1915672] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis (OP) characterizes a decrease in bone density and bone mass which leads to brittle fractures and serious damages to individuals. In recent years, various researches have proved that miRNAs act pivotally in the onset of bone-related diseases. In our research, we probed into the impact of miR-181a-5P on viability, differentiation, as well as apoptosis of human bone marrow mesenchymal stem cells (hBMSCs). Our study reported that overexpressing miR-181a-5p considerably reduced the cell growth, whereas the miR-181a-5p inhibition showed opposite results. Furthermore, the hBMSCs apoptosis percentage was visually elevated or minimized after overexpressing or silencing miR-181a-5p, respectively. Our data also indicated that miR-181a-5p overexpression significantly inhibited ALP activity, and level of OPN, Runx2 and OCN at mRNA and protein level, whereas miR-181a-5p inhibition presented opposite results. In addition, based on luciferase reporter assay, sirtuin 1 (Sirt1) was confirmed as the target of miR-181a-5p in hBMSCs. Finally, Sirt1 overexpression significantly inhibited the impact of miR-181a-5p mimic on apoptosis and inhibited differentiation, while silencing Sirt1 eliminated the inhibitory effects of miR-181a-5p on apoptosis and promoted differentiation via PI3K/AKT pathway. In conclusion, this work revealed that miR-181a-5p could regulate hBMSCs apoptosis as well as differentiation via regulating Sirt1/PI3K/AKT signaling pathway. Cal Abstract ![]() ![]()
Collapse
Affiliation(s)
- Haitao Zhu
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| | - Hua Chen
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| | - DeGang Ding
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| | - Shui Wang
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| | - XiaoFeng Dai
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| | - YuLong Zhu
- Department of Orthopedics, People's Hospital of Sheyang County, Yancheng City, Jiangsu, China
| |
Collapse
|
19
|
De Martinis M, Ginaldi L, Allegra A, Sirufo MM, Pioggia G, Tonacci A, Gangemi S. The Osteoporosis/Microbiota Linkage: The Role of miRNA. Int J Mol Sci 2020; 21:E8887. [PMID: 33255179 PMCID: PMC7727697 DOI: 10.3390/ijms21238887] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hundreds of trillions of bacteria are present in the human body in a mutually beneficial symbiotic relationship with the host. A stable dynamic equilibrium exists in healthy individuals between the microbiota, host organism, and environment. Imbalances of the intestinal microbiota contribute to the determinism of various diseases. Recent research suggests that the microbiota is also involved in the regulation of the bone metabolism, and its alteration may induce osteoporosis. Due to modern molecular biotechnology, various mechanisms regulating the relationship between bone and microbiota are emerging. Understanding the role of microbiota imbalances in the development of osteoporosis is essential for the development of potential osteoporosis prevention and treatment strategies through microbiota targeting. A relevant complementary mechanism could be also constituted by the permanent relationships occurring between microbiota and microRNAs (miRNAs). miRNAs are a set of small non-coding RNAs able to regulate gene expression. In this review, we recapitulate the physiological and pathological meanings of the microbiota on osteoporosis onset by governing miRNA production. An improved comprehension of the relations between microbiota and miRNAs could furnish novel markers for the identification and monitoring of osteoporosis, and this appears to be an encouraging method for antagomir-guided tactics as therapeutic agents.
Collapse
Affiliation(s)
- Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood “Gaetano Barresi”, University of Messina, 98125 Messina, Italy;
| | - Maria Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.G.); (M.M.S.)
- Allergy and Clinical Immunology Unit, Center for the Diagnosis and Treatment of Osteoporosis, AUSL 04 Teramo, 64100 Teramo, Italy
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Alessandro Tonacci
- Clinical Physiology Institute, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| | - Sebastiano Gangemi
- School and Operative Unit of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy;
| |
Collapse
|