1
|
Ali J, Choe K, Park JS, Park HY, Kang H, Park TJ, Kim MO. The Interplay of Protein Aggregation, Genetics, and Oxidative Stress in Alzheimer's Disease: Role for Natural Antioxidants and Immunotherapeutics. Antioxidants (Basel) 2024; 13:862. [PMID: 39061930 PMCID: PMC11274292 DOI: 10.3390/antiox13070862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that comprises amyloid-beta protein (Aβ) as a main component of neuritic plaques. Its deposition is considered a trigger for AD pathogenesis, progression, and the clinical symptoms of cognitive impairment. Some distinct pathological features of AD include phosphorylation of tau protein, oxidative stress, and mitochondrial dysfunction. These pathological consequences tend to produce reactive oxygen species (ROS), resulting in the dysregulation of various signaling pathways of neuroinflammation and neurodegeneration. The relationship between the Aβ cascade and oxidative stress in AD pathogenesis is like a "chicken and egg" story, with the etiology of the disease regarding these two factors remaining a question of "which comes first." However, in this review, we have tried our best to clarify the interconnection between these two mechanisms and to show the precise cause-and-effect relationship. Based on the above hallmarks of AD, several therapeutic strategies using natural antioxidants, monoclonal antibodies, and vaccines are employed as anti-Aβ therapy to decrease ROS, Aβ burden, chronic neuroinflammation, and synaptic failure. These natural antioxidants and immunotherapeutics have demonstrated significant neuroprotective effects and symptomatic relief in various in vitro and in vivo models, as well as in clinical trials for AD. However, none of them have received final approval to enter the drug market for mitigating AD. In this review, we extensively elaborate on the pitfalls, assurances, and important crosstalk between oxidative stress and Aβ concerning current anti-Aβ therapy. Additionally, we discuss future strategies for the development of more Aβ-targeted approaches and the optimization of AD treatment and mitigation.
Collapse
Affiliation(s)
- Jawad Ali
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Kyonghwan Choe
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Jun Sung Park
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
| | - Hyun Young Park
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Pediatrics, Maastricht University Medical Center (MUMC+), 6202 AZ Maastricht, The Netherlands
| | - Heeyoung Kang
- Department of Neurology, Gyeongsang National University Hospital & College of Medicine, Gyeongsang National University, Jinju 52727, Republic of Korea;
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 FOUR), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea; (J.A.); (K.C.); (J.S.P.)
- Alz-Dementia Korea Co., Jinju 52828, Republic of Korea
| |
Collapse
|
2
|
Johansson L, Reyes JF, Ali T, Schätzl H, Gilch S, Hallbeck M. Lack of cellular prion protein causes Amyloid β accumulation, increased extracellular vesicle abundance, and changes to exosome biogenesis proteins. Mol Cell Biochem 2024:10.1007/s11010-024-05059-0. [PMID: 38970706 DOI: 10.1007/s11010-024-05059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024]
Abstract
Alzheimer's disease (AD) progression is closely linked to the propagation of pathological Amyloid β (Aβ), a process increasingly understood to involve extracellular vesicles (EVs), namely exosomes. The specifics of Aβ packaging into exosomes remain elusive, although evidence suggests an ESCRT (Endosomal Sorting Complex Required for Transport)-independent origin to be responsible in spreading of AD pathogenesis. Intriguingly, PrPC, known to influence exosome abundance and bind oligomeric Aβ (oAβ), can be released in exosomes via both ESCRT-dependent and ESCRT-independent pathways, raising questions about its role in oAβ trafficking. Thus, we quantified Aβ levels within EVs, cell medium, and intracellularly, alongside exosome biogenesis-related proteins, following deletion or overexpression of PrPC. The same parameters were also evaluated in the presence of specific exosome inhibitors, namely Manumycin A and GW4869. Our results revealed that deletion of PrPC increases intracellular Aβ accumulation and amplifies EV abundance, alongside significant changes in cellular levels of exosome biogenesis-related proteins Vps25, Chmp2a, and Rab31. In contrast, cellular expression of PrPC did not alter exosomal Aβ levels. This highlights PrPC's influence on exosome biogenesis, albeit not in direct Aβ packaging. Additionally, our data confirm the ESCRT-independent exosome release of Aβ and we show a direct reduction in Chmp2a levels upon oAβ challenge. Furthermore, inhibition of opposite exosome biogenesis pathway resulted in opposite cellular PrPC levels. In conclusion, our findings highlight the intricate relationship between PrPC, exosome biogenesis, and Aβ release. Specifically, they underscore PrPC's critical role in modulating exosome-associated proteins, EV abundance, and cellular Aβ levels, thereby reinforcing its involvement in AD pathogenesis.
Collapse
Affiliation(s)
- Lovisa Johansson
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden.
| | - Juan F Reyes
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Tahir Ali
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Hermann Schätzl
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sabine Gilch
- Calgary Prion Research Unit, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Martin Hallbeck
- Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Meur S, Karati D. Fyn Kinase in Alzheimer's Disease: Unraveling Molecular Mechanisms and Therapeutic Implications. Mol Neurobiol 2024:10.1007/s12035-024-04286-2. [PMID: 38890236 DOI: 10.1007/s12035-024-04286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's disease, characterized by the accumulation of abnormal protein aggregates and neuronal damage in the brain, leads to a gradual decline in cognitive function and memory. As a complex neurodegenerative disorder, it involves disruptions in various biochemical pathways and neurotransmitter systems, contributing to the progressive loss of neurons and synaptic connections. The complexity of Alzheimer's signaling pathways complicates treatment, presenting a formidable challenge in the quest for effective therapeutic interventions. A member of the Src family of kinases (SFKs), Fyn, is a type of non-receptor tyrosine kinase that has been linked to multiple essential CNS processes, such as myelination and synaptic transmission. Fyn is an appealing target for AD treatments because it is uniquely linked to the two major pathologies in AD by its interaction with tau, in addition to being activated by amyloid-beta (Aβ) through PrPC. Fyn mediates neurotoxicity and synaptic impairments caused by Aβ and is involved in regulating the process of Aβ synthesis.Additionally, the tau protein's tyrosine phosphorylation is induced by Fyn. Fyn is also a challenging target because of its widespread body expression and strong homology with other kinases of the Src family, which could cause unintentional off-target effects. This review emphasizes signaling pathways mediated by Fyn that govern neuronal development and plasticity while also summarizing the most noteworthy recent research relevant to Fyn kinase's function in the brain. Additionally, the therapeutic inhibition of Fyn kinase has been discussed, with a focus on the Fyn kinase inhibitors that are in clinical trials, which presents a fascinating opportunity for targeting Fyn kinase in the creation of possible therapeutic approaches for the management of Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
4
|
Zhong MZ, Peng T, Duarte ML, Wang M, Cai D. Updates on mouse models of Alzheimer's disease. Mol Neurodegener 2024; 19:23. [PMID: 38462606 PMCID: PMC10926682 DOI: 10.1186/s13024-024-00712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/14/2024] [Indexed: 03/12/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease in the United States (US). Animal models, specifically mouse models have been developed to better elucidate disease mechanisms and test therapeutic strategies for AD. A large portion of effort in the field was focused on developing transgenic (Tg) mouse models through over-expression of genetic mutations associated with familial AD (FAD) patients. Newer generations of mouse models through knock-in (KI)/knock-out (KO) or CRISPR gene editing technologies, have been developed for both familial and sporadic AD risk genes with the hope to more accurately model proteinopathies without over-expression of human AD genes in mouse brains. In this review, we summarized the phenotypes of a few commonly used as well as newly developed mouse models in translational research laboratories including the presence or absence of key pathological features of AD such as amyloid and tau pathology, synaptic and neuronal degeneration as well as cognitive and behavior deficits. In addition, advantages and limitations of these AD mouse models have been elaborated along with discussions of any sex-specific features. More importantly, the omics data from available AD mouse models have been analyzed to categorize molecular signatures of each model reminiscent of human AD brain changes, with the hope to guide future selection of most suitable models for specific research questions to be addressed in the AD field.
Collapse
Affiliation(s)
- Michael Z Zhong
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Biology, College of Arts and Science, Boston University, Boston, MA, 02215, USA
| | - Thomas Peng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Science Research Program, Scarsdale High School, New York, NY, 10583, USA
| | - Mariana Lemos Duarte
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
- Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Dongming Cai
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Research & Development, James J Peters VA Medical Center, Bronx, NY, 10468, USA.
- Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Neurology, N. Bud Grossman Center for Memory Research and Care, The University of Minnesota, Minneapolis, MN, 55455, USA.
- Geriatric Research Education & Clinical Center (GRECC), The Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
| |
Collapse
|
5
|
Roth JR, Rush T, Thompson SJ, Aldaher AR, Dunn TB, Mesina JS, Cochran JN, Boyle NR, Dean HB, Yang Z, Pathak V, Ruiz P, Wu M, Day JJ, Bostwick JR, Suto MJ, Augelli-Szafran CE, Roberson ED. Development of small-molecule Tau-SH3 interaction inhibitors that prevent amyloid-β toxicity and network hyperexcitability. Neurotherapeutics 2024; 21:e00291. [PMID: 38241154 PMCID: PMC10903085 DOI: 10.1016/j.neurot.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 01/21/2024] Open
Abstract
Alzheimer's disease (AD) is the leading cause of dementia and lacks highly effective treatments. Tau-based therapies hold promise. Tau reduction prevents amyloid-β-induced dysfunction in preclinical models of AD and also prevents amyloid-β-independent dysfunction in diverse disease models, especially those with network hyperexcitability, suggesting that strategies exploiting the mechanisms underlying Tau reduction may extend beyond AD. Tau binds several SH3 domain-containing proteins implicated in AD via its central proline-rich domain. We previously used a peptide inhibitor to demonstrate that blocking Tau interactions with SH3 domain-containing proteins ameliorates amyloid-β-induced dysfunction. Here, we identify a top hit from high-throughput screening for small molecules that inhibit Tau-FynSH3 interactions and describe its optimization with medicinal chemistry. The resulting lead compound is a potent cell-permeable Tau-SH3 interaction inhibitor that binds Tau and prevents amyloid-β-induced dysfunction, including network hyperexcitability. These data support the potential of using small molecule Tau-SH3 interaction inhibitors as a novel therapeutic approach to AD.
Collapse
Affiliation(s)
- Jonathan R Roth
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Travis Rush
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Samantha J Thompson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam R Aldaher
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Trae B Dunn
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob S Mesina
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nicholas R Boyle
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hunter B Dean
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Zhengrong Yang
- Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Vibha Pathak
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Pedro Ruiz
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Mousheng Wu
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Mark J Suto
- Chemistry Department, Southern Research, Birmingham, AL, USA
| | | | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Alzheimer's Disease Center, Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Xiao Y, Zhang T, Zhang H. Recent advances in the peptide-based biosensor designs. Colloids Surf B Biointerfaces 2023; 231:113559. [PMID: 37738870 DOI: 10.1016/j.colsurfb.2023.113559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/09/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Biosensors have rapidly emerged as a high-sensitivity and convenient detection method. Among various types of biosensors, optical and electrochemical are the most commonly used. Conventionally, antibodies have been employed to ensure specific interaction between the transmission material and analytes. However, there has been increasing recognition of peptides as a promising recognition element for biosensor development in recent years. The use of peptides as recognition elements provides high level of specificity, sensitivity, and stability for the detection process. The combination of peptide designs and optical or electrochemical detection methods has significantly improved biosensor efficacy. These advancements present opportunities for developing biosensors with diverse functions that can be used to lay a strong scientific foundation for the development of personalized medicine and various other fields. This paper reviews the recent advancements in the development and application of peptide-based optical and electrochemical biosensors, as well as their prospects as a sensor type.
Collapse
Affiliation(s)
- Yue Xiao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Ting Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, China.
| |
Collapse
|