1
|
Sun X, Feng Y, Xie L, Wu Y, Mao J, Zhang Y, Zhang L, Yuan X, Ni J, Xiao X, Liu H, Dai L, Ma F. Maternal plasma extracellular vesicles tsRNA as potential biomarkers for assessing preterm labor risk. BMC Pregnancy Childbirth 2025; 25:553. [PMID: 40348952 PMCID: PMC12065249 DOI: 10.1186/s12884-025-07672-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/29/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Spontaneous preterm labor (PTL) accounts for approximately 70% of preterm births, posing significant risks to both maternal and neonatal health. Current predictive biomarkers lack sufficient reliability, underscoring the need for non-invasive and dependable indicators. Emerging research indicates that tRNA-derived small RNAs (tsRNAs) are involved in various diseases; however, their potential association with PTL remains underexplored. METHODS Bioinformatics analyses of public GEO datasets (PRJNA415953 and PRJNA428989) were conducted to identify tsRNAs associated with PTL. Validation was performed using plasma extracellular vesicles samples collected at 12 weeks of gestation from PTL patients (n = 45) and healthy controls (n = 38). Functional assays were used to assess the impact of tsRNA1 (tRNA-Gly-GCC-5p-tRF-921) on extravillous trophoblast (EVT) function, including apoptosis, migration, invasion, and endothelial-like tube formation in HTR8/SVneo cells. Transcriptomic sequencing was conducted to identify tsRNA1-mediated pathways, and DNA methylation patterns were predicted based on the transcriptomic data. Statistical significance was determined using Student's t-test. RESULTS Two tsRNAs, tsRNA1 and tsRNA3 (tRNA-Gly-GCC-5p-tR-half-368), were significantly upregulated in PTL patient samples compared to controls. Overexpression of tsRNA1 impaired EVT function, increased apoptosis, and altered DNA methylation profiles, implicating its critical role in PTL mechanisms. CONCLUSIONS This study identifies tsRNA1 as a key regulator of EVT dysfunction and placental pathology in PTL. The findings provide novel insights into the mechanistic role of tsRNAs in PTL and highlight tsRNA1 as a promising biomarker for early risk stratification and prediction of the condition. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinrui Sun
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Feng
- Department of Histology, Embryology and Neurobiology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liang Xie
- The Joint Laboratory for Pulmonary Development and Related Diseases, West China Second University Hospital, West China Institute of Women and Children's Health, Sichuan University, Chengdu, Sichuan, China
| | - Yilun Wu
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jia Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, State Key Laboratory of Biotherapy and Cancer Center, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Yi Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Linyu Zhang
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Yuan
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jiangping Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xue Xiao
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| | - Hanmin Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Li Dai
- National Center for Birth Defects Monitoring, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- National Health Commission Key Laboratory of Chronobiology (Sichuan University), Chengdu, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China.
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), West China Second University Hospital, Ministry of Education, Sichuan University, Chengdu, Sichuan, 610041, P. R. China.
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
2
|
Wang M, Zhang L, Liu Z, Guo A, Yang G, Yu T. Host-Microbiota Interactions in the Pathogenesis of Porcine Fetal Mummification. Microorganisms 2025; 13:1052. [PMID: 40431225 PMCID: PMC12113762 DOI: 10.3390/microorganisms13051052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
The number of mummies (MUM) in pigs is a major factor affecting sow reproductive performance. Reducing the incidence of MUM can effectively improve sow utilization efficiency. However, the complex mechanisms by which the host genome, gut microbiome, and metabolome interact to influence sow MUM remain unclear. Based on the current research landscape, this study systematically reveals the regulatory mechanisms of the host genome-gut microbiome-metabolome interaction network on sow MUM. By conducting a multi-omics analysis on the intestinal contents of Yorkshire sows during late gestation across different parities, we constructed a dynamic atlas of the gut microbiota and identified 385 core microbial taxa. Through multi-model MWAS and meta-analysis, we screened six key microbial taxa significantly associated with MUM, including Bacteroidales_RF16_group, Prevotellaceae_Ga6A1_group, Comamonas, Paraprevotella, Dorea, and Gallicola. An mGWAS analysis further identified Bacteroidales_RF16_group as regulated by host genetics, as well as candidate genes such as EGF, ENPEP, and CASP6, and important SNP loci such as rs345237235 and rs3475666995. The study found that the abundance of Proteobacteria in the sow's gut increased progressively from the first parity, providing a theoretical basis for pathogen suppression mechanisms. By integrating fecal metabolomics data, we constructed a four-dimensional regulatory network of host gene-gut microbiota-metabolite-host phenotype. This study innovatively combines quantitative genetics with multi-omics approaches, not only providing a theoretical foundation for understanding host-microbiota interaction mechanisms but also offering critical scientific guidance for reducing sow MUM incidence and improving reproductive efficiency.
Collapse
Affiliation(s)
| | | | | | | | - Gongshe Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| | - Taiyong Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Laboratory of Animal Fat Deposition & Muscle Development, College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|