1
|
Slamecka J, Ryu S, Tristan CA, Chu PH, Weber C, Deng T, Gedik Y, Ormanoglu P, Voss TC, Simeonov A, Singeç I. Highly efficient generation of self-renewing trophoblast from human pluripotent stem cells. iScience 2024; 27:110874. [PMID: 39386760 PMCID: PMC11462042 DOI: 10.1016/j.isci.2024.110874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Human pluripotent stem cells (hPSCs) represent a powerful model system to study early developmental processes. However, lineage specification into trophectoderm (TE) and trophoblast (TB) differentiation remains poorly understood, and access to well-characterized placental cells for biomedical research is limited, largely depending on fetal tissues or cancer cell lines. Here, we developed novel strategies enabling highly efficient TE specification that generates cytotrophoblast (CTB) and multinucleated syncytiotrophoblast (STB), followed by the establishment of trophoblast stem cells (TSCs) capable of differentiating into extravillous trophoblast (EVT) and STB after long-term expansion. We confirmed stepwise and controlled induction of lineage- and cell-type-specific genes consistent with developmental biology principles and benchmarked typical features of placental cells using morphological, biochemical, genomics, epigenomics, and single-cell analyses. Charting a well-defined roadmap from hPSCs to distinct placental phenotypes provides invaluable opportunities for studying early human development, infertility, and pregnancy-associated diseases.
Collapse
Affiliation(s)
- Jaroslav Slamecka
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Seungmi Ryu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Carlos A. Tristan
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pei-Hsuan Chu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Tao Deng
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Yeliz Gedik
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Pinar Ormanoglu
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ty C. Voss
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| | - Ilyas Singeç
- National Center for Advancing Translational Sciences (NCATS), Division of Preclinical Innovation, Stem Cell Translation Laboratory (SCTL), National Institutes of Health (NIH), Rockville, MD 20850, USA
| |
Collapse
|
2
|
Latham KE. Early Cell Lineage Formation in Mammals: Complexity, Species Diversity, and Susceptibility to Disruptions Impacting Embryo Viability. Mol Reprod Dev 2024; 91:e70002. [PMID: 39463042 DOI: 10.1002/mrd.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/24/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
The emergence of the earliest cell lineages in mammalian embryos is a complex process that utilizes an extensive network of chromatin regulators, transcription factors, cell polarity regulators, and cellular signaling pathways. These factors and pathways operate over a protracted period of time as embryos cleave, undergo compaction, and form blastocysts. The first cell fate specification event separates the pluripotent inner cell mass from the trophectoderm lineage. The second event separates pluripotent epiblast from hypoblast. This review summarizes over 50 years of study of these early lineage forming events, addressing the complexity of the network of interacting molecules, cellular functions and pathways that drive them, interspecies differences, and aspects of these mechanisms that likely underlie their high susceptibility to disruption by numerous environmental factors that can compromise embryo viability, such as maternal health and diet, environmental toxins, and other stressors.
Collapse
Affiliation(s)
- Keith E Latham
- Department of Animal Science, Michigan State University, Lansing, Michigan, USA
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Lansing, Michigan, USA
- Reproductive and Developmental Sciences Program, Michigan State University, Lansing, Michigan, USA
| |
Collapse
|
3
|
Morey R, Soncin F, Kallol S, Sah N, Manalo Z, Bui T, Slamecka J, Cheung VC, Pizzo D, Requena DF, Chang CW, Farah O, Kittle R, Meads M, Horii M, Fisch K, Parast MM. Single-cell transcriptomics reveal differences between chorionic and basal plate cytotrophoblasts and trophoblast stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603155. [PMID: 39071344 PMCID: PMC11275976 DOI: 10.1101/2024.07.12.603155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Cytotrophoblast (CTB) of the early gestation human placenta are bipotent progenitor epithelial cells, which can differentiate into invasive extravillous trophoblast (EVT) and multinucleated syncytiotrophoblast (STB). Trophoblast stem cells (TSC), derived from early first trimester placentae, have also been shown to be bipotential. In this study, we set out to probe the transcriptional diversity of first trimester CTB and compare TSC to various subgroups of CTB. We performed single-cell RNA sequencing on six normal placentae, four from early (6-8 weeks) and two from late (12-14 weeks) first trimester, of which two of the early first trimester cases were separated into basal (maternal) and chorionic (fetal) fractions prior to sequencing. We also sequenced three TSC lines, derived from 6-8 week placentae, to evaluate similarities and differences between primary CTB and TSC. CTB clusters displayed notable distinctions based on gestational age, with early first trimester placentae showing enrichment for specific CTB subtypes, further influenced by origin from the basal or chorionic plate. Differential expression analysis of CTB from basal versus chorionic plate highlighted pathways associated with proliferation, unfolded protein response, and oxidative phosphorylation. We identified trophoblast states representing initial progenitor CTB, precursor STB, precursor and mature EVT, and multiple CTB subtypes. CTB progenitors were enriched in early first trimester placentae, with basal plate cells biased toward EVT, and chorionic plate cells toward STB, precursors. Clustering and trajectory inference analysis indicated that TSC were most like EVT precursor cells, with only a small percentage of TSC on the pre-STB differentiation trajectory. This was confirmed by flow cytometric analysis of 6 different TSC lines, which showed uniform expression of proximal column markers ITGA2 and ITGA5. Additionally, we found that ITGA5+ CTB could be plated in 2D, forming only EVT upon spontaneous differentiation, but failed to form self-renewing organoids; conversely, ITGA5-CTB could not be plated in 2D, but readily formed organoids. Our findings suggest that distinct CTB states exist in different regions of the placenta as early as six weeks gestation and that current TSC lines most closely resemble ITGA5+ CTB, biased toward the EVT lineage.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Francesca Soncin
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Sampada Kallol
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nirvay Sah
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zoe Manalo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tony Bui
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jaroslav Slamecka
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Don Pizzo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniela F Requena
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ching-Wen Chang
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Omar Farah
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
| | - Ryan Kittle
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Morgan Meads
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariko Horii
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kathleen Fisch
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mana M Parast
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Sanford Consortium for Regenerative Medicine, La Jolla, CA, 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
4
|
Horvat Mercnik M, Schliefsteiner C, Sanchez-Duffhues G, Wadsack C. TGFβ signalling: a nexus between inflammation, placental health and preeclampsia throughout pregnancy. Hum Reprod Update 2024; 30:442-471. [PMID: 38519450 PMCID: PMC11215164 DOI: 10.1093/humupd/dmae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
BACKGROUND The placenta is a unique and pivotal organ in reproduction, controlling crucial growth and cell differentiation processes that ensure a successful pregnancy. Placental development is a tightly regulated and dynamic process, in which the transforming growth factor beta (TGFβ) superfamily plays a central role. This family of pleiotropic growth factors is heavily involved in regulating various aspects of reproductive biology, particularly in trophoblast differentiation during the first trimester of pregnancy. TGFβ signalling precisely regulates trophoblast invasion and the cell transition from cytotrophoblasts to extravillous trophoblasts, which is an epithelial-to-mesenchymal transition-like process. Later in pregnancy, TGFβ signalling ensures proper vascularization and angiogenesis in placental endothelial cells. Beyond its role in trophoblasts and endothelial cells, TGFβ signalling contributes to the polarization and function of placental and decidual macrophages by promoting maternal tolerance of the semi-allogeneic foetus. Disturbances in early placental development have been associated with several pregnancy complications, including preeclampsia (PE) which is one of the severe complications. Emerging evidence suggests that TGFβ is involved in the pathogenesis of PE, thereby offering a potential target for intervention in the human placenta. OBJECTIVE AND RATIONALE This comprehensive review aims to explore and elucidate the roles of the major members of the TGFβ superfamily, including TGFβs, bone morphogenetic proteins (BMPs), activins, inhibins, nodals, and growth differentiation factors (GDFs), in the context of placental development and function. The review focusses on their interactions within the major cell types of the placenta, namely trophoblasts, endothelial cells, and immune cells, in both normal pregnancies and pregnancies complicated by PE throughout pregnancy. SEARCH METHODS A literature search was carried out using PubMed and Google Scholar, searching terms: 'TGF signalling preeclampsia', 'pregnancy TGF signalling', 'preeclampsia tgfβ', 'preeclampsia bmp', 'preeclampsia gdf', 'preeclampsia activin', 'endoglin preeclampsia', 'endoglin pregnancy', 'tgfβ signalling pregnancy', 'bmp signalling pregnancy', 'gdf signalling pregnancy', 'activin signalling pregnancy', 'Hofbauer cell tgfβ signalling', 'placental macrophages tgfβ', 'endothelial cells tgfβ', 'endothelium tgfβ signalling', 'trophoblast invasion tgfβ signalling', 'trophoblast invasion Smad', 'trophoblast invasion bmp', 'trophoblast invasion tgfβ', 'tgfβ preeclampsia', 'tgfβ placental development', 'TGFβ placental function', 'endothelial dysfunction preeclampsia tgfβ signalling', 'vascular remodelling placenta TGFβ', 'inflammation pregnancy tgfβ', 'immune response pregnancy tgfβ', 'immune tolerance pregnancy tgfβ', 'TGFβ pregnancy NK cells', 'bmp pregnancy NK cells', 'bmp pregnancy tregs', 'tgfβ pregnancy tregs', 'TGFβ placenta NK cells', 'TGFβ placenta tregs', 'NK cells preeclampsia', 'Tregs preeclampsia'. Only articles published in English until 2023 were used. OUTCOMES A comprehensive understanding of TGFβ signalling and its role in regulating interconnected cell functions of the main placental cell types provides valuable insights into the processes essential for successful placental development and growth of the foetus during pregnancy. By orchestrating trophoblast invasion, vascularization, immune tolerance, and tissue remodelling, TGFβ ligands contribute to the proper functioning of a healthy maternal-foetal interface. However, dysregulation of TGFβ signalling has been implicated in the pathogenesis of PE, where the shallow trophoblast invasion, defective vascular remodelling, decreased uteroplacental perfusion, and endothelial cell and immune dysfunction observed in PE, are all affected by an altered TGFβ signalling. WIDER IMPLICATIONS The dysregulation of TGFβ signalling in PE has important implications for research and clinical practice. Further investigation is required to understand the underlying mechanisms, including the role of different ligands and their regulation under pathophysiological conditions, in order to discover new therapeutic targets. Distinguishing between clinically manifested subtypes of PE and studying TGFβ signalling in different placental cell types holistically is an important first step. To put this knowledge into practice, pre-clinical animal models combined with new technologies are needed. This may also lead to improved human research models and identify potential therapeutic targets, ultimately improving outcomes for affected pregnancies and reducing the burden of PE.
Collapse
Affiliation(s)
| | | | - Gonzalo Sanchez-Duffhues
- Nanomaterials and Nanotechnology Research Center (CINN-CSIC), Tissue-Specific BMP Signalling ISPA-HUCA, Oviedo, Spain
| | - Christian Wadsack
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
5
|
Huang Y, Dai F, Chen L, Li Z, Liu H, Cheng Y. BMP4 in Human Endometrial Stromal Cells Can Affect Decidualization by Regulating FOXO1 Expression. Endocrinology 2024; 165:bqae049. [PMID: 38679470 DOI: 10.1210/endocr/bqae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
CONTEXT Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Liping Chen
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zhidian Li
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| |
Collapse
|
6
|
Azagury M, Buganim Y. Unlocking trophectoderm mysteries: In vivo and in vitro perspectives on human and mouse trophoblast fate induction. Dev Cell 2024; 59:941-960. [PMID: 38653193 DOI: 10.1016/j.devcel.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 03/18/2024] [Indexed: 04/25/2024]
Abstract
In recent years, the pursuit of inducing the trophoblast stem cell (TSC) state has gained prominence as a compelling research objective, illuminating the establishment of the trophoblast lineage and unlocking insights into early embryogenesis. In this review, we examine how advancements in diverse technologies, including in vivo time course transcriptomics, cellular reprogramming to TSC state, chemical induction of totipotent stem-cell-like state, and stem-cell-based embryo-like structures, have enriched our insights into the intricate molecular mechanisms and signaling pathways that define the mouse and human trophectoderm/TSC states. We delve into disparities between mouse and human trophectoderm/TSC fate establishment, with a special emphasis on the intriguing role of pluripotency in this context. Additionally, we re-evaluate recent findings concerning the potential of totipotent-stem-like cells and embryo-like structures to fully manifest the trophectoderm/trophoblast lineage's capabilities. Lastly, we briefly discuss the potential applications of induced TSCs in pregnancy-related disease modeling.
Collapse
Affiliation(s)
- Meir Azagury
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
7
|
Shibata S, Endo S, Nagai LAE, H. Kobayashi E, Oike A, Kobayashi N, Kitamura A, Hori T, Nashimoto Y, Nakato R, Hamada H, Kaji H, Kikutake C, Suyama M, Saito M, Yaegashi N, Okae H, Arima T. Modeling embryo-endometrial interface recapitulating human embryo implantation. SCIENCE ADVANCES 2024; 10:eadi4819. [PMID: 38394208 PMCID: PMC10889356 DOI: 10.1126/sciadv.adi4819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
The initiation of human pregnancy is marked by the implantation of an embryo into the uterine environment; however, the underlying mechanisms remain largely elusive. To address this knowledge gap, we developed hormone-responsive endometrial organoids (EMO), termed apical-out (AO)-EMO, which emulate the in vivo architecture of endometrial tissue. The AO-EMO comprise an exposed apical epithelium surface, dense stromal cells, and a self-formed endothelial network. When cocultured with human embryonic stem cell-derived blastoids, the three-dimensional feto-maternal assembloid system recapitulates critical implantation stages, including apposition, adhesion, and invasion. Endometrial epithelial cells were subsequently disrupted by syncytial cells, which invade and fuse with endometrial stromal cells. We validated this fusion of syncytiotrophoblasts and stromal cells using human blastocysts. Our model provides a foundation for investigating embryo implantation and feto-maternal interactions, offering valuable insights for advancing reproductive medicine.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Research and Development Division, Rohto Pharmaceutical Co. Ltd., Osaka 544-8666, Japan
| | - Shun Endo
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Luis A. E. Nagai
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Eri H. Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Akira Oike
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Norio Kobayashi
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Akane Kitamura
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Takeshi Hori
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Yuji Nashimoto
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Ryuichiro Nakato
- Laboratory of Computational Genomics, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hirotaka Hamada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hirokazu Kaji
- Department of Diagnostic and Therapeutic Systems Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Chie Kikutake
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Masatoshi Saito
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiroaki Okae
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
- Department of Trophoblast Research, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0973, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| |
Collapse
|
8
|
Tietze E, Barbosa AR, Araujo B, Euclydes V, Spiegelberg B, Cho HJ, Lee YK, Wang Y, McCord A, Lorenzetti A, Feltrin A, van de Leemput J, Di Carlo P, Ursini G, Benjamin KJ, Brentani H, Kleinman JE, Hyde TM, Weinberger DR, McKay R, Shin JH, Sawada T, Paquola ACM, Erwin JA. Human archetypal pluripotent stem cells differentiate into trophoblast stem cells via endogenous BMP5/7 induction without transitioning through naive state. Sci Rep 2024; 14:3291. [PMID: 38332235 PMCID: PMC10853519 DOI: 10.1038/s41598-024-53381-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFβ), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.
Collapse
Affiliation(s)
- Ethan Tietze
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Andre Rocha Barbosa
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
| | - Bruno Araujo
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Veronica Euclydes
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Bailey Spiegelberg
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | - Yanhong Wang
- Lieber Institute for Brain Development, Baltimore, MD, USA
| | | | | | - Arthur Feltrin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Mathematics, Computation and Cognition, Federal University of ABC, Santo André, SP, Brazil
| | - Joyce van de Leemput
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Center for Precision Disease Modeling and Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Pasquale Di Carlo
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Basic Medical Science, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Gianluca Ursini
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kynon J Benjamin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Helena Brentani
- Inter-Institutional Graduate Program on Bioinformatics, University of São Paulo, São Paulo, SP, Brazil
- Department of Psychiatry, University of Sao Paulo, Medical School, São Paulo, Brazil
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ronald McKay
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Tomoyo Sawada
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Apua C M Paquola
- Lieber Institute for Brain Development, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer A Erwin
- Lieber Institute for Brain Development, Baltimore, MD, USA.
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Du G, Liu M, Qi Y, Lin M, Wu J, Xie W, Ren D, Du S, Jia T, Zhang F, Song W, Liu H. BMP4 up-regulated by 630 nm LED irradiation is associated with the amelioration of rheumatoid arthritis. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112828. [PMID: 38101122 DOI: 10.1016/j.jphotobiol.2023.112828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Rheumatoid arthritis (RA) is caused by inflammatory response of joints with cartilage and damage of synovium and bone erosion. In our previous studies, it has showed that irradiation of 630 nm LED reduce inflammation of synovial fibroblasts and cartilage and bone destruction in RA. However, the key genes and mechanism in ameliorating RA by irradiation of 630 nm LED remains unknown. In this study, human fibroblast-like synoviocytes (FLS) cell line MH7A and primary human RA-FLSs were treated with TNF-α and 630 nm LED irradiation with the different energy density. The mRNA sequencing was performed to screen the differentially expressed genes (DEGs). In all datasets, 10 DEGs were identified through screening. The protein interaction network analysis showed that 8 out of the 10 DEGs interacted with each other including IL-6, CXCL2, CXCL3, MAF, PGF, IL-1RL1, RRAD and BMP4. This study focused on BMP4, which is identified as important morphogens in regulating the development and homeostasis. CCK-8 assay results showed that 630 nm LED irradiation did not affect the cell viability. The qPCR and ELISA results showed that TNF-α stimulation inhibited BMP4 mRNA and protein level and irradiation of 630 nm LED increased the BMP4 mRNA and protein level in MH7A cells. In CIA and transgenic hTNF-α mice models, H&E staining showed that irradiation of 630 nm LED decreased the histological scores assessed from inflammation and bone erosion, while BMP4 expression level was up-regulated after 630 nm LED irradiation. Pearson correlation analysis shown that BMP4 protein expression was negatively correlated with the histological score of CIA mice and transgenic hTNF-α mice. These results indicated that BMP4 increased by irradiation of 630 nm LED was associated with the amelioration of RA, which suggested that BMP4 may be a potential targeting gene for photobiomodulation.
Collapse
Affiliation(s)
- Guoming Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Mengyue Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Yue Qi
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Monan Lin
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Jiaxin Wu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wenting Xie
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Dandan Ren
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Siqi Du
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Tong Jia
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Fengmin Zhang
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Wuqi Song
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| | - Hailiang Liu
- Wu Lien-Teh Institute, Heilongjiang Key Laboratory of Immunity and Infection, Department of Microbiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
10
|
Gu R, Dai F, Xiang C, Chen J, Yang D, Tan W, Wang Z, Liu H, Cheng Y. BMP4 participates in the pathogenesis of PCOS by regulating glucose metabolism and autophagy in granulosa cells under hyperandrogenic environment. J Steroid Biochem Mol Biol 2023; 235:106410. [PMID: 37858799 DOI: 10.1016/j.jsbmb.2023.106410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a complex reproductive endocrine disease characterized by ovulation dysfunction with multiple etiologies and manifestations, and it is widely believed that the disorders of hyper-androgen and glucose metabolism play a key role in its progression. There has been evidence that bone morphogenetic protein 4 (BMP4) is essential for the regulation of granulosa cells, but whether it regulates metabolism level of granulosa cells under hyperandrogenic environment remains unclear. In this study, Gene Expression Omnibus, clinical data and serum of PCOS patient were collected to detect androgen and BMP4 levels. KGN cells exposed to androgens as a model for simulating PCOS granulosa cells. Lactate/pyruvate kits, and Extracellular Acidification Rate and Oxygen Consumption Rate assay were performed to detect glycolysis and autophagy levels of granulosa cells. Lentivirus infection was used to investigate the effects of BMP4 on granulosa cells. RNA-seq were performed to explore the special mechanism. We found that BMP4 was increased in PCOS patients with hyper-androgen and granulosa cells with dihydrotestosterone treatment. Mechanically, on the one hand, hyperandrogenemia can up-regulate BMP4 secretion and induce glycolysis and autophagy levels. On the other hand, we found that hyperandrogenic-induced YAP1 upregulation may mediate BMP4 to increase glycolysis level and decrease autophagy, which plays a protective role in granulosa cells to ensure subsequent energy utilization and mitochondrial function. Overall, we innovated on the protective effect of BMP4 on glycolysis and autophagy disorders induced by excessive androgen in granulosa cells. Our study will provide guidance for future understanding of PCOS from a metabolic perspective and for exploring treatment options.
Collapse
Affiliation(s)
- Ran Gu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Fangfang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Chunrong Xiang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Jing Chen
- Caidian District People's Hospital of Wuhan, Wuhan, Hubei 430100, People's Republic of China
| | - Dongyong Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Wei Tan
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Zitao Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| | - Yanxiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, People's Republic of China.
| |
Collapse
|
11
|
Liu X, Wang G, Huang H, Lv X, Si Y, Bai L, Wang G, Li Q, Yang W. Exploring maternal-fetal interface with in vitro placental and trophoblastic models. Front Cell Dev Biol 2023; 11:1279227. [PMID: 38033854 PMCID: PMC10682727 DOI: 10.3389/fcell.2023.1279227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The placenta, being a temporary organ, plays a crucial role in facilitating the exchange of nutrients and gases between the mother and the fetus during pregnancy. Any abnormalities in the development of this vital organ not only lead to various pregnancy-related disorders that can result in fetal injury or death, but also have long-term effects on maternal health. In vitro models have been employed to study the physiological features and molecular regulatory mechanisms of placental development, aiming to gain a detailed understanding of the pathogenesis of pregnancy-related diseases. Among these models, trophoblast stem cell culture and organoids show great promise. In this review, we provide a comprehensive overview of the current mature trophoblast stem cell models and emerging organoid models, while also discussing other models in a systematic manner. We believe that this knowledge will be valuable in guiding further exploration of the complex maternal-fetal interface.
Collapse
Affiliation(s)
- Xinlu Liu
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Gang Wang
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Haiqin Huang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Xin Lv
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Yanru Si
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Lixia Bai
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Guohui Wang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Weiwei Yang
- School of Biosciences and Biotechnology, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
12
|
Ong ALC, Kokaji T, Kishi A, Takihara Y, Shinozuka T, Shimamoto R, Isotani A, Shirai M, Sasai N. Acquisition of neural fate by combination of BMP blockade and chromatin modification. iScience 2023; 26:107887. [PMID: 37771660 PMCID: PMC10522999 DOI: 10.1016/j.isci.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.
Collapse
Affiliation(s)
- Agnes Lee Chen Ong
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toshiya Kokaji
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Arisa Kishi
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yoshihiro Takihara
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ren Shimamoto
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
13
|
Cheung VC, Bui T, Soncin F, Bai T, Kessler JA, Parast MM, Horii M. Current Strategies of Modeling Human Trophoblast Using Human Pluripotent Stem Cells in vitro. Curr Protoc 2023; 3:e875. [PMID: 37787612 PMCID: PMC10558083 DOI: 10.1002/cpz1.875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
We previously established a trophoblast differentiation protocol from primed human pluripotent stem cells (PSC). To induce this lineage, we use a combination of Bone Morphogenetic Protein-4 (BMP4) and the WNT inhibitor IWP2. This protocol has enabled us to obtain a pure population of trophectoderm (TE)-like cells that could subsequently be terminally differentiated into syncytiotrophoblasts (STB) and extravillous trophoblasts (EVT). However, the resulting TE-like cells could only be terminally differentiated to a variable mixture of STB and EVT, with a bias toward the STB lineage. Recently, methods have been developed for derivation and culture of self-renewing human trophoblast stem cells (TSC) from human embryos and early gestation placental tissues. These primary TSCs were further able to differentiate into either STB or EVT with high efficiency using the lineage specific differentiation protocols. Based partly on these protocols, we have developed methods for establishing self-renewing TSC-like cells from PSC, and for efficient lineage-specific terminal differentiation. Here, we describe in detail the protocols to derive and maintain PSC-TSC, from both embryonic stem cells (ESC) and patient-derived induced pluripotent stem cells (iPSC), and their subsequent terminal differentiation to STB and EVT. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Trophoblast Differentiation into TE-like Cells Basic Protocol 2: Conversion of PSC-Derived TE-like Cells to TSC Basic Protocol 3: Passaging PSC-Derived TSC in iCTB Complete Medium Basic Protocol 4: STB Differentiation from PSC-derived TSC Basic Protocol 5: EVT Differentiation from PSC-derived TSC Support Protocol 1: Geltrex-coated tissue culture plate preparation Support Protocol 2: Collagen IV-coated tissue culture plate preparation Support Protocol 3: Fibronectin-coated tissue culture plate preparation.
Collapse
Affiliation(s)
- Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Francesca Soncin
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tao Bai
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - John A. Kessler
- Department of Neurology, Northwestern University, Chicago, IL 60611, USA
| | - Mana M Parast
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
14
|
Morey R, Bui T, Fisch KM, Horii M. Modeling placental development and disease using human pluripotent stem cells. Placenta 2023; 141:18-25. [PMID: 36333266 PMCID: PMC10148925 DOI: 10.1016/j.placenta.2022.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 11/08/2022]
Abstract
Our current knowledge of the cellular and molecular mechanisms of placental epithelial cells, trophoblast, primarily came from the use of mouse trophoblast stem cells and tumor-derived or immortalized human trophoblast cell lines. This was mainly due to the difficulties in maintaining primary trophoblast in culture and establishing human trophoblast stem cell (hTSC) lines. However, in-depth characterization of these cellular models and in vivo human trophoblast have revealed significant discrepancies. For the past two decades, multiple groups have shown that human pluripotent stem cells (hPSCs) can be differentiated into trophoblast, and thus could be used as a model for normal and disease trophoblast differentiation. During this time, trophoblast differentiation protocols have evolved, enabling researchers to study cellular characteristics at trophectoderm (TE), trophoblast stem cells (TSC), syncytiotrophoblast (STB), and extravillous trophoblast (EVT) stages. Recently, several groups reported methods to derive hTSC from pre-implantation blastocyst or early gestation placenta, and trophoblast organoids from early gestation placenta, drastically changing the landscape of trophoblast research. These culture conditions have been rapidly applied to generate hPSC-derived TSC and trophoblast organoids. As a result of these technological advancements, the field's capacity to better understand trophoblast differentiation and their involvement in pregnancy related disease has greatly expanded. Here, we present in vitro models of human trophoblast differentiation, describing both primary and hPSC-derived TSC, maintained as monolayers and 3-dimensional trophoblast organoids, as a tool to study early placental development and disease in multiple settings.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA; Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
15
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
16
|
Naama M, Buganim Y. Human trophoblast stem cell-state acquisition from pluripotent stem cells and somatic cells. Curr Opin Genet Dev 2023; 81:102084. [PMID: 37451165 DOI: 10.1016/j.gde.2023.102084] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023]
Abstract
For an extended period of time, research on human embryo implantation and early placentation was hindered by ethical limitation and lack of appropriate in vitro models. Recently, an explosion of new research has significantly expanded our knowledge of early human trophoblast development and facilitated the derivation and culture of self-renewing human trophoblast stem cells (hTSCs). Multiple approaches have been undertaken in efforts to derive and understand hTSCs, including from blastocysts, early trophoblast tissue, and, more recently, from human pluripotent stem cells (hPSCs) and somatic cells. In this concise review, we summarize recent advances in derivation of hTSCs, with a focus on derivation from naive and primed hPSCs, as well as via reprogramming of somatic cells into induced hTSCs. Each of these methods harbors distinct advantages and setbacks, which are discussed. Finally, we briefly explore the possibility of the existence of trophectoderm-like hTSCs corresponding to earlier, preimplantation trophoblast cells.
Collapse
Affiliation(s)
- Moriyah Naama
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
17
|
Guo Y, Wang N, Dong Y, Li X, Liu Q, Liu Q, Wang G, Qin M, Zhang Z, Song J, Liu Y, Chi H, Zhong J. Plasma levels of bone morphogenic protein-4 are downregulated in elderly hypertensive patients with heart failure with preserved ejection fraction. Clin Biochem 2023; 116:31-37. [PMID: 36935066 DOI: 10.1016/j.clinbiochem.2023.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
OBJECTIVE This study aimed to evaluate the association between plasma bone morphogenic protein-4 (BMP-4) levels and heart failure (HF) with preserved ejection fraction (HFpEF) or mildly reduced ejection fraction (HFmrEF) in elderly hypertensive patients. METHODS A total of 222 hypertensive individuals meeting the inclusion criteria were enrolled from October 2021 to July 2022. Data were collected including clinical characteristics, laboratory tests and echocardiogram measurements. Plasma BMP-4 levels were tested using enzyme-linked immunosorbent assay analysis. RESULTS Among 222 elderly hypertensive patients, 149 were without HF, 59 had HFpEF, and 14 had HFmrEF. Plasma BMP-4 levels were strikingly downregulated in hypertensive patients with HFpEF/HFmrEF [median (25th, 75th percentile): 15.89 (7.69, 23.12) pg/mL vs. 19.67 (10.60, 33.04) pg/mL; P = 0.002]. After univariate and multivariate logistic regression analysis, the risk of HFpEF/HFmrEF was declined in the 4th quartile BMP-4 group when compared with the 1st quartile BMP-4 group (odds ratio, 0.20, 95% confidence interval (CI), 0.04 to 1.00; P = 0.050, P for trend = 0.025). Receiver operating characteristic curve analysis revealed that BMP-4 ≤ 28.5 pg/mL exhibited a sensitivity of 95.9% and a specificity of 28.2% in HFpEF/HFmrEF diagnosis. Furthermore, the area under the curve (AUC) was 0.619 (95% CI:0.540-0.698, P < 0.001). The corresponding AUC for brain natriuretic peptide (BNP) was 0.781 (95% CI: 0.710-0.852), P < 0.001. Adding BMP-4 to BNP increased the AUC to 0.790 (95% CI: 0.724-0.856), vs. BMP-4, P < 0.001; vs. BNP, P = 0.730, respectively. CONCLUSIONS Plasma BMP-4 levels are downregulated in elderly hypertensive patients with HFpEF. BMP-4 is a promising biomarker for diagnosing HFpEF/HFmrEF during hypertension.
Collapse
Affiliation(s)
- Ying Guo
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ning Wang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Ying Dong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xueting Li
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Qian Liu
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qi Liu
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Guohong Wang
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Mingzhao Qin
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhenzhou Zhang
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiawei Song
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Ying Liu
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Hongjie Chi
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jiuchang Zhong
- Heart Center and Beijing Key Laboratory of Hypertension, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Medical Research Center, Beijing Institute of Respiratory Medicine and Beijing Chaoyang Hospital, Capital Medical University, Beijing, China; Department of Cardiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|