Ren J, Huang P, Wang F. IGSF8 is a potential target for the treatment of gliomas.
Asian J Surg 2024;
47:3883-3891. [PMID:
38453613 DOI:
10.1016/j.asjsur.2024.02.118]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/14/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND
Immunoglobulin superfamily member 8, or IGSF8, is a member of the recently identified immunoglobulin family of proteins. It is mostly produced on cell membranes and has a unique transmembrane structure. It has recently been demonstrated that there is a strong correlation between the expression variation of IGSF8 and the growth of gliomas. Therefore, we used data from the TCGA and CGGA databases to evaluate the function of IGSF8.
METHODS
The TCGA and GTEx data sets' RNA-seq data were utilized to examine IGSF8 expression. The Gene Cards database was utilized to get IGSF8 protein data. The Cluster Profiler data package was used to carry out the IGSF8 enrichment study. The GO and KEGG databases were used to examine the relationship between IGSF8 and cellular physiological and biochemical processes. The TCGA immune cell infiltration scores were obtained from online databases and published studies. Clinical survival data from TCGA and CGGA were used to investigate the predictive significance of IGSF8.
RESULTS
TGGA revealed that the majority of cancers had differential expression of IGSF8. IGSF8 was discovered to be enriched in numerous significant pathways in tumor cells by GO and KEGG. Moreover, a strong correlation was seen between the expression of IGSF8 and the immunomodulatory interactions that occur between non-lymphocytes and lymphocytes. T-cell infiltration, immunological checkpoints, immune-activating and immune-suppressive genes, chemokines, and chemokine receptors were all strongly correlated with IGSF8 expression. Lastly, the TCGA and CGGA databases showed a strong correlation between IGSF8 and the grade and prognosis of gliomas.
CONCLUSION
According to our findings, IGSF8 may be a glioma marker. In order to control the immunological microenvironment, IGSF8 may cooperate with a number of immune checkpoints. This information may be utilized to create novel targeted immunotherapy medications.
Collapse