1
|
Lao XY, Sun YL, Zhao ZJ, Liu J, Ruan XF. Pharmacological effects of betulinic acid and its protective mechanisms on the cardiovascular system. Fitoterapia 2025; 183:106561. [PMID: 40288588 DOI: 10.1016/j.fitote.2025.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Betulinic acid (BA), a pentacyclic triterpenoid saponin widely found in plants, has attracted attention for its diverse pharmacological activities. Recent studies highlight its cardioprotective potential, promoting its relevance in cardiovascular research. AIM OF THE REVIEW This review summarizes BA's physicochemical properties, structure-activity relationships, natural sources, and synthesis strategies. It further discusses its pharmacokinetics and toxicity to evaluate its drug development potential, with emphasis on cardioprotective effects and related signaling pathways. METHODS Literature was collected from databases such as PubMed and Web of Science, focusing on studies addressing BA's chemical characteristics, biological activities, pharmacokinetics, and cardiovascular relevance. RESULTS BA exerts cardioprotective effects via multiple signaling pathways, including NRF2, NF-κB, MAPK, and NFAT. These contribute to its antioxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative actions, as well as its enhancement of endothelial function through nitric oxide signaling. BA also reduces lipid accumulation. Combined with favorable physicochemical properties and synthetic accessibility, these findings support BA as a promising multifunctional lead compound in cardiovascular pharmacology. CONCLUSION BA shows strong potential as a cardioprotective natural compound. Although further research is needed to validate its clinical efficacy and safety, its multi-target actions and structural versatility provide a solid basis for development in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Xu Yuan Lao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhe Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Liu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Perrotta ID, Taherzadeh Z, van Montfrans GA, Brewster LM. Exosomes in ultrastructural resistance artery remodeling of human hypertension. Ultrastruct Pathol 2025; 49:306-314. [PMID: 40265986 DOI: 10.1080/01913123.2025.2493116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
We previously reported that human hypertension is associated with ultrastructural remodeling of systemic resistance arteries. Endothelial and smooth muscle cells (SMC) displayed mitochondrial and sarco-endoplasmic reticulum stress, accompanied by SMC migration toward the intima. Exosomes, nano-sized phospholipid bilayer-enclosed vesicles released from cells upon fusion of multivesicular bodies (MVB) with the plasma membrane, are thought to be involved in the endothelial-to-SMC communication regulating these adaptations. However, there is a dearth of ultrastructural studies on microvascular exosomes during hypertension. Therefore, we characterized and quantified exosomes in omental resistance-sized arteries (200-400 μm), obtained during surgery in 19 women (9 hypertensive), mean age 42 y (SE 1). The number of MVBs was around 7-fold higher in hypertensives, mean, 3.8 (SE 0.2)/cell vs 0.5 (0.1) in normotensives, with a shift from a scant dispersion of intracellular MVBs in normotensives, toward a prominent abluminal endothelial location in hypertensives. MVBs also contained significantly more exosomes in hypertensives, mean 7.9 (0.2) vs 5.0 (0.2)/MVB in normotensives.
Collapse
Affiliation(s)
- I D Perrotta
- Department of Biology, Ecology and Earth Sciences, Centre for Microscopy and Microanalysis, University of Calabria, Cosenza, Italy
| | - Zh Taherzadeh
- Targeted Drug Delivery Research Center and Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biomedical Engineering and Physics, University Medical Centers Amsterdam, Location AMC, Amsterdam, The Netherlands
| | - G A van Montfrans
- Department of Internal Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - L M Brewster
- CK Research Foundation, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Wang N, Feng H, Zhang Z, Tian H, Gu L, Bian Y, Xue M. Danggui Buxue decoction regulates autophagy to Improve renal fibrosis in diabetes through miR-27a /PI3K/AKT pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 341:119357. [PMID: 39800243 DOI: 10.1016/j.jep.2025.119357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/30/2024] [Accepted: 01/10/2025] [Indexed: 01/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danggui Buxue Decoction (DBD) is a classic traditional Chinese herbal formulation, composed of Astragali Radix (AR) and Angelica Sinensis Radix (ASR) in a ratio of 5:1. It is a traditional Chinese medicine classic prescription for nourishing Qi and Yin (vital energy and body fluids), and it is effective in treating various clinical diseases. Diabetic nephropathy (DN) is categorized under "thirsting," "edema," and "turbid urine" in Traditional Chinese Medicine (TCM). However, the underlying mechanisms by which DBD ameliorates diabetic nephropathy remain unclear. AIM OF THE STUDY To explore the mechanism by which Danggui Buxue Decoction (DBD) regulates podocyte autophagy in diabetic nephropathy (DN). METHODS Male db/m mice served as controls; db/db mice were divided into the model, dapagliflozin, and high/low-dose DBD groups. After 12 weeks of gavage, body weight, fasting blood glucose, urine albumin-to-creatinine ratio, 24-h urine volume, and blood urea nitrogen were recorded. Renal autophagy was assessed by Masson staining; mRNA levels were measured by qRT-PCR; and protein expression was analyzed by Western blot. The expression of inflammatory factors in the kidney was measured by ELISA. Human renal podocytes were cultured in NG, HG, HG + Blank serum, and HG + DBD-containing serum groups for 48 h; cell viability was measured by CCK-8, and autophagy was observed by transmission electron microscopy. Changes in autophagy protein and mRNA expression were observed after miR-27a transfection under high glucose conditions. RESULTS DBD can ameliorate renal function and reduce the degree of renal fibrosis in DN mice, enhance the mRNA expression of Beclin-1 and ULK1, and decrease the mRNA expression of Vimentin and α-SMA. This trend mirrors protein expression, and DBD also lowers renal inflammatory factors. DBD-containing serum boosts human renal podocyte viability under high glucose, protecting cells and modulating mRNA levels of Beclin-1, ULK1, P62, and PI3K, with miR-27a-mimic reversing these effects. DBD-containing serum also enhances Beclin-1, suppresses P62, and reduces the expression of p-PI3K/PI3K and p-AKT/AKT. CONCLUSION DBD Regulates Autophagy to Improve Renal Fibrosis in Diabetes via the miR-27a/PI3K/AKT Pathway.
Collapse
Affiliation(s)
- Nan Wang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China
| | - Hui Feng
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China
| | - Ziwei Zhang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China
| | - Haolin Tian
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210022, China
| | - Ling Gu
- School of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China
| | - Yong Bian
- Laboratory Animal Center, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China.
| | - Mei Xue
- School of Integrative Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210023, China.
| |
Collapse
|
4
|
Rodor J, Klimi E, Brown SD, Krilis G, Braga L, Ring NAR, Ballantyne MD, Kesidou D, Nguyen Dinh Cat A, Miscianinov V, Vacante F, Miteva K, Bennett M, Beqqali A, Giacca M, Zacchigna S, Baker AH. Functional screening identifies miRNAs with a novel function inhibiting vascular smooth muscle cell proliferation. Mol Ther 2025; 33:615-630. [PMID: 39736815 PMCID: PMC11852670 DOI: 10.1016/j.ymthe.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/13/2024] [Accepted: 12/27/2024] [Indexed: 01/01/2025] Open
Abstract
Proliferation of vascular smooth muscle cells (vSMCs) is a crucial contributor to pathological vascular remodeling. MicroRNAs (miRNAs) are powerful gene regulators and attractive therapeutic agents. Here, we aimed to systematically identify and characterize miRNAs with therapeutic potential in targeting vSMC proliferation. Using high-throughput screening, we assessed the impact of 2,042 human miRNA mimics on vSMC proliferation and identified seven miRNAs with novel vSMC anti-proliferative function: miR-323a-3p, miR-449b-5p, miR-491-3p, miR-892b, miR-1827, miR-4774-3p, and miR-5681b. miRNA-mimic treatment affects proliferation of vSMCs from different vascular beds. Focusing on vein graft failure, where miRNA-based therapeutics can be applied to the graft ex vivo, we showed that these miRNAs reduced human saphenous vein smooth muscle cell (HSVSMC) proliferation without toxic effect. HSVSMC transcriptomics revealed a distinct set of targets for each miRNA, leading to the common downregulation of a cell-cycle gene network for all miRNAs. For miR-449b-5p, we showed that its candidate target, CCND1, contributes to HSVSMC proliferation. In contrast to HSVSMCs, miRNA overexpression in endothelial cells led to a limited response in terms of proliferation and transcriptomics. In an ex vivo vein organ model, overexpression of miR-323a-3p and miR-449b-5p reduced medial proliferation. Collectively, the results of our study show the therapeutic potential of seven miRNAs to target pathological vascular remodeling.
Collapse
Affiliation(s)
- Julie Rodor
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Eftychia Klimi
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Simon D Brown
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Georgios Krilis
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Nadja A R Ring
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Margaret D Ballantyne
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Despoina Kesidou
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Aurelie Nguyen Dinh Cat
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Vladislav Miscianinov
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Francesca Vacante
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Katarina Miteva
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Matthew Bennett
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Abdelaziz Beqqali
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, SE5 9NU London, UK; Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Serena Zacchigna
- International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34129 Trieste, Italy
| | - Andrew H Baker
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ Edinburgh, UK; CARIM School for Cardiovascular Sciences, Department of Pathology, Maastricht University Medical Center (MUMC), 6229HX Maastricht, the Netherlands.
| |
Collapse
|
5
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
6
|
Guo S, Li J, Pang S, Li J, Tian X. Exosome miR-199a-5p modulated vascular remodeling and inflammatory infiltration of Takayasu's arteritis. Arthritis Res Ther 2025; 27:11. [PMID: 39833857 PMCID: PMC11744942 DOI: 10.1186/s13075-025-03475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Advances in treatment have swiftly alleviated systemic inflammation of Takayasu's arteritis (TAK), while subclinical vascular inflammation and the ensuing arterial remodeling continue to present unresolved challenges in TAK. The phenotypic switching of vascular smooth muscle cells (VSMC) is regarded as the first step in vascular pathology and contributes to arterial remodeling. Exosomes facilitate the transfer and exchange of proteins and specific nucleic acids, thereby playing a significant role in intercellular communication. Little is known about the modulatory role of serum exosomes in phenotypic switching of VSMC and vascular remodeling in TAK. METHODS Serum exosomes isolated from TAK patients were co-cultured with VSMC to identify the modulatory role of exosomes. VSMC were transfected with miR-199a-5p mimic and inhibitor. CCK8 assays and EdU assays were performed to measure proliferative ability. The migration of VSMC was evaluated by scratch assays and transwell migration assays. The flow cytometry was employed to identify apoptosis of VSMC. Dual-luciferase reporter assay, RNA immunoprecipitation assay and fluorescence in situ hybridization were utilized to validate the target gene of miR-199a-5p. The correlational analysis was conducted among exosome miRNA, serum MMP2, TIMP2 and clinical parameters in TAK patients. RESULTS The coculture of VSMC with serum exosome mediated dedifferentiation of VSMC. Through gain- and loss-of-function approaches, miR-199a-5p over-expression significantly increased expression of VSMC marker genes and inhibited VSMC proliferation and migration, whilst the opposite effect was observed when endogenous miR-199a-5p was knocked down. The overexpression of miR-199a-5p suppressed VSMC apoptosis. Further, MMP2 serves as functional target gene of miR-199a-5p. The correlation analyses revealed an inverse correlation between Vasculitis Damage Index and exosome miR-199a-5p level or serum MMP2, which requires validation in a larger cohort. CONCLUSION Our study indicated that the miR-199a-5p/MMP2 pathway played a role in inhibiting the migration, proliferation and apoptosis of VSMC. The decreased secretion of MMP2 may potentially prompt the intimal infiltration of inflammatory cells within the vascular wall, offering a novel therapeutic opportunity by tackling both inflammatory responses and the neointimal overgrowth associated with TAK arterial damage. Moreover, exosome miR-199a-5p and MMP2 derived from serum possess potential as future biomarkers for vascular injury.
Collapse
Affiliation(s)
- Shuning Guo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Jiehan Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shurui Pang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| | - Xinping Tian
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
- National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology, Beijing, China.
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Beijing, China.
- Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
7
|
Zhang S, Zhao Y, Dong Z, Jin M, Lu Y, Xu M, Pan H, Zhou G, Xiao M. HIF-1α mediates hypertension and vascular remodeling in sleep apnea via hippo-YAP pathway activation. Mol Med 2024; 30:281. [PMID: 39732653 DOI: 10.1186/s10020-024-00987-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/03/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension. METHODS We established a rat model of SAS-induced hypertension via chronic intermittent hypoxia (CIH). Rats were treated with siRNA targeting HIF-1α. Blood pressure, inflammation, oxidative stress, vascular remodeling, and VSMC function were assessed. In vitro experiments with A7r5 cells and human aortic smooth muscle cells (HAoSMCs) explored the effects of HIF-1α silencing and YAP1 overexpression. RESULTS Compared with the control group, the CIH group presented significant increases in both HIF-1α and YAP1 expression, which correlated with increased blood pressure and vascular changes. HIF-1α silencing reduced hypertension, oxidative stress, inflammation, and the severity of vascular remodeling. Specifically, siRNA treatment for HIF-1α normalized blood pressure, decreased the levels of oxidative damage markers (increased SOD and decreased MDA), and reversed the changes in the levels of inflammatory markers (decreased high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and soluble E-selectin (sE-s)). Structural analyses revealed reduced vascular smooth muscle cell proliferation and collagen deposition, along with normalization of cellular markers, such as α-SMA and TGF-β1. Furthermore, the Hippo-YAP pathway appeared to mediate these effects, as evidenced by altered YAP1 expression and activity upon HIF-1α modulation. CONCLUSIONS Our findings demonstrate the significance of the HIF-1α/Hippo-YAP pathway in CIH-induced hypertension and vascular remodeling. HIF-1α contributes to these pathophysiological processes by promoting oxidative stress, inflammation, and aberrant VSMC behavior. Targeting this pathway could offer new therapeutic strategies for CIH-related cardiovascular complications in SAS patients.
Collapse
Affiliation(s)
- Shoude Zhang
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Yuan Zhao
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Zhanwei Dong
- Department of Otorhinolaryngology/Head and Neck, Aral Hospital, Xinjiang Corps, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Aral, 843399, Xinjiang, China
| | - Mao Jin
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
| | - Ying Lu
- Department of Otorhinolaryngology/Head and Neck, The First People's Hospital of Lin'an District, Hangzhou, 311300, Zhejiang, China
| | - Mina Xu
- Department of Nursing, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Hong Pan
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Guojin Zhou
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| | - Mang Xiao
- Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China
| |
Collapse
|
8
|
Yaacoub S, Boudaka A, AlKhatib A, Pintus G, Sahebkar A, Kobeissy F, Eid AH. The pharmaco-epigenetics of hypertension: a focus on microRNA. Mol Cell Biochem 2024; 479:3255-3271. [PMID: 38424404 PMCID: PMC11511726 DOI: 10.1007/s11010-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/20/2024] [Indexed: 03/02/2024]
Abstract
Hypertension is a major harbinger of cardiovascular morbidity and mortality. It predisposes to higher rates of myocardial infarction, chronic kidney failure, stroke, and heart failure than most other risk factors. By 2025, the prevalence of hypertension is projected to reach 1.5 billion people. The pathophysiology of this disease is multifaceted, as it involves nitric oxide and endothelin dysregulation, reactive oxygen species, vascular smooth muscle proliferation, and vessel wall calcification, among others. With the advent of new biomolecular techniques, various studies have elucidated a gaping hole in the etiology and mechanisms of hypertension. Indeed, epigenetics, DNA methylation, histone modification, and microRNA-mediated translational silencing appear to play crucial roles in altering the molecular phenotype into a hypertensive profile. Here, we critically review the experimentally determined associations between microRNA (miRNA) molecules and hypertension pharmacotherapy. Particular attention is given to the epigenetic mechanisms underlying the physiological responses to antihypertensive drugs like candesartan, and other relevant drugs like clopidogrel, aspirin, and statins among others. Furthermore, how miRNA affects the pharmaco-epigenetics of hypertension is especially highlighted.
Collapse
Affiliation(s)
- Serge Yaacoub
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ammar Boudaka
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Ali AlKhatib
- Department of Nutrition and Food Sciences, Lebanese International University, Beirut, Lebanon
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Firas Kobeissy
- Department of Neurobiology, Center for Neurotrauma, Multiomics and Biomarkers (CNMB), Morehouse School of Medicine, Neuroscience Institute, Atlanta, GA, USA
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Song J, Cao C, Wang Z, Li H, Yang L, Kang J, Meng H, Li L, Liu J. Mechanistic insights into the regression of atherosclerotic plaques. Front Physiol 2024; 15:1473709. [PMID: 39628943 PMCID: PMC11611857 DOI: 10.3389/fphys.2024.1473709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024] Open
Abstract
Atherosclerosis is a major contributor to cardiovascular diseases and mortality globally. The progression of atherosclerotic disease results in the expansion of plaques and the development of necrotic cores. Subsequent plaque rupture can lead to thrombosis, occluding blood vessels, and end-organ ischemia with consequential ischemic injury. Atherosclerotic plaques are formed by the accumulation of lipid particles overloaded in the subendothelial layer of blood vessels. Abnormally elevated blood lipid levels and impaired endothelial function are the initial factors leading to atherosclerosis. The atherosclerosis research has never been interrupted, and the previous view was that the pathogenesis of atherosclerosis is an irreversible and chronic process. However, recent studies have found that the progression of atherosclerosis can be halted when patients' blood lipid levels are reversed to normal or lower. A large number of studies indicates that it can inhibit the progression of atherosclerosis lesions and promote the regression of atherosclerotic plaques and necrotic cores by lowering blood lipid levels, improving the repair ability of vascular endothelial cells, promoting the reverse cholesterol transport in plaque foam cells and enhancing the ability of macrophages to phagocytize and clear the necrotic core of plaque. This article reviews the progress of research on the mechanism of atherosclerotic plaque regression. Our goal is to provide guidance for developing better therapeutic approaches to atherosclerosis by reviewing and analyzing the latest scientific findings.
Collapse
Affiliation(s)
- Jianshu Song
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ce Cao
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Ziyan Wang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Haoran Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
- Research Institute of Traditional Chinese Medicine of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lili Yang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jing Kang
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Hongxu Meng
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Lei Li
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Jianxun Liu
- National Research Center for Clinical Medicine of Cardiovascular Diseases of Traditional Chinese Medicine, Beijing Key Laboratory of Traditional Chinese Medicine Pharmacology, Xiyuan Hospital, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Deng W, Huang S, Yu L, Gao B, Pan Y, Wang X, Li L. HIF-1α knockdown attenuates phenotypic transformation and oxidative stress induced by high salt in human aortic vascular smooth muscle cells. Sci Rep 2024; 14:28100. [PMID: 39543255 PMCID: PMC11564746 DOI: 10.1038/s41598-024-79892-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/13/2024] [Indexed: 11/17/2024] Open
Abstract
Increased dietary salt intake is a well-established risk factor for hypertension and related cardiovascular diseases, involving complex vascular remodeling processes. However, the specific role of hypoxia-inducible factor-1α (HIF-1α) in vascular pathophysiology under high-salt conditions remains poorly understood. This study investigates the role of HIF-1α in high-salt-induced vascular remodeling using human aortic vascular smooth muscle cells (HA-VSMCs) cultured in vitro. HA-VSMCs were divided into three groups: high-salt with HIF-1α knockdown (shHIF-1α + HS), negative control (shcontrol), and high-salt (HS). Cell viability, migration, gene expression, and protein levels were evaluated. High-salt conditions significantly increased mRNA expression of α-smooth muscle actin (α-SMA), smooth muscle protein 22 (SM22), angiotensin II type 1 receptor (AT1R), collagen I, and collagen III (p < 0.0001). HIF-1α knockdown partially attenuated these increases, particularly for α-SMA, SM22, and AT1R (p < 0.01). At the protein level, high-salt exposure markedly elevated expression of collagen III, HIF-1α, osteopontin (OPN), and angiotensin II (Ang II) (p < 0.0001). HIF-1α knockdown significantly reduced the high-salt-induced increases in collagen III and HIF-1α protein levels (p < 0.001) but had a limited effect on OPN and Ang II upregulation. Interestingly, SM22 protein expression was significantly decreased under high-salt conditions (p < 0.0001), an effect partially reversed by HIF-1α knockdown (p < 0.0001). These findings demonstrate that high-salt conditions induce complex changes in gene and protein expression in HA-VSMCs, with HIF-1α playing a crucial role in mediating many of these alterations. The study highlights the differential effects of HIF-1α on various markers of vascular remodeling and suggests that HIF-1α may be a potential therapeutic target for mitigating salt-induced vascular pathology. Further research is warranted to elucidate the mechanisms underlying the HIF-1α-dependent and -independent effects observed in this study.
Collapse
MESH Headings
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/cytology
- Oxidative Stress/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Aorta/metabolism
- Aorta/cytology
- Gene Knockdown Techniques
- Sodium Chloride, Dietary/adverse effects
- Actins/metabolism
- Phenotype
- Cell Movement/drug effects
- Muscle Proteins/metabolism
- Muscle Proteins/genetics
- Microfilament Proteins/metabolism
- Microfilament Proteins/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 1/genetics
- Vascular Remodeling/drug effects
- Cell Survival/drug effects
- Osteopontin/metabolism
- Osteopontin/genetics
- Cells, Cultured
Collapse
Affiliation(s)
- Wenbin Deng
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Shiqiong Huang
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lisha Yu
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Bo Gao
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Yun Pan
- Department of Pathology, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Xue Wang
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China
| | - Lihua Li
- Department of Geriatrics, The First Affiliated Hospital of Dali University, Dali, 671000, Yunnan, China.
- Department of Gerontology, The First Affiliated Hospital of Dali University, Jiashibo Road 32, Dali, 671000, China.
| |
Collapse
|
11
|
Wang T, Yu Y, Ding Y, Yang Z, Jiang S, Gao F, Liu S, Shao L, Shen Z. miR-3529-3p/ABCA1 axis regulates smooth muscle cell homeostasis by enhancing inflammation via JAK2/STAT3 pathway. Front Cardiovasc Med 2024; 11:1441123. [PMID: 39257845 PMCID: PMC11384995 DOI: 10.3389/fcvm.2024.1441123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024] Open
Abstract
Background Thoracic Aortic Dissection (TAD) is a life-threatening disease without effective drug treatments. The disruption of HASMCs homeostasis is one direct histopathologic alteration in TAD pathological process. Several miRNAs have been shown abnormally expressed in TAD and to regulate HASMCs homeostasis. The primary goal of this study is to identify the miRNAs and the specific mechanisms that lead to HASMCs homeostasis disruption. Methods Bulk miRNA sequencing was performed to explore the aberrantly expressed miRNA profile in TAD, and differentially expressed miRNAs were verified with qRT-PCR. To explore the role of the key miRNAs (miR-3529) in HASMCs homeostasis, we overexpressed this miRNA with lentivirus in HASMCs. Integrative transcriptomics and metabolomics analysis were used to uncover the functional roles of this miRNA in regulating HASMCs homeostasis. Further, the target gene of miR-3529 was predicted by bioinformatics and verified through a dual-luciferase reporter assay. Results Bulk miRNA sequencing showed miR-3529 was elevated in TAD tissues and confirmed by qRT-PCR. Further experimental assay revealed miR-3529 upregulation induced HASMCs homeostasis disruption, accompanied by reducing contractile markers and increasing pro-inflammatory cytokines. Integrative transcriptomics and metabolomics analysis showed that miR-3529 overexpression altered the metabolic profile of HASMC, particularly lipid metabolism. ABCA1 was found to be a direct target of miR-3529. Mechanistically, the miR-3529/ABCA1 axis disrupted HASMCs homeostasis through the JAK2/STAT3 signaling pathway. Conclusions miR-3529 is elevated in TAD patients and disrupts HASMCs homeostasis by reprogramming metabolism through the JAK2/STAT3 signaling pathway. These findings favor a role for miR-3529 as a novel target for TAD therapy.
Collapse
Affiliation(s)
- Tingyu Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - You Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Yinglong Ding
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Ziying Yang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shumin Jiang
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Faxiong Gao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Shan Liu
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Lianbo Shao
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou, China
| |
Collapse
|
12
|
Sun XH, Jiang HJ, Liu Q, Xiao C, Xu JY, Wu Y, Mei JY, Wu ST, Lin ZY. Low concentrations of TNF-α in vitro transform the phenotype of vascular smooth muscle cells and enhance their survival in a three-dimensional culture system. Artif Organs 2024; 48:839-848. [PMID: 38660762 DOI: 10.1111/aor.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/29/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Vascular smooth muscle cells (VSMCs) are commonly used as seed cells in tissue-engineered vascular constructions. However, their variable phenotypes and difficult to control functions pose challenges. This study aimed to overcome these obstacles using a three-dimensional culture system. METHODS Calf VSMCs were administered tumor necrosis factor-alpha (TNF-α) before culturing in two- and three-dimensional well plates and polyglycolic acid (PGA) scaffolds, respectively. The phenotypic markers of VSMCs were detected by immunofluorescence staining and western blotting, and the proliferation and migration abilities of VSMCs were detected by CCK-8, EDU, cell counting, scratch, and Transwell assays. RESULTS TNF-α rapidly decreased the contractile phenotypic markers and elevated the synthetic phenotypic markers of VSMCs, as well as markedly increasing the proliferation and migration ability of VSMCs under two- and three-dimensional culture conditions. CONCLUSIONS TNF-α can rapidly induce a phenotypic shift in VSMCs and change their viability on PGA scaffolds.
Collapse
Affiliation(s)
- Xu-Heng Sun
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Hong-Jing Jiang
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Qing Liu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Cong Xiao
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jian-Yi Xu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Yindi Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| | - Jing-Yi Mei
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, P.R. China
| | - Shu-Ting Wu
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, P.R. China
| | - Zhan-Yi Lin
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, P.R. China
- Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, P.R. China
- Institute of Medical Engineering, JIHUA Laboratory, Foshan, Guangdong, P.R. China
| |
Collapse
|
13
|
Guan X, Hu Y, Hao J, Lu M, Zhang Z, Hu W, Li D, Li C. Stress, Vascular Smooth Muscle Cell Phenotype and Atherosclerosis: Novel Insight into Smooth Muscle Cell Phenotypic Transition in Atherosclerosis. Curr Atheroscler Rep 2024; 26:411-425. [PMID: 38814419 DOI: 10.1007/s11883-024-01220-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
PURPOSE OF REVIEW Our work is to establish more distinct association between specific stress and vascular smooth muscle cells (VSMCs) phenotypes to alleviate atherosclerotic plaque burden and delay atherosclerosis (AS) progression. RECENT FINDING In recent years, VSMCs phenotypic transition has received significant interests. Different stresses were found to be associated with VSMCs phenotypic transition. However, the explicit correlation between VSMCs phenotype and specific stress has not been elucidated clearly yet. We discover that VSMCs phenotypic transition, which is widely involved in the progression of AS, is associated with specific stress. We discuss approaches targeting stresses to intervene VSMCs phenotypic transition, which may contribute to develop innovative therapies for AS.
Collapse
Affiliation(s)
- Xiuya Guan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Yuanlong Hu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jiaqi Hao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Wenxian Hu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| | - Dongxiao Li
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, China.
| |
Collapse
|
14
|
Cheng B, Yang R, Xu H, Wang L, Jiang N, Song T, Dong C. Peripheral Blood miRNA Expression in Patients with Essential Hypertension in the Han Chinese Population in Hefei, China. Biochem Genet 2024:10.1007/s10528-024-10867-6. [PMID: 38907084 DOI: 10.1007/s10528-024-10867-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 06/10/2024] [Indexed: 06/23/2024]
Abstract
Primary hypertension is a significant risk factor for cardiovascular diseases. However, the pathogenesis of primary hypertension involves multiple biological processes, including the nervous system, circulatory system, endocrine system, and more. Despite extensive research, there is no clear understanding of the regulatory mechanism underlying its pathogenesis. In recent years, miRNAs have gained attention as a regulatory factor capable of modulating the expression of related molecules through gene silencing. Therefore, exploring differentially expressed miRNAs in patients with essential hypertension (EH) may offer a novel approach for future diagnosis and treatment of EH. This study included a total of twenty Han Chinese population samples from Hefei, China. The samples consisted of 10 healthy individuals and 10 patients with EH. Statistical analysis was conducted to analyze the general information of the two-sample groups. High-throughput sequencing and base identification were performed to obtain the original sequencing sequences. These sequences were then annotated using various databases including Rfam, cDNA sequences, species repetitive sequences library, and miRBase database. The number of miRNA species contained in the samples was measured. Next, TPM values were calculated to determine the expression level of each miRNA. The bioinformatics of the differentiated miRNAs were analyzed using the OECloud tool, and RPM values were calculated. Furthermore, the reliability of the expression was analyzed by calculating the area under the Roc curve using the OECloud tools. Statistical analysis revealed no significant differences between the two samples in terms of age distribution, gender composition, smoking history, and alcohol consumption history (P > 0.05). However, there was a notable presence of family genetic history and high BMI in the EH population (P < 0.05). The sequencing results identified a total of 245 miRNAs, out of which 16 miRNAs exhibited differential expression. Among the highly expressed miRNAs were let-7d-5p, miR-101-3p, miR-122-5p, miR-122b-3p, miR-192-5p, and miR-6722-3p. On the other hand, the lowly expressed miRNAs included miR-103a-3p, miR-16-5p, miR-181a-2-3p, miR-200a-3p, miR-200b-3p, miR-200c-3p, miR-221-3p, miR-30d-5p, miR-342-5p, and miR-543. This study initially identified 16 miRNAs that are aberrantly expressed and function in various processes associated with the onset and progression of essential hypertension. These miRNAs have the potential to be targeted for future diagnosis and treatment of EH. However, further samples are required to provide additional support for this study.
Collapse
Affiliation(s)
- Bin Cheng
- Department of Anhui University of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Ronglu Yang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Xu
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Li Wang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Nan Jiang
- College of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tingting Song
- The First Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| | - Changwu Dong
- The Second Clinical Medical School, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
15
|
Ding R, Huang L, Yan K, Sun Z, Duan J. New insight into air pollution-related cardiovascular disease: an adverse outcome pathway framework of PM2.5-associated vascular calcification. Cardiovasc Res 2024; 120:699-707. [PMID: 38636937 DOI: 10.1093/cvr/cvae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 04/20/2024] Open
Abstract
Despite the air quality has been generally improved in recent years, ambient fine particulate matter (PM2.5), a major contributor to air pollution, remains one of the major threats to public health. Vascular calcification is a systematic pathology associated with an increased risk of cardiovascular disease. Although the epidemiological evidence has uncovered the association between PM2.5 exposure and vascular calcification, little is known about the underlying mechanisms. The adverse outcome pathway (AOP) concept offers a comprehensive interpretation of all of the findings obtained by toxicological and epidemiological studies. In this review, reactive oxygen species generation was identified as the molecular initiating event (MIE), which targeted subsequent key events (KEs) such as oxidative stress, inflammation, endoplasmic reticulum stress, and autophagy, from the cellular to the tissue/organ level. These KEs eventually led to the adverse outcome, namely increased incidence of vascular calcification and atherosclerosis morbidity. To the best of our knowledge, this is the first AOP framework devoted to PM2.5-associated vascular calcification, which benefits future investigations by identifying current limitations and latent biomarkers.
Collapse
Affiliation(s)
- Ruiyang Ding
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Linyuan Huang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Kanglin Yan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, No. 10 Xitoutiao, You'anmen Wai, Fengtai District, Beijing 100069, PR China
| |
Collapse
|
16
|
Chen C, Liu Q, Li Y, Yu JW, Wang SD, Xu JL, Liu L. Circulating microRNA-33b levels are associated with the presence and severity of coronary heart disease. Scand J Clin Lab Invest 2024; 84:133-137. [PMID: 38597780 DOI: 10.1080/00365513.2024.2340751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 01/07/2024] [Indexed: 04/11/2024]
Abstract
MicroRNA-33b (miR-33b) affected various biological pathways in regulating cholesterol homeostasis which may link to the pathogenesis of atherosclerotic lesions. However, whether this marker is associated with the presence and severity of coronary heart disease (CHD) is undetermined. We aim to explore the diagnostic value of circulating miR-33b level in the presence and severity of CHD. Altogether 320 patients were enrolled, including 240 patients diagnosed with CHD while 80 were classified as controls after CAG examination. Circulating miR-33b level was analyzed in all subjects, the Gensini score was calculated to assess the severity of stenotic lesions. The association between miR-33b and the presence and severity of CHD was analyzed, and the diagnostic potential of miR-33b of CHD was performed by the receiver operating characteristic (ROC) analysis. The CHD group had higher miR-33b levels (p < 0.001), and the miR-33b content significantly elevated following an increasing Gensini score (p for trend < 0.001). After adjustments for potential risk factors, such as several blood lipid markers, miR-33b remained a significant determinant for CHD (p < 0.001). ROC analysis disclosed that the AUC was 0.931. The optimal cutoff value of miR-33b was with a sensitivity of 81.3% and a specificity of 98.7% in differentiating CHD. It can prognosticate that the higher level of miR-33b was linked to increased severity of disease in CHD patients. Thus, the application of this marker might assist in the diagnosis and classification of CHD patients. Nevertheless, additional studies with larger sample sizes will be required to verify these results.
Collapse
Affiliation(s)
- Chen Chen
- The First Department of Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Liu
- Department of the Treatment Center, Second Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yao Li
- Department of the Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jing-Wen Yu
- Department of the Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Shu-Di Wang
- Department of the Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Jia-Li Xu
- Department of the Graduate School, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Li Liu
- The First Department of Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Zhang H, Lin L, Yang A, Liang Y, Huang B. Scutellarin alleviates tensile stress-induced proliferation and migration of venous smooth muscle cells via mediating the p38 MAPK pathway. Tissue Cell 2024; 87:102300. [PMID: 38211409 DOI: 10.1016/j.tice.2024.102300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/08/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
OBJECTIVE Abnormal proliferation and migration of biomechanical force-induced venous smooth muscle cells (VSMCs) is a major cause to limit the efficacy of coronary artery bypass grafting (CABG) for coronary heart disease (CHD). Scutellarin is the main active ingredient of Erigeron Breviscapus, and has broad-spectrum pharmacological effects. Therefore, the present study was proposed to investigate the effect of Scutellarin on VSMCs under tensile stress. METHODS After interfering with VSMCs at different tensile stresses, the optimal tensile stress was screened. In a tensile stress environment, 100 μM Scutellarin and Hesperetin (p38 MAPK pathway activator) was used to treatment with VSMCs. CCK-8, EDU, Wound healing, flow cytometry and western blotting assays were used to detect cell proliferation, migration, apoptosis, and the expression of apoptosis-related proteins (Caspase3, Bcl2 and Bax). RESULTS Tensile stress with 10% significantly enhanced the activity, wound-healing ratio, and EDU+ cells of VSMCs, and decreased their apoptosis ratio. Moreover, it upregulated Bcl2 expression, and downregulated cleaved-Caspase3 and Bax expression of VSMCs. Hence, 10% tensile stress was selected to creates a tensile stress environment for VSMCs. Interestingly, 100 μM Scutellarin alleviated the effect of 10% tensile stress on the phenotype of VSMCs. Notably, 10% tensile stress increased the phosphorylation level of p38 MAPK (Thr180 +Tyr182) in VSMCs, which was restricted by Scutellarin. Further, Hesperetin restored the effect of Scutellarin on the phenotype of VSMCs. CONCLUSION Scutellarin alleviates tension stress-induced proliferation and migration of VSMCs via suppressing p38 MAPK pathway. Scutellarin may be used as an adjunctive strategy for future GABG treatment in CHD patients.
Collapse
Affiliation(s)
- Hu Zhang
- Departments of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ling Lin
- Departments of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Ailing Yang
- Departments of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Yasha Liang
- Departments of Cardiology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Bo Huang
- Operating Room, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
18
|
Fu Q, Wang Y, Yan C, Xiang YK. Phosphodiesterase in heart and vessels: from physiology to diseases. Physiol Rev 2024; 104:765-834. [PMID: 37971403 PMCID: PMC11281825 DOI: 10.1152/physrev.00015.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
Phosphodiesterases (PDEs) are a superfamily of enzymes that hydrolyze cyclic nucleotides, including cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Both cyclic nucleotides are critical secondary messengers in the neurohormonal regulation in the cardiovascular system. PDEs precisely control spatiotemporal subcellular distribution of cyclic nucleotides in a cell- and tissue-specific manner, playing critical roles in physiological responses to hormone stimulation in the heart and vessels. Dysregulation of PDEs has been linked to the development of several cardiovascular diseases, such as hypertension, aneurysm, atherosclerosis, arrhythmia, and heart failure. Targeting these enzymes has been proven effective in treating cardiovascular diseases and is an attractive and promising strategy for the development of new drugs. In this review, we discuss the current understanding of the complex regulation of PDE isoforms in cardiovascular function, highlighting the divergent and even opposing roles of PDE isoforms in different pathogenesis.
Collapse
Affiliation(s)
- Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Ying Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, United States
| | - Yang K Xiang
- Department of Pharmacology, University of California at Davis, Davis, California, United States
- Department of Veterans Affairs Northern California Healthcare System, Mather, California, United States
| |
Collapse
|
19
|
Terriaca S, Ferlosio A, Scioli MG, Coppa F, Bertoldo F, Pisano C, Belmonte B, Balistreri CR, Orlandi A. miRNA Regulation of Cell Phenotype and Parietal Remodeling in Atherosclerotic and Non-Atherosclerotic Aortic Aneurysms: Differences and Similarities. Int J Mol Sci 2024; 25:2641. [PMID: 38473887 DOI: 10.3390/ijms25052641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Aortic aneurysms are a serious health concern as their rupture leads to high morbidity and mortality. Abdominal aortic aneurysms (AAAs) and thoracic aortic aneurysms (TAAs) exhibit differences and similarities in their pathophysiological and pathogenetic features. AAA is a multifactorial disease, mainly associated with atherosclerosis, characterized by a relevant inflammatory response and calcification. TAA is rarely associated with atherosclerosis and in some cases is associated with genetic mutations such as Marfan syndrome (MFS) and bicuspid aortic valve (BAV). MFS-related and non-genetic or sporadic TAA share aortic degeneration with endothelial-to-mesenchymal transition (End-Mt) and fibrosis, whereas in BAV TAA, aortic degeneration with calcification prevails. microRNA (miRNAs) contribute to the regulation of aneurysmatic aortic remodeling. miRNAs are a class of non-coding RNAs, which post-transcriptionally regulate gene expression. In this review, we report the involvement of deregulated miRNAs in the different aortic remodeling characterizing AAAs and TAAs. In AAA, miRNA deregulation appears to be involved in parietal inflammatory response, smooth muscle cell (SMC) apoptosis and aortic wall calcification. In sporadic and MFS-related TAA, miRNA deregulation promotes End-Mt, SMC myofibroblastic phenotypic switching and fibrosis with glycosaminoglycan accumulation. In BAV TAA, miRNA deregulation sustains aortic calcification. Those differences may support the development of more personalized therapeutic approaches.
Collapse
Affiliation(s)
- Sonia Terriaca
- Anatomic Pathology, Policlinico Tor Vergata, 00133 Rome, Italy
| | - Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Francesca Coppa
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| | - Fabio Bertoldo
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Calogera Pisano
- Cardiac Surgery Unit, Department of Surgery, Tor Vergata University, 00133 Rome, Italy
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Sciences, University of Palermo, 90134 Palermo, Italy
- Azienda sanitaria Provinciale di Catania (ASP), 95124 Catania, Italy
| | - Carmela Rita Balistreri
- Cellular and Molecular Laboratory, Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90134 Palermo, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University, 00133 Rome, Italy
| |
Collapse
|
20
|
Chiarelli N, Cinquina V, Martini P, Bertini V, Zoppi N, Venturini M, Ritelli M, Colombi M. Deciphering disease signatures and molecular targets in vascular Ehlers-Danlos syndrome through transcriptome and miRNome sequencing of dermal fibroblasts. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166915. [PMID: 37827202 DOI: 10.1016/j.bbadis.2023.166915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/14/2023]
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) is a severe connective tissue disorder caused by dominant mutations in the COL3A1 gene encoding type III collagen (COLLIII). COLLIII is primarily found in blood vessels and hollow organs, and its deficiency leads to soft connective tissues fragility, resulting in life-threatening arterial and organ ruptures. There are no current targeted therapies available. Although the disease usually results from COLLIII misfolding due to triple helix structure disruption, the underlying pathomechanisms are largely unknown. To address this knowledge gap, we performed a comprehensive transcriptome analysis using RNA- and miRNA-seq on a large cohort of dermal fibroblasts from vEDS patients and healthy donors. Our investigation revealed an intricate interplay between proteostasis abnormalities, inefficient endoplasmic reticulum stress response, and compromised autophagy, which may significantly impact the molecular pathology. We also present the first detailed miRNAs expression profile in patient cells, demonstrating that several aberrantly expressed miRNAs can disrupt critical cellular functions involved in vEDS pathophysiology, such as autophagy, proteostasis, and mTOR signaling. Target prediction and regulatory networks analyses suggested potential interactions among miRNAs, lncRNAs, and candidate target genes linked to extracellular matrix organization and autophagy-lysosome pathway. Our results highlight the importance of understanding the functional role of ncRNAs in vEDS pathogenesis, shedding light on possible miRNAs and lncRNAs signatures and their functional implications for dysregulated pathways related to disease. Deciphering this complex molecular network of RNA interactions may yield additional evidence for potential disease biomolecules and targets, assisting in the design of effective patient treatment strategies.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy.
| | - Valeria Cinquina
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Paolo Martini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Valeria Bertini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Nicoletta Zoppi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Venturini
- Division of Dermatology, Department of Clinical and Experimental Sciences, Spedali Civili University Hospital Brescia, 25121 Brescia, Italy
| | - Marco Ritelli
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| | - Marina Colombi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25121 Brescia, Italy
| |
Collapse
|