1
|
Lin P, Xu J, Yang F, Li D, Zhang R, Jiang Y, Zheng T. Elevated concentrations of amyloid-β oligomers and their proapoptotic effects on age-related cataract. FASEB J 2024; 38:e23861. [PMID: 39247969 DOI: 10.1096/fj.202301281rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 06/27/2024] [Accepted: 07/23/2024] [Indexed: 09/10/2024]
Abstract
Recently, amyloid-β oligomers (AβOs) have been studied as the primary pathogenic substances in Alzheimer's disease (AD). Our previous study revealed that the Aβ expression level is closely related to ARC progression. Here, we demonstrated that the accumulation of AβOs in the lens epithelium of age-related cataract (ARC) patients increased during ARC progression and that this alteration was consistent with the changes in mitochondrial function, oxidative stress, and cellular apoptosis. In vitro, human lens epithelial cells (HLECs) treated with AβOs exhibited Ca2+ dyshomeostasis, impaired mitochondrial function, elevated oxidative stress levels, and increased apoptosis. Moreover, the proapoptotic effect of AβOs was alleviated after the uptake of mitochondrial Ca2+ was inhibited. These results establish that AβOs may promote HLEC apoptosis by inducing mitochondrial Ca2+ overload, thus preliminarily revealing the possible association between the accumulation of AβOs and other pathological processes in ARC.
Collapse
Affiliation(s)
- Peimin Lin
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Jie Xu
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Fan Yang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Dan Li
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Rong Zhang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Tianyu Zheng
- Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Eye Institute, Eye & ENT Hospital, Fudan University, Shanghai, China
- NHC Key laboratory of Myopia and Related Eye Diseases, Shanghai, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
2
|
Ali J, Choe K, Park JS, Park HY, Kang H, Park TJ, Kim MO. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer's Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants (Basel) 2024; 13:862. [PMID: 39061930 PMCID: PMC11274292 DOI: 10.3390/antiox13070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aβ cascade and oxidative stress in AD pathogenesis is like a "chicken and egg" story, with the etiology of the disease regarding these two factors remaining a question of "which comes first." However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aβ therapy to decrease ROS, Aβ burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aβ concerning current anti-Aβ therapy. Additionally, we discuss future strategies for the development of more Aβ-targeted approaches and the optimization of AD treatment and mitigation.
Collapse
Affiliation(s)
- Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital & College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
3
|
Bigi A, Fani G, Bessi V, Napolitano L, Bagnoli S, Ingannato A, Neri L, Cascella R, Matteini P, Sorbi S, Nacmias B, Cecchi C, Chiti F. Putative novel CSF biomarkers of Alzheimer's disease based on the novel concept of generic protein misfolding and proteotoxicity: the PRAMA cohort. Transl Neurodegener 2024; 13:14. [PMID: 38459525 PMCID: PMC10924410 DOI: 10.1186/s40035-024-00405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024] Open
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Liliana Napolitano
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Assunta Ingannato
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
| | - Lorenzo Neri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paolo Matteini
- Institute of Applied Physics "Nello Carrara", National Research Council, 50019, Sesto Fiorentino, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Azienda Ospedaliero-Universitaria Careggi. Largo Brambilla, 3, 50134, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Section of Biochemistry, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
4
|
Wang C, Guo J, Liu Q, Zeng X, Liu Y, Deng Y, Lin Y, Wu X, Deng H, Chen L, Weng W, Zhang Y. The characterization and analysis of the compound hemostatic cotton based on Ca 2+/poly (vinyl alcohol)/soluble starch-fish skin collagen. Int J Biol Macromol 2024; 262:130084. [PMID: 38350584 DOI: 10.1016/j.ijbiomac.2024.130084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
Accidental bleeding is an unavoidable problem in daily life. To avoid the risk of excessive blood loss, it is urgent to design a functional material that can quickly stop bleeding. In this study, an efficient wound dressing for hemostasis was investigated. Based on the characteristics that Ca2+ and fish skin collagen (FSC) could activate the coagulation mechanism, hemostatic cotton was prepared by solvent replacement method using CaCl2, FSC, soluble starch (SS), and polyvinyl alcohol (PVA) as raw materials. The cytotoxicity test showed the Ca2+PVA/FSC-SS hemostatic cottons had good biocompatibility. The activated partial thromboplastin time (APTT) of Ca2+PVA/FSC-SS(4) was 35.34 s, which was 22.07 s faster than that of PVA/FSC-SS, indicating Ca2+PVA/FSC-SS mediated the endogenous coagulation system. In vitro coagulation test, Ca2+PVA/FSC-SS(4) could stop bleeding rapidly within 39.60 ± 5.16 s, and the ability of wound healing was higher than commercial product (Celox). This study developed a rapid procoagulant and hemostatic material, which had a promising application in a variety of environments.
Collapse
Affiliation(s)
- Chunchun Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Jiayi Guo
- School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Qun Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China.
| | - Xu Zeng
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yue Liu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Yanping Deng
- Department of Pathology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361000, Fujian, China
| | - Yanli Lin
- Department of Pathology, The Second Affiliated Hospital of Xiamen Medical College, Xiamen 361000, Fujian, China
| | - Xialing Wu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Hongju Deng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Linjing Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Wuyin Weng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China
| | - Yucang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, Fujian, China.
| |
Collapse
|
5
|
Rinauro DJ, Chiti F, Vendruscolo M, Limbocker R. Misfolded protein oligomers: mechanisms of formation, cytotoxic effects, and pharmacological approaches against protein misfolding diseases. Mol Neurodegener 2024; 19:20. [PMID: 38378578 PMCID: PMC10877934 DOI: 10.1186/s13024-023-00651-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 08/17/2023] [Indexed: 02/22/2024] Open
Abstract
The conversion of native peptides and proteins into amyloid aggregates is a hallmark of over 50 human disorders, including Alzheimer's and Parkinson's diseases. Increasing evidence implicates misfolded protein oligomers produced during the amyloid formation process as the primary cytotoxic agents in many of these devastating conditions. In this review, we analyze the processes by which oligomers are formed, their structures, physicochemical properties, population dynamics, and the mechanisms of their cytotoxicity. We then focus on drug discovery strategies that target the formation of oligomers and their ability to disrupt cell physiology and trigger degenerative processes.
Collapse
Affiliation(s)
- Dillon J Rinauro
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, 50134, Florence, Italy
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA.
| |
Collapse
|
6
|
Bigi A, Napolitano L, Vadukul DM, Chiti F, Cecchi C, Aprile FA, Cascella R. A single-domain antibody detects and neutralises toxic Aβ 42 oligomers in the Alzheimer's disease CSF. Alzheimers Res Ther 2024; 16:13. [PMID: 38238842 PMCID: PMC10795411 DOI: 10.1186/s13195-023-01361-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/29/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Amyloid-β42 (Aβ42) aggregation consists of a complex chain of nucleation events producing soluble oligomeric intermediates, which are considered the major neurotoxic agents in Alzheimer's disease (AD). Cerebral lesions in the brain of AD patients start to develop 20 years before symptom onset; however, no preventive strategies, effective treatments, or specific and sensitive diagnostic tests to identify people with early-stage AD are currently available. In addition, the isolation and characterisation of neurotoxic Aβ42 oligomers are particularly difficult because of their transient and heterogeneous nature. To overcome this challenge, a rationally designed method generated a single-domain antibody (sdAb), named DesAb-O, targeting Aβ42 oligomers. METHODS We investigated the ability of DesAb-O to selectively detect preformed Aβ42 oligomers both in vitro and in cultured neuronal cells, by using dot-blot, ELISA immunoassay and super-resolution STED microscopy, and to counteract the toxicity induced by the oligomers, monitoring their interaction with neuronal membrane and the resulting mitochondrial impairment. We then applied this approach to CSF samples (CSFs) from AD patients as compared to age-matched control subjects. RESULTS DesAb-O was found to selectively detect synthetic Aβ42 oligomers both in vitro and in cultured cells, and to neutralise their associated neuronal dysfunction. DesAb-O can also identify Aβ42 oligomers present in the CSFs of AD patients with respect to healthy individuals, and completely prevent cell dysfunction induced by the administration of CSFs to neuronal cells. CONCLUSIONS Taken together, our data indicate a promising method for the improvement of an early diagnosis of AD and for the generation of novel therapeutic approaches based on sdAbs for the treatment of AD and other devastating neurodegenerative conditions.
Collapse
Affiliation(s)
- Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Liliana Napolitano
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Devkee M Vadukul
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy
| | - Francesco A Aprile
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, UK
- Institute of Chemical Biology, Molecular Sciences Research Hub, Imperial College London, London, UK
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| |
Collapse
|
7
|
Anzovino A, Canepa E, Alves M, Lemon NL, Carare RO, Fossati S. Amyloid Beta Oligomers Activate Death Receptors and Mitochondria-Mediated Apoptotic Pathways in Cerebral Vascular Smooth Muscle Cells; Protective Effects of Carbonic Anhydrase Inhibitors. Cells 2023; 12:2840. [PMID: 38132159 PMCID: PMC10741628 DOI: 10.3390/cells12242840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Amyloid beta (Aβ) deposition within the brain vasculature is an early hallmark of Alzheimer's disease (AD), which triggers loss of brain vascular smooth muscle cells (BVSMCs) in cerebral arteries, via poorly understood mechanisms, altering cerebral blood flow, brain waste clearance, and promoting cognitive impairment. We have previously shown that, in brain endothelial cells (ECs), vasculotropic Aβ species induce apoptosis through death receptors (DRs) DR4 and DR5 and mitochondria-mediated mechanisms, while FDA-approved carbonic anhydrase inhibitors (CAIs) prevent mitochondria-mediated EC apoptosis in vitro and in vivo. In this study, we analyzed Aβ-induced extrinsic and intrinsic (DR- and mitochondria-mediated) apoptotic pathways in BVSMC, aiming to unveil new therapeutic targets to prevent BVSMC stress and death. We show that both apoptotic pathways are activated in BVSMCs by oligomeric Aβ42 and Aβ40-Q22 (AβQ22) and mitochondrial respiration is severely impaired. Importantly, the CAIs methazolamide (MTZ) and acetazolamide (ATZ) prevent the pro-apoptotic effects in BVSMCs, while reducing caspase 3 activation and Aβ deposition in the arterial walls of TgSwDI animals, a murine model of cerebral amyloid angiopathy (CAA). This study reveals new molecular targets and a promising therapeutic strategy against BVSMC dysfunction in AD, CAA, and ARIA (amyloid-related imaging abnormalities) complications of recently FDA-approved anti-Aβ antibodies.
Collapse
Affiliation(s)
- Amy Anzovino
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Elisa Canepa
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Micaelly Alves
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Nicole L. Lemon
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK;
| | - Silvia Fossati
- Alzheimer’s Center at Temple, Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, 3500 N Broad St, Philadelphia, PA 19140, USA; (A.A.); (E.C.); (M.A.); (N.L.L.)
| |
Collapse
|
8
|
Lobos P, Vega-Vásquez I, Bruna B, Gleitze S, Toledo J, Härtel S, Hidalgo C, Paula-Lima A. Amyloid β-Oligomers Inhibit the Nuclear Ca 2+ Signals and the Neuroprotective Gene Expression Induced by Gabazine in Hippocampal Neurons. Antioxidants (Basel) 2023; 12:1972. [PMID: 38001825 PMCID: PMC10669355 DOI: 10.3390/antiox12111972] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Hippocampal neuronal activity generates dendritic and somatic Ca2+ signals, which, depending on stimulus intensity, rapidly propagate to the nucleus and induce the expression of transcription factors and genes with crucial roles in cognitive functions. Soluble amyloid-beta oligomers (AβOs), the main synaptotoxins engaged in the pathogenesis of Alzheimer's disease, generate aberrant Ca2+ signals in primary hippocampal neurons, increase their oxidative tone and disrupt structural plasticity. Here, we explored the effects of sub-lethal AβOs concentrations on activity-generated nuclear Ca2+ signals and on the Ca2+-dependent expression of neuroprotective genes. To induce neuronal activity, neuron-enriched primary hippocampal cultures were treated with the GABAA receptor blocker gabazine (GBZ), and nuclear Ca2+ signals were measured in AβOs-treated or control neurons transfected with a genetically encoded nuclear Ca2+ sensor. Incubation (6 h) with AβOs significantly reduced the nuclear Ca2+ signals and the enhanced phosphorylation of cyclic AMP response element-binding protein (CREB) induced by GBZ. Likewise, incubation (6 h) with AβOs significantly reduced the GBZ-induced increases in the mRNA levels of neuronal Per-Arnt-Sim domain protein 4 (Npas4), brain-derived neurotrophic factor (BDNF), ryanodine receptor type-2 (RyR2), and the antioxidant enzyme NADPH-quinone oxidoreductase (Nqo1). Based on these findings we propose that AβOs, by inhibiting the generation of activity-induced nuclear Ca2+ signals, disrupt key neuroprotective gene expression pathways required for hippocampal-dependent learning and memory processes.
Collapse
Affiliation(s)
- Pedro Lobos
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Ignacio Vega-Vásquez
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Barbara Bruna
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
| | - Silvia Gleitze
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
| | - Jorge Toledo
- Advanced Clinical Research Center, Clinical Hospital, Universidad de Chile, Santiago 8380456, Chile; (B.B.); (J.T.)
- Advanced Scientific Equipment Network (REDECA), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Steffen Härtel
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Laboratory for Scientific Image Analysis, Center for Medical Informatics and Telemedicine, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Anatomy and Biology of Development Program, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Cecilia Hidalgo
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Physiology and Biophysics Program, Institute of Biomedical Sciences and Center for Exercise, Metabolism and Cancer Studies, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
| | - Andrea Paula-Lima
- Biomedical Neuroscience Institute, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (P.L.); (I.V.-V.); (S.G.); (S.H.)
- Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago 8380000, Chile
- Interuniversity Center for Healthy Aging (CIES), Santiago 8380000, Chile
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8380544, Chile
| |
Collapse
|
9
|
Baechle JJ, Chen N, Makhijani P, Winer S, Furman D, Winer DA. Chronic inflammation and the hallmarks of aging. Mol Metab 2023; 74:101755. [PMID: 37329949 PMCID: PMC10359950 DOI: 10.1016/j.molmet.2023.101755] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
BACKGROUND Recently, the hallmarks of aging were updated to include dysbiosis, disabled macroautophagy, and chronic inflammation. In particular, the low-grade chronic inflammation during aging, without overt infection, is defined as "inflammaging," which is associated with increased morbidity and mortality in the aging population. Emerging evidence suggests a bidirectional and cyclical relationship between chronic inflammation and the development of age-related conditions, such as cardiovascular diseases, neurodegeneration, cancer, and frailty. How the crosstalk between chronic inflammation and other hallmarks of aging underlies biological mechanisms of aging and age-related disease is thus of particular interest to the current geroscience research. SCOPE OF REVIEW This review integrates the cellular and molecular mechanisms of age-associated chronic inflammation with the other eleven hallmarks of aging. Extra discussion is dedicated to the hallmark of "altered nutrient sensing," given the scope of Molecular Metabolism. The deregulation of hallmark processes during aging disrupts the delicate balance between pro-inflammatory and anti-inflammatory signaling, leading to a persistent inflammatory state. The resultant chronic inflammation, in turn, further aggravates the dysfunction of each hallmark, thereby driving the progression of aging and age-related diseases. MAIN CONCLUSIONS The crosstalk between chronic inflammation and other hallmarks of aging results in a vicious cycle that exacerbates the decline in cellular functions and promotes aging. Understanding this complex interplay will provide new insights into the mechanisms of aging and the development of potential anti-aging interventions. Given their interconnectedness and ability to accentuate the primary elements of aging, drivers of chronic inflammation may be an ideal target with high translational potential to address the pathological conditions associated with aging.
Collapse
Affiliation(s)
- Jordan J Baechle
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA
| | - Nan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada
| | - Priya Makhijani
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shawn Winer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - David Furman
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Stanford 1000 Immunomes Project, Stanford University School of Medicine, Stanford, CA, USA; Instituto de Investigaciones en Medicina Traslacional (IIMT), Universidad Austral, CONICET, Pilar, Argentina.
| | - Daniel A Winer
- Buck Artificial Intelligence Platform, the Buck Institute for Research on Aging, Novato, CA, USA; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Department of Immunology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Division of Cellular & Molecular Biology, Diabetes Research Group, Toronto General Hospital Research Institute (TGHRI), University Health Network, Toronto, ON, Canada; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Errico S, Lucchesi G, Odino D, Osman EY, Cascella R, Neri L, Capitini C, Calamai M, Bemporad F, Cecchi C, Kinney WA, Barbut D, Relini A, Canale C, Caminati G, Limbocker R, Vendruscolo M, Zasloff M, Chiti F. Quantitative Attribution of the Protective Effects of Aminosterols against Protein Aggregates to Their Chemical Structures and Ability to Modulate Biological Membranes. J Med Chem 2023. [PMID: 37433124 PMCID: PMC10388293 DOI: 10.1021/acs.jmedchem.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-β oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Giacomo Lucchesi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Davide Odino
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Enass Youssef Osman
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, The Arab Republic of Egypt
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Lorenzo Neri
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Claudia Capitini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - William A Kinney
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Gabriella Caminati
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20007, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
11
|
Limbocker R, Cremades N, Cascella R, Tessier PM, Vendruscolo M, Chiti F. Characterization of Pairs of Toxic and Nontoxic Misfolded Protein Oligomers Elucidates the Structural Determinants of Oligomer Toxicity in Protein Misfolding Diseases. Acc Chem Res 2023. [PMID: 37071750 DOI: 10.1021/acs.accounts.3c00045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
ConspectusThe aberrant misfolding and aggregation of peptides and proteins into amyloid aggregates occurs in over 50 largely incurable protein misfolding diseases. These pathologies include Alzheimer's and Parkinson's diseases, which are global medical emergencies owing to their prevalence in increasingly aging populations worldwide. Although the presence of mature amyloid aggregates is a hallmark of such neurodegenerative diseases, misfolded protein oligomers are increasingly recognized as of central importance in the pathogenesis of many of these maladies. These oligomers are small, diffusible species that can form as intermediates in the amyloid fibril formation process or be released by mature fibrils after they are formed. They have been closely associated with the induction of neuronal dysfunction and cell death. It has proven rather challenging to study these oligomeric species because of their short lifetimes, low concentrations, extensive structural heterogeneity, and challenges associated with producing stable, homogeneous, and reproducible populations. Despite these difficulties, investigators have developed protocols to produce kinetically, chemically, or structurally stabilized homogeneous populations of protein misfolded oligomers from several amyloidogenic peptides and proteins at experimentally ameneable concentrations. Furthermore, procedures have been established to produce morphologically similar but structurally distinct oligomers from the same protein sequence that are either toxic or nontoxic to cells. These tools offer unique opportunities to identify and investigate the structural determinants of oligomer toxicity by a close comparative inspection of their structures and the mechanisms of action through which they cause cell dysfunction.This Account reviews multidisciplinary results, including from our own groups, obtained by combining chemistry, physics, biochemistry, cell biology, and animal models for pairs of toxic and nontoxic oligomers. We describe oligomers comprised of the amyloid-β peptide, which underlie Alzheimer's disease, and α-synuclein, which are associated with Parkinson's disease and other related neurodegenerative pathologies, collectively known as synucleinopathies. Furthermore, we also discuss oligomers formed by the 91-residue N-terminal domain of [NiFe]-hydrogenase maturation factor from E. coli, which we use as a model non-disease-related protein, and by an amyloid stretch of Sup35 prion protein from yeast. These oligomeric pairs have become highly useful experimental tools for studying the molecular determinants of toxicity characteristic of protein misfolding diseases. Key properties have been identified that differentiate toxic from nontoxic oligomers in their ability to induce cellular dysfunction. These characteristics include solvent-exposed hydrophobic regions, interactions with membranes, insertion into lipid bilayers, and disruption of plasma membrane integrity. By using these properties, it has been possible to rationalize in model systems the responses to pairs of toxic and nontoxic oligomers. Collectively, these studies provide guidance for the development of efficacious therapeutic strategies to target rationally the cytotoxicity of misfolded protein oligomers in neurodegenerative conditions.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Nunilo Cremades
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza, Zaragoza 50009, Spain
| | - Roberta Cascella
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| | - Peter M Tessier
- Departments of Chemical Engineering, Pharmaceutical Sciences, and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Fabrizio Chiti
- Section of Biochemistry, Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy
| |
Collapse
|
12
|
Lyubchenko YL. Protein Self-Assembly at the Liquid-Surface Interface. Surface-Mediated Aggregation Catalysis. J Phys Chem B 2023; 127:1880-1889. [PMID: 36812408 DOI: 10.1021/acs.jpcb.2c09029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Protein self-assembly into aggregates of various morphologies is a ubiquitous phenomenon in physical chemistry and biophysics. The critical role of amyloid assemblies in the development of diseases, neurodegenerative diseases especially, highlights the importance of understanding the mechanistic picture of the self-assembly process. The translation of this knowledge to the development of efficient preventions and treatments for diseases requires designing experiments at conditions mimicking those in vivo. This Perspective reviews data satisfying two major requirements: membrane environment and physiologically low concentrations of proteins. Recent progress in experiments and computational modeling resulted in a novel model for the amyloid aggregation process at the membrane-liquid interface. The self-assembly under such conditions has a number of critical features, further understanding of which can lead to the development of efficient preventive means and treatments for Alzheimer's and other devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| |
Collapse
|
13
|
Recent Developments on the Roles of Calcium Signals and Potential Therapy Targets in Cervical Cancer. Cells 2022; 11:cells11193003. [PMID: 36230965 PMCID: PMC9563098 DOI: 10.3390/cells11193003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 12/24/2022] Open
Abstract
Intracellular calcium (Ca2+) concentration ([Ca2+]i) is implicated in proliferation, invasion, and metastasis in cancerous tissues. A variety of oncologic therapies and some candidate drugs induce their antitumor effects (in part or in whole) through the modulation of [Ca2+]i. Cervical cancer is one of most common cancers among women worldwide. Recently, major research advances relating to the Ca2+ signals in cervical cancer are emerging. In this review, we comprehensively describe the current progress concerning the roles of Ca2+ signals in the occurrence, development, and prognosis of cervical cancer. It will enhance our understanding of the causative mechanism of Ca2+ signals in cervical cancer and thus provide new sights for identifying potential therapeutic targets for drug discovery.
Collapse
|