1
|
Hu C, Francisco J, Del Re DP, Sadoshima J. Decoding the Impact of the Hippo Pathway on Different Cell Types in Heart Failure. Circ J 2024; 89:6-15. [PMID: 38644191 DOI: 10.1253/circj.cj-24-0171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The evolutionarily conserved Hippo pathway plays a pivotal role in governing a variety of biological processes. Heart failure (HF) is a major global health problem with a significant risk of mortality. This review provides a contemporary understanding of the Hippo pathway in regulating different cell types during HF. Through a systematic analysis of each component's regulatory mechanisms within the Hippo pathway, we elucidate their specific effects on cardiomyocytes, fibroblasts, endothelial cells, and macrophages in response to various cardiac injuries. Insights gleaned from both in vitro and in vivo studies highlight the therapeutic promise of targeting the Hippo pathway to address cardiovascular diseases, particularly HF.
Collapse
Affiliation(s)
- Chengchen Hu
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Jamie Francisco
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Dominic P Del Re
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School
| |
Collapse
|
2
|
Liu D, Cheng X, Wu H, Song H, Bu Y, Wang J, Zhang X, Yan C, Han Y. CREG1 attenuates doxorubicin-induced cardiotoxicity by inhibiting the ferroptosis of cardiomyocytes. Redox Biol 2024; 75:103293. [PMID: 39094399 PMCID: PMC11345695 DOI: 10.1016/j.redox.2024.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/27/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVE Doxorubicin (DOX)-induced cardiotoxicity limits the application of DOX in cancer patients. Currently, there is no effective prevention or treatment for DOX-induced cardiotoxicity. The cellular repressor of E1A-stimulated genes (CREG1) is a cardioprotective factor that plays an important role in the maintenance of cardiomyocytes differentiation and homeostasis. However, the role and mechanism of CREG1 in DOX-induced cardiotoxicity has not yet been elucidated. METHODS In vivo, C57BL/6J mice, CREG1 transgenic and cardiac-specific CREG1 knockout mice were used to establish a DOX-induced cardiotoxicity model. H&E staining, Masson's trichrome, WGA staining, real-time PCR, and western blotting were performed to examine fibrosis and ferroptosis in the myocardium. In vitro, neonatal mouse cardiomyocytes (NMCMs) were cultured and stimulated with DOX, CREG1-overexpressed adenovirus, and small interfering RNA was used to establish CREG1 overexpression or knockdown cardiomyocytes. Transcriptomics, real-time PCR, western blotting, and immunoprecipitation were used to examine the roles and mechanisms of CREG1 in cardiomyocytes ferroptosis. RESULTS The mRNA and protein levels of CREG1 were reduced in the hearts and NMCMs after DOX treatment. CREG1 overexpression alleviated myocardial damage and inhibited DOX-induced ferroptosis in the myocardium. CREG1 deficiency in the heart aggravated DOX-induced cardiotoxicity and ferroptosis. In vitro, CREG1 overexpression inhibited cardiomyocytes ferroptosis induced by DOX, and CREG1 knockdown aggravated DOX-induced cardiotoxicity. Mechanistically, CREG1 inhibited the mRNA and protein expression of pyruvate dehydrogenase kinase 4 (PDK4) by regulating the F-box and WD repeat domain containing 7 (FBXW7)-forkhead box O1 (FOXO1) pathway. PDK4 deficiency reversed the effects of CREG1 knockdown on cardiomyocytes ferroptosis following DOX treatment. CONCLUSION CREG1 alleviated DOX-induced cardiotoxicity by inhibiting ferroptosis in cardiomyocytes. Our findings may help clarify the new roles of CREG1 in the development of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaoli Cheng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China; Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hanlin Wu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Haixu Song
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuxin Bu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Jing Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiaolin Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, China.
| |
Collapse
|
3
|
Tan M, Mao J, Zheng J, Meng Y, Li J, Hao J, Shen H. Mammalian STE20-like kinase 1 inhibits synoviocytes activation in rheumatoid arthritis through mitochondrial dysfunction mediated by SIRT3/mTOR axis. Inflamm Res 2024; 73:415-432. [PMID: 38265688 DOI: 10.1007/s00011-023-01846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
BACKGROUND Mammalian STE20-like kinase 1 (MST1) is involved in the occurrence of cancer and autoimmune diseases by regulating cell proliferation, differentiation, apoptosis and other functions. However, its role and downstream targets in rheumatoid arthritis (RA) remain unclear. METHODS The model of RA fibroblast-like synoviocytes (RA-FLSs) overexpressing MST1 was constructed by lentiviral transfection in vitro and analyzed the effects of MST1 on apoptosis, migration, invasion, and inflammation of RA-FLSs. The effect of MST1 on joint synovial membrane inflammation and bone destruction was observed in vivo by establishing a rat model of arthritis with complete Freund's adjuvant. RESULTS MST1 is down-regulated in RA-FLSs, and up-regulation of MST1 inhibits the survival, migration, invasion and inflammation of RA-FLSs. Mechanistically, MST1 inhibits SIRT3/mTOR-signaling pathway, inducing decreased mitochondrial autophagy and increased mitochondrial fission, resulting in mitochondrial morphological abnormalities and dysfunction, and ultimately increased apoptosis. We have observed that activation of MST1 alleviates synovial inflammation and bone erosion in vivo. CONCLUSIONS MST1 reduces the survival, migration, invasion and inflammation of FLSs by inhibiting the SIRT3/mTOR axis to reduce mitochondrial autophagy and promote mitochondrial division, thereby achieving the potential role of relieving rheumatoid arthritis.
Collapse
Affiliation(s)
- Min Tan
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jing Mao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jianxiong Zheng
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Yu Meng
- Department of Pain, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jun Li
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Jiayao Hao
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China
- The Second Clinical Medical College, Lanzhou University, Lanzhou, People's Republic of China
| | - Haili Shen
- Department of Rheumatology, Lanzhou University Second Hospital, No. 82, Cui Ying Men Street, Lanzhou City, 730030, Gansu Province, People's Republic of China.
| |
Collapse
|
4
|
Du L, Lu H, Wang Z, Liu C, Xiao Y, Guo Z, Li Y. Therapeutic Potential of Ginsenoside Rb1-PLGA Nanoparticles for Heart Failure Treatment via the ROS/PPARα/PGC1α Pathway. Molecules 2023; 28:8118. [PMID: 38138606 PMCID: PMC10745441 DOI: 10.3390/molecules28248118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
(1) Background: Ginsenoside Rb1-PLGA nanoparticles (GRb1@PLGA@NPs) represent a novel nanotherapeutic system, yet their therapeutic efficacy and underlying mechanisms for treating heart failure (HF) remain unexplored. This study aims to investigate the potential mechanisms underlying the therapeutic effects of GRb1@PLGA@NPs in HF treatment; (2) Methods: The left anterior descending coronary artery ligation was employed to establish a HF model in Sprague-Dawley rats, along with an in vitro oxidative stress model using H9c2 myocardial cells. Following treatment with GRb1@PLGA@NPs, cardiac tissue pathological changes and cell proliferation were observed. Additionally, the serum levels of biomarkers such as NT-proBNP, TNF-α, and IL-1β were measured, along with the expression of the ROS/PPARα/PGC1α pathway; (3) Results: GRb1@PLGA@NPs effectively ameliorated the pathological status of cardiac tissues in HF rats, mitigated oxidative stress-induced myocardial cell damage, elevated SOD and MMP levels, and reduced LDH, MDA, ROS, NT-proBNP, TNF-α, and IL-1β levels. Furthermore, the expression of PPARα and PGC1α proteins was upregulated; (4) Conclusions: GRb1@PLGA@NPs may attenuate myocardial cell injury and treat HF through the ROS/PPARα/PGC1α pathway.
Collapse
Affiliation(s)
- Lixin Du
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.D.); (H.L.); (Y.X.)
| | - Huiling Lu
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.D.); (H.L.); (Y.X.)
| | - Ziyan Wang
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (C.L.); (Z.G.)
| | - Chengxin Liu
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (C.L.); (Z.G.)
| | - Yifei Xiao
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.D.); (H.L.); (Y.X.)
| | - Zhihua Guo
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (Z.W.); (C.L.); (Z.G.)
| | - Ya Li
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.D.); (H.L.); (Y.X.)
| |
Collapse
|
5
|
Zhong Z, Gao Y, Zhou J, Wang F, Zhang P, Hu S, Wu H, Lou H, Chi J, Lin H, Guo H. Inhibiting mir-34a-5p regulates doxorubicin-induced autophagy disorder and alleviates myocardial pyroptosis by targeting Sirt3-AMPK pathway. Biomed Pharmacother 2023; 168:115654. [PMID: 37806095 DOI: 10.1016/j.biopha.2023.115654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/27/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023] Open
Abstract
Doxorubicin (DOX) is a commonly used chemotherapy drug widely applied in various cancers such as breast cancer, leukemia, and sarcomas. However, its usage is limited by cardiotoxicity. Additionally, the cardiac toxicity of DOX accumulates with dose and duration, making it imperative to identify therapeutic targets for DOX-induced cardiomyopathy (DIC). It has been reported that miRNAs are involved in the progression of DIC. Mir-34a-5p has been identified as an early diagnostic marker for DIC. While studies have shown the involvement of mir-34a-5p in DIC apoptosis, it has not been validated in animal models, nor has the potential improvement of DIC by inhibiting mir-34a-5p been confirmed. Autophagy and pyroptosis are key factors in the development of DIC and can serve as therapeutic targets for its treatment. In this study, we found that mir-34a-5p was upregulated in the heart after DOX treatment and that the inhibition of mir-34-5p reduced autophagy and pyroptosis in DIC. We also found that the inhibition of mir-34a-5p inhibited pyroptosis by regulating autophagy and reducing mitochondrial reactive oxygen species. Moreover, we identified Sirtuin3 (Sirt3) as a target gene of mir-34a-5p using a double-luciferase reporter assay. overexpression Sirt3 reduced pyroptosis by alleviating autophagy. Our research findings suggest that inhibiting mir-34a-5p has a beneficial role in alleviating autophagy and pyroptosis in DIC. This provides therapeutic prospects for treating DIC.
Collapse
Affiliation(s)
- Zuoquan Zhong
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; School of Medicine, Shaoxing University, Shaoxing, China; Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Yefei Gao
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Jiedong Zhou
- School of Medicine, Shaoxing University, Shaoxing, China
| | - Fang Wang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Peipei Zhang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Songqing Hu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Haowei Wu
- Zhejiang University School of Medicine, Hangzhou, China
| | - Haifei Lou
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China; Healthy Science Center, The Affiliated Lihuili Hospital of Ningbo University, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hangyuan Guo
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China; School of Medicine, Shaoxing University, Shaoxing, China; Department of Cardiology, Shaoxing People's Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing 312000, Zhejiang, China.
| |
Collapse
|