1
|
Wang J, Zhan H, Wang Y, Zhao L, Huang Y, Wu R. Current advances in understanding endometrial epithelial cell biology and therapeutic applications for intrauterine adhesion. Stem Cell Res Ther 2024; 15:379. [PMID: 39456113 PMCID: PMC11515228 DOI: 10.1186/s13287-024-03989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
The human endometrium is a highly regenerative tissue capable of undergoing scarless repair during the menstruation and postpartum phases. This process is mediated by endometrial adult stem/progenitor cells. During the healing of endometrial injuries, swift reepithelization results in the rapid covering of the wound surface and facilitates subsequent endometrial restoration. The involvement of endogenous endometrial epithelial stem cells, stromal cells, and bone marrow-derived cells in the regeneration of the endometrial epithelium has been a subject of prolonged debate. Increasing evidence suggests that the regeneration of the endometrial epithelium mainly relies on epithelial stem cells rather than stromal cells and bone marrow-derived cells. Currently, no consensus has been established on the identity of epithelial stem cells in the epithelial compartment. Several markers, including stage-specific embryonic antigen-1 (SSEA-1), sex-determining region Y-box 9 (SOX9), neural-cadherin (N-cadherin), leucine-rich-repeat-containing G-protein-coupled receptor 5 (LGR5), CD44, axis inhibition protein 2 (Axin2), and aldehyde dehydrogenase 1A1 (ALDH1A1), have been suggested as potential candidate markers for endometrial epithelial stem cells. The identification of endometrial epithelial stem cells contributes to our understanding of endometrial regeneration and offers new therapeutic insights into diseases characterized by regenerative defects in the endometrium, such as intrauterine adhesion. This review explores different perspectives on the origins of human and mouse endometrial epithelial cells. It summarizes the potential markers, locations, and hierarchies of epithelial stem cells in both human and mouse endometrium. It also discusses epithelial cell-based treatments for intrauterine adhesion, hoping to inspire further research and clinical application of endometrial epithelial stem cells.
Collapse
Affiliation(s)
- Jia Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Hong Zhan
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Yinfeng Wang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Li Zhao
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Yunke Huang
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China
| | - Ruijin Wu
- Women's Hospital, Zhejiang University School of Medicine, No. 1 Xueshi Road, Hangzhou, 310006, Zhejiang, People's Republic of China.
- Zhejiang Key Laboratory of Maternal and Infant Health, Hangzhou, People's Republic of China.
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Rodríguez-Eguren A, Bueno-Fernandez C, Gómez-Álvarez M, Francés-Herrero E, Pellicer A, Bellver J, Seli E, Cervelló I. Evolution of biotechnological advances and regenerative therapies for endometrial disorders: a systematic review. Hum Reprod Update 2024; 30:584-613. [PMID: 38796750 PMCID: PMC11369227 DOI: 10.1093/humupd/dmae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/12/2024] [Indexed: 05/28/2024] Open
Abstract
BACKGROUND The establishment and maintenance of pregnancy depend on endometrial competence. Asherman syndrome (AS) and intrauterine adhesions (IUA), or endometrial atrophy (EA) and thin endometrium (TE), can either originate autonomously or arise as a result from conditions (i.e. endometritis or congenital hypoplasia), or medical interventions (e.g. surgeries, hormonal therapies, uterine curettage or radiotherapy). Affected patients may present an altered or inadequate endometrial lining that hinders embryo implantation and increases the risk of poor pregnancy outcomes and miscarriage. In humans, AS/IUA and EA/TE are mainly treated with surgeries or pharmacotherapy, however the reported efficacy of these therapeutic approaches remains unclear. Thus, novel regenerative techniques utilizing stem cells, growth factors, or tissue engineering have emerged to improve reproductive outcomes. OBJECTIVE AND RATIONALE This review comprehensively summarizes the methodologies and outcomes of emerging biotechnologies (cellular, acellular, and bioengineering approaches) to treat human endometrial pathologies. Regenerative therapies derived from human tissues or blood which were studied in preclinical models (in vitro and in vivo) and clinical trials are discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase was conducted to identify original peer-reviewed studies published in English between January 2000 and September 2023. The search terms included: human, uterus, endometrium, Asherman syndrome, intrauterine adhesions, endometrial atrophy, thin endometrium, endometritis, congenital hypoplasia, curettage, radiotherapy, regenerative therapy, bioengineering, stem cells, vesicles, platelet-rich plasma, biomaterials, microfluidic, bioprinting, organoids, hydrogel, scaffold, sheet, miRNA, sildenafil, nitroglycerine, aspirin, growth hormone, progesterone, and estrogen. Preclinical and clinical studies on cellular, acellular, and bioengineering strategies to repair or regenerate the human endometrium were included. Additional studies were identified through manual searches. OUTCOMES From a total of 4366 records identified, 164 studies (3.8%) were included for systematic review. Due to heterogeneity in the study design and measured outcome parameters in both preclinical and clinical studies, the findings were evaluated qualitatively and quantitatively without meta-analysis. Groups using stem cell-based treatments for endometrial pathologies commonly employed mesenchymal stem cells (MSCs) derived from the human bone marrow or umbilical cord. Alternatively, acellular therapies based on platelet-rich plasma (PRP) or extracellular vesicles are gaining popularity. These are accompanied by the emergence of bioengineering strategies based on extracellular matrix (ECM)-derived hydrogels or synthetic biosimilars that sustain local delivery of cells and growth factors, reporting promising results. Combined therapies that target multiple aspects of tissue repair and regeneration remain in preclinical testing but have shown translational value. This review highlights the myriad of therapeutic material sources, administration methods, and carriers that have been tested. WIDER IMPLICATIONS Therapies that promote endometrial proliferation, vascular development, and tissue repair may help restore endometrial function and, ultimately, fertility. Based on the existing evidence, cost, accessibility, and availability of the therapies, we propose the development of triple-hit regenerative strategies, potentially combining high-yield MSCs (e.g. from bone marrow or umbilical cord) with acellular treatments (PRP), possibly integrated in ECM hydrogels. Advances in biotechnologies together with insights from preclinical models will pave the way for developing personalized treatment regimens for patients with infertility-causing endometrial disorders such as AS/IUA, EA/TE, and endometritis. REGISTRATION NUMBER https://osf.io/th8yf/.
Collapse
Affiliation(s)
- Adolfo Rodríguez-Eguren
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Clara Bueno-Fernandez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - María Gómez-Álvarez
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| | - Emilio Francés-Herrero
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Pellicer
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Rome, Rome, Italy
| | - José Bellver
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
- Department of Paediatrics, Obstetrics and Gynecology, Faculty of Medicine, University of Valencia, Valencia, Spain
- IVIRMA Global Research Alliance, IVI Valencia, Valencia, Spain
| | - Emre Seli
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- IVIRMA Global Research Alliance, IVIRMA New Jersey, Basking Ridge, NJ, USA
| | - Irene Cervelló
- IVIRMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Valencia, Spain
| |
Collapse
|
3
|
Liu Y, Jia D, Li L, Wang M. Advances in Nanomedicine and Biomaterials for Endometrial Regeneration: A Comprehensive Review. Int J Nanomedicine 2024; 19:8285-8308. [PMID: 39161362 PMCID: PMC11330863 DOI: 10.2147/ijn.s473259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
The endometrium is an extremely important component of the uterus and is crucial for individual health and human reproduction. However, traditional methods still struggle to ideally repair the structure and function of damaged endometrium and restore fertility. Therefore, seeking and developing innovative technologies and materials has the potential to repair and regenerate damaged or diseased endometrium. The emergence and functionalization of various nanomedicine and biomaterials, as well as the proposal and development of regenerative medicine and tissue engineering techniques, have brought great hope for solving these problems. In this review, we will summarize various nanomedicine, biomaterials, and innovative technologies that contribute to endometrial regeneration, including nanoscale exosomes, nanomaterials, stem cell-based materials, naturally sourced biomaterials, chemically synthesized biomaterials, approaches and methods for functionalizing biomaterials, as well as the application of revolutionary new technologies such as organoids, organ-on-chips, artificial intelligence, etc. The diverse design and modification of new biomaterials endow them with new functionalities, such as microstructure or nanostructure, mechanical properties, biological functions, and cellular microenvironment regulation. It will provide new options for the regeneration of endometrium, bring new hope for the reconstruction and recovery of patients' reproductive abilities.
Collapse
Affiliation(s)
- Yanhong Liu
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Dongyun Jia
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Lin Li
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Meiyan Wang
- Center for Prenatal Diagnosis, Center for Reproductive Medicine, First Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
4
|
Wang Y, Tang Z, Teng X. New advances in the treatment of thin endometrium. Front Endocrinol (Lausanne) 2024; 15:1269382. [PMID: 38745960 PMCID: PMC11092375 DOI: 10.3389/fendo.2024.1269382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 03/22/2024] [Indexed: 05/16/2024] Open
Abstract
Thin endometrium (TE) is defined as a mid-luteal endometrial thickness ≤7mm. TE can affect endometrial tolerance, leading to lower embryo implantation rates and clinical pregnancy rates, and is also associated with impaired outcomes from assisted reproductive treatment. Herein, we systematically review TE causes, mechanisms, and treatments. TE pathogenesis has multiple causes, with the endometrium becoming thinner with age under hormonal influence. In addition, uterine cavity factors are important, as the inflammatory environment may affect expressions of certain genes thereby inhibiting endometrial stromal cell proliferation and promoting apoptosis. Long-term oral contraceptive use or the use of ovulation-promoting drugs are also definite factors contributing to endometrial thinning. Other patients have primary factors, for which the clinical etiology remains unknown. The main therapeutic strategies available for TE are pharmacological (including hormonal and vasoactive drugs), regenerative medicine, intrauterine infusion of growth factor-granulocyte colony-stimulating factor, autologous platelet-rich plasma, and complementary alternative therapies (including traditional Chinese herbal medicine and acupuncture). However, the associated mechanisms of action are currently unclear. Clinical scholars have proposed various approaches to improve treatment outcomes in patients with TE, and are exploring the principles of efficacy, offering potentials for novel treatments. It is hoped that this will improve TE tolerance, increase embryo implantation rates, and help more couples with infertility with effective treatments.
Collapse
Affiliation(s)
- Yidi Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Zunhao Tang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuxiang Teng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Hwang SY, Lee D, Lee G, Ahn J, Lee YG, Koo HS, Kang YJ. Endometrial organoids: a reservoir of functional mitochondria for uterine repair. Theranostics 2024; 14:954-972. [PMID: 38250040 PMCID: PMC10797286 DOI: 10.7150/thno.90538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 01/23/2024] Open
Abstract
Background: Asherman's syndrome (AS) is a dreadful gynecological disorder of the uterus characterized by intrauterine adhesion with severe fibrotic lesions, resulting in a damaged basalis layer with infertility. Despite extensive research on overcoming AS, evidence-based effective and reproducible treatments to improve the structural and functional morphology of the AS endometrium have not been established. Methods: Endometrial organoids generated from human or mouse endometrial tissues were transplanted into the uterine cavity of a murine model of AS to evaluate their transplantable feasibility to improve the AS uterine environment. The successful engraftment of organoid was confirmed by detection of human mitochondria and cytosol (for human endometrial organoid) or enhanced green fluorescent protein signals (for mouse endometrial organoid) in the recipient endometrium. The therapeutic effects mediated by organoid transplantation were examined by the measurements of fibrotic lesions, endometrial receptivity and angiogenesis, and fertility assessment by recording the number of implantation sites and weighing the fetuses and placenta. To explore the cellular and molecular mechanisms underlying the recovery of AS endometrium, we evaluated the status of mitochondrial movement and biogenetics in organoid transplanted endometrium. Results: Successfully engrafted endometrial organoids with similar morphological and molecular features to the parental tissues dramatically repaired the AS-induced damaged endometrium, significantly reducing fibrotic lesions and increasing fertility outcomes in mice. Moreover, dysfunctional mitochondria in damaged tissues, which we propose might be a key cellular feature of the AS endometrium, was fully recovered by functional mitochondria transferred from engrafted endometrial organoids. Endometrial organoid-originating mitochondria restored excessive collagen accumulation in fibrotic lesions and shifted uterine metabolic environment to levels observed in the normal endometrium. Conclusions: Our findings suggest that endometrial organoid-originating mitochondria might be key players to mediate uterine repair resulting in fertility enhancement by recovering abrogated metabolic circumstance of the endometrium with AS. Further studies addressing the clinical applicability of endometrial organoids may aid in identifying new therapeutic strategies for infertility in patients with AS.
Collapse
Affiliation(s)
- Sun-Young Hwang
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Danbi Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Gaeun Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Jungho Ahn
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Yu-Gyeong Lee
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Hwa Seon Koo
- CHA Fertility Center Bundang; 59, Yatap-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| | - Youn-Jung Kang
- Department of Biomedical Science, School of Life Science, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
- Department of Biochemistry, Research Institute for Basic Medical Science, School of Medicine, CHA University; 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|