1
|
Alonso Villela SM, Kraïem-Ghezal H, Bouhaouala-Zahar B, Bideaux C, Aceves Lara CA, Fillaudeau L. Production of recombinant scorpion antivenoms in E. coli: current state and perspectives. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12578-1. [PMID: 37199752 DOI: 10.1007/s00253-023-12578-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Scorpion envenomation is a serious health problem in tropical and subtropical zones. The access to scorpion antivenom is sometimes limited in availability and specificity. The classical production process is cumbersome, from the hyper-immunization of the horses to the IgG digestion and purification of the F(ab)'2 antibody fragments. The production of recombinant antibody fragments in Escherichia coli is a popular trend due to the ability of this microbial host to produce correctly folded proteins. Small recombinant antibody fragments, such as single-chain variable fragments (scFv) and nanobodies (VHH), have been constructed to recognize and neutralize the neurotoxins responsible for the envenomation symptoms in humans. They are the focus of interest of the most recent studies and are proposed as potentially new generation of pharmaceuticals for their use in immunotherapy against scorpion stings of the Buthidae family. This literature review comprises the current status on the scorpion antivenom market and the analyses of cross-reactivity of commercial scorpion anti-serum against non-specific scorpion venoms. Recent studies on the production of new recombinant scFv and nanobodies will be presented, with a focus on the Androctonus and Centruroides scorpion species. Protein engineering-based technology could be the key to obtaining the next generation of therapeutics capable of neutralizing and cross-reacting against several types of scorpion venoms. KEY POINTS: • Commercial antivenoms consist of predominantly purified equine F(ab)'2fragments. • Nanobody-based antivenom can neutralize Androctonus venoms and have a low immunogenicity. • Affinity maturation and directed evolution are used to obtain potent scFv families against Centruroides scorpions.
Collapse
Affiliation(s)
| | - Hazar Kraïem-Ghezal
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia
| | - Balkiss Bouhaouala-Zahar
- Laboratoire Des Venins Et Molécules Thérapeutiques, Institut Pasteur de Tunis, Université de Tunis El Manar, 13 Place Pasteur BP74, 1002, Tunis, Tunisia.
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisia.
| | - Carine Bideaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Luc Fillaudeau
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
2
|
Effect of temperature on the production of a recombinant antivenom in fed-batch mode. Appl Microbiol Biotechnol 2021; 105:1017-1030. [PMID: 33443635 DOI: 10.1007/s00253-021-11093-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/19/2020] [Accepted: 01/03/2021] [Indexed: 10/22/2022]
Abstract
In the pharmaceutical industry, nanobodies show promising properties for its application in serotherapy targeting the highly diffusible scorpion toxins. The production of recombinant nanobodies in Escherichia coli has been widely studied in shake flask cultures in rich medium. However, there are no upstream bioprocess studies of nanobody production in defined minimal medium and the effect of the induction temperature on the production kinetics. In this work, the effect of the temperature during the expression of the chimeric bispecific nanobody CH10-12 form, showing high scorpion antivenom potential, was studied in bioreactor cultures of E. coli. High biomass concentrations (25 g cdw/L) were achieved in fed-batch mode, and the expression of the CH10-12 nanobody was induced at temperatures 28, 29, 30, 33, and 37°C with a constant glucose feed. For the bispecific form NbF12-10, the induction was performed at 29°C. Biomass and carbon dioxide yields were reported for each culture phase, and the maintenance coefficient was obtained for each strain. Nanobody production in the CH10-12 strain was higher at low temperatures (lower than 30°C) and declined with the increase of the temperature. At 29°C, the CH10-12, NbF12-10, and WK6 strains were compared. Strains CH10-12 and NbF12-10 had a productivity of 0.052 and 0.021 mg/L/h of nanobody, respectively, after 13 h of induction. The specific productivity of the nanobodies was modeled as a function of the induction temperature and the specific growth rates. Experimental results confirm that low temperatures increase the productivity of the nanobody.Key points• Nanobodies with scorpion antivenom activity produced using two recombinant strains.• Nanobodies production was achieved in fed-batch cultures at different induction temperatures.• Low induction temperatures result in high volumetric productivities of the nanobody CH10-12.
Collapse
|
3
|
Nazari A, Samianifard M, Rabie H, Mirakabadi AZ. Recombinant antibodies against Iranian cobra venom as a new emerging therapy by phage display technology. J Venom Anim Toxins Incl Trop Dis 2020; 26:e20190099. [PMID: 32695146 PMCID: PMC7346683 DOI: 10.1590/1678-9199-jvatitd-2019-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: The production of antivenom from immunized animals is an established treatment for snakebites; however, antibody phage display technology may have the capacity to delivery results more quickly and with a better match to local need. Naja oxiana, the Iranian cobra, is a medically important species, responsible for a significant number of deaths annually. This study was designed as proof of principle to determine whether recombinant antibodies with the capacity to neutralize cobra venom could be isolated by phage display. Methods: Toxic fractions from cobra venom were prepared by chromatography and used as targets in phage display to isolate recombinant antibodies from a human scFv library. Candidate antibodies were expressed in E. coli HB2151 and purified by IMAC chromatography. The selected clones were analyzed in in vivo and in vitro experiments. Results: Venom toxicity was contained in two fractions. Around a hundred phage clones were isolated against each fraction, those showing the best promise were G12F3 and G1F4. While all chosen clones showed low but detectable neutralizing effect against Naja oxiana venom, clone G12F3 could inhibit PLA2 activity. Conclusion: Therefore, phage display is believed to have a good potential as an approach to the development of snake antivenom.
Collapse
Affiliation(s)
- Ali Nazari
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Maedeh Samianifard
- Department of Biochemistry and Proteomics, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Hadi Rabie
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Abbas Zare Mirakabadi
- Department of Venomous Animals, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Cnudde T, Lakhrif Z, Bourgoin J, Boursin F, Horiot C, Henriquet C, di Tommaso A, Juste MO, Jiacomini IG, Dimier-Poisson I, Pugnière M, Mévélec MN, Aubrey N. Exploration and Modulation of Antibody Fragment Biophysical Properties by Replacing the Framework Region Sequences. Antibodies (Basel) 2020; 9:E9. [PMID: 32326443 PMCID: PMC7344962 DOI: 10.3390/antib9020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 02/06/2023] Open
Abstract
In order to increase the successful development of recombinant antibodies and fragments, it seems fundamental to enhance their expression and/or biophysical properties, such as the thermal, chemical, and pH stabilities. In this study, we employed a method bases on replacing the antibody framework region sequences, in order to promote more particularly single-chain Fragment variable (scFv) product quality. We provide evidence that mutations of the VH- C-C' loop might significantly improve the prokaryote production of well-folded and functional fragments with a production yield multiplied by 27 times. Additional mutations are accountable for an increase in the thermal (+19.6 °C) and chemical (+1.9 M) stabilities have also been identified. Furthermore, the hereby-produced fragments have shown to remain stable at a pH of 2.0, which avoids molecule functional and structural impairments during the purification process. Lastly, this study provides relevant information to the understanding of the relationship between the antibodies amino acid sequences and their respective biophysical properties.
Collapse
Affiliation(s)
- Thomas Cnudde
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Zineb Lakhrif
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Justine Bourgoin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Fanny Boursin
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Catherine Horiot
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | - Corinne Henriquet
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | - Anne di Tommaso
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| | | | - Isabella Gizzi Jiacomini
- Laboratório de Imunoquímica, Departamento de Patologia Básica, Universidade Federal do Paraná, Curitiba 81530, PR, Brazil
| | | | - Martine Pugnière
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer, 34090 Montpellier, France
| | | | - Nicolas Aubrey
- INRAE, ISP, Université de Tours, F-37000 Tours, France; (T.C.); (Z.L.)
| |
Collapse
|
5
|
Williams HF, Layfield HJ, Vallance T, Patel K, Bicknell AB, Trim SA, Vaiyapuri S. The Urgent Need to Develop Novel Strategies for the Diagnosis and Treatment of Snakebites. Toxins (Basel) 2019; 11:E363. [PMID: 31226842 PMCID: PMC6628419 DOI: 10.3390/toxins11060363] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/18/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
Snakebite envenoming (SBE) is a priority neglected tropical disease, which kills in excess of 100,000 people per year. Additionally, many millions of survivors also suffer through disabilities and long-term health consequences. The only treatment for SBE, antivenom, has a number of major associated problems, not least, adverse reactions and limited availability. This emphasises the necessity for urgent improvements to the management of this disease. Administration of antivenom is too frequently based on symptomatology, which results in wasting crucial time. The majority of SBE-affected regions rely on broad-spectrum polyvalent antivenoms that have a low content of case-specific efficacious immunoglobulins. Research into small molecular therapeutics such as varespladib/methyl-varespladib (PLA2 inhibitors) and batimastat/marimastat (metalloprotease inhibitors) suggest that such adjunctive treatments could be hugely beneficial to victims. Progress into toxin-specific monoclonal antibodies as well as alternative binding scaffolds such as aptamers hold much promise for future treatment strategies. SBE is not implicit during snakebite, due to venom metering. Thus, the delay between bite and symptom presentation is critical and when symptoms appear it may often already be too late to effectively treat SBE. The development of reliable diagnostical tools could therefore initiate a paradigm shift in the treatment of SBE. While the complete eradication of SBE is an impossibility, mitigation is in the pipeline, with new treatments and diagnostics rapidly emerging. Here we critically review the urgent necessity for the development of diagnostic tools and improved therapeutics to mitigate the deaths and disabilities caused by SBE.
Collapse
Affiliation(s)
| | | | - Thomas Vallance
- School of Pharmacy, University of Reading, Reading RG6 6AH, UK.
| | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | - Andrew B Bicknell
- School of Biological Sciences, University of Reading, Reading RG6 6AH, UK.
| | | | | |
Collapse
|
6
|
Martin-Eauclaire MF, Adi-Bessalem S, Hammoudi-Triki D, Laraba-Djebari F, Bougis PE. Serotherapy against Voltage-Gated Sodium Channel-Targeting αToxins from Androctonus Scorpion Venom. Toxins (Basel) 2019; 11:toxins11020063. [PMID: 30678116 PMCID: PMC6410273 DOI: 10.3390/toxins11020063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Because of their venom lethality towards mammals, scorpions of the Androctonus genus are considered a critical threat to human health in North Africa. Several decades of exploration have led to a comprehensive inventory of their venom components at chemical, pharmacological, and immunological levels. Typically, these venoms contain selective and high affinity ligands for the voltage-gated sodium (Nav) and potassium (Kv) channels that dictate cellular excitability. In the well-studied Androctonus australis and Androctonus mauretanicus venoms, almost all the lethality in mammals is due to the so-called α-toxins. These peptides commonly delay the fast inactivation process of Nav channels, which leads to increased sodium entry and a subsequent cell membrane depolarization. Markedly, their neutralization by specific antisera has been shown to completely inhibit the venom’s lethal activity, because they are not only the most abundant venom peptide but also the most fatal. However, the structural and antigenic polymorphisms in the α-toxin family pose challenges to the design of efficient serotherapies. In this review, we discuss past and present accomplishments to improve serotherapy against Androctonus scorpion stings.
Collapse
Affiliation(s)
| | - Sonia Adi-Bessalem
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Djelila Hammoudi-Triki
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Fatima Laraba-Djebari
- Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, USTHB, BP 32, El-Alia Bab Ezzouar, 16111 Algiers, Algeria.
| | - Pierre E Bougis
- Laboratory of Cognitive Neuroscience, CNRS, Aix Marseille Univ, UMR 7291, 13003 Marseille, France.
| |
Collapse
|
7
|
Schlake T, Thess A, Thran M, Jordan I. mRNA as novel technology for passive immunotherapy. Cell Mol Life Sci 2019; 76:301-328. [PMID: 30334070 PMCID: PMC6339677 DOI: 10.1007/s00018-018-2935-4] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
Abstract
While active immunization elicits a lasting immune response by the body, passive immunotherapy transiently equips the body with exogenously generated immunological effectors in the form of either target-specific antibodies or lymphocytes functionalized with target-specific receptors. In either case, administration or expression of recombinant proteins plays a fundamental role. mRNA prepared by in vitro transcription (IVT) is increasingly appreciated as a drug substance for delivery of recombinant proteins. With its biological role as transient carrier of genetic information translated into protein in the cytoplasm, therapeutic application of mRNA combines several advantages. For example, compared to transfected DNA, mRNA harbors inherent safety features. It is not associated with the risk of inducing genomic changes and potential adverse effects are only temporary due to its transient nature. Compared to the administration of recombinant proteins produced in bioreactors, mRNA allows supplying proteins that are difficult to manufacture and offers extended pharmacokinetics for short-lived proteins. Based on great progress in understanding and manipulating mRNA properties, efficacy data in various models have now demonstrated that IVT mRNA constitutes a potent and flexible platform technology. Starting with an introduction into passive immunotherapy, this review summarizes the current status of IVT mRNA technology and its application to such immunological interventions.
Collapse
Affiliation(s)
- Thomas Schlake
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany.
| | - Andreas Thess
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Moritz Thran
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| | - Ingo Jordan
- CureVac AG, Paul-Ehrlich-Str. 15, 72076, Tübingen, Germany
| |
Collapse
|
8
|
|
9
|
Hervé-Aubert K, Allard-Vannier E, Joubert N, Lakhrif Z, Alric C, Martin C, Viaud-Massuard MC, Dimier-Poisson I, Aubrey N, Chourpa I. Impact of Site-Specific Conjugation of ScFv to Multifunctional Nanomedicines Using Second Generation Maleimide. Bioconjug Chem 2018; 29:1553-1559. [DOI: 10.1021/acs.bioconjchem.8b00091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | - Nicolas Joubert
- GICC CNRS UMR 7292, Team IMT, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | - Zineb Lakhrif
- UMR Université-INRA ISP 1282, Team BioMAP, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | - Christophe Alric
- EA6295 NMNS, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | - Camille Martin
- GICC CNRS UMR 7292, Team IMT, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | | | - Isabelle Dimier-Poisson
- UMR Université-INRA ISP 1282, Team BioMAP, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | - Nicolas Aubrey
- UMR Université-INRA ISP 1282, Team BioMAP, Université de Tours, 31 avenue Monge, 37200 Tours, France
| | - Igor Chourpa
- EA6295 NMNS, Université de Tours, 31 avenue Monge, 37200 Tours, France
| |
Collapse
|
10
|
Karim-Silva S, Moura JD, Noiray M, Minozzo JC, Aubrey N, Alvarenga LM, Billiald P. Generation of recombinant antibody fragments with toxin-neutralizing potential in loxoscelism. Immunol Lett 2016; 176:90-6. [DOI: 10.1016/j.imlet.2016.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 01/22/2023]
|
11
|
Alric C, Aubrey N, Allard-Vannier É, di Tommaso A, Blondy T, Dimier-Poisson I, Chourpa I, Hervé-Aubert K. Covalent conjugation of cysteine-engineered scFv to PEGylated magnetic nanoprobes for immunotargeting of breast cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra06076e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Orientation- and site-directed covalent conjugation of cysteine-engineered scFv to PEGylated SPIONs allows antigen recognition while preserving colloidal properties of nanoprobes.
Collapse
Affiliation(s)
- Christophe Alric
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Nicolas Aubrey
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Émilie Allard-Vannier
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Anne di Tommaso
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Thibaut Blondy
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Isabelle Dimier-Poisson
- Université François Rabelais de Tours
- UMR1282 INRA ‘Infectiologie et Santé Publique’
- F 37000 Tours
- France
| | - Igor Chourpa
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| | - Katel Hervé-Aubert
- Université François Rabelais de Tours
- EA6295 ‘Nanomédicaments et Nanosondes’
- F 37200 Tours
- France
| |
Collapse
|
12
|
Lakhrif Z, Pugnière M, Henriquet C, di Tommaso A, Dimier-Poisson I, Billiald P, Juste MO, Aubrey N. A method to confer Protein L binding ability to any antibody fragment. MAbs 2015; 8:379-88. [PMID: 26683650 PMCID: PMC4966575 DOI: 10.1080/19420862.2015.1116657] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Recombinant antibody single-chain variable fragments (scFv) are difficult to purify homogeneously from a protein complex mixture. The most effective, specific and fastest method of purification is an affinity chromatography on Protein L (PpL) matrix. This protein is a multi-domain bacterial surface protein that is able to interact with conformational patterns on kappa light chains. It mainly recognizes amino acid residues located at the VL FR1 and some residues in the variable and constant (CL) domain. Not all kappa chains are recognized, however, and the lack of CL can reduce the interaction. From a scFv composed of IGKV10-94 according to IMGT®, it is possible, with several mutations, to transfer the motif from the IGKV12-46 naturally recognized by the PpL, and, with the single mutation T8P, to confer PpL recognition with a higher affinity. A second mutation S24R greatly improves the affinity, in particular by modifying the dissociation rate (kd). The equilibrium dissociation constant (KD) was measured at 7.2 10(-11) M by surface plasmon resonance. It was possible to confer PpL recognition to all kappa chains. This protein interaction can be modulated according to the characteristics of scFv (e.g., stability) and their use with conjugated PpL. This work could be extrapolated to recombinant monoclonal antibodies, and offers an alternative for protein A purification and detection.
Collapse
Affiliation(s)
- Zineb Lakhrif
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Martine Pugnière
- b IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer , Montpellier , 34090 , France
| | - Corinne Henriquet
- b IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM, U1194, Université Montpellier, ICM Institut Régional du Cancer , Montpellier , 34090 , France
| | - Anne di Tommaso
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Isabelle Dimier-Poisson
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Philippe Billiald
- c Muséum National d'Histoire Naturelle, UMR MNHN-CNRS 7245, 12 rue Buffon , Paris , 75231 , France
| | - Matthieu O Juste
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| | - Nicolas Aubrey
- a Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours, France, Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique , 37380 Nouzilly , France
| |
Collapse
|
13
|
Antibody Fragments and Their Purification by Protein L Affinity Chromatography. Antibodies (Basel) 2015. [DOI: 10.3390/antib4030259] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Carmo AO, Chatzaki M, Horta CCR, Magalhães BF, Oliveira-Mendes BBR, Chávez-Olórtegui C, Kalapothakis E. Evolution of alternative methodologies of scorpion antivenoms production. Toxicon 2015; 97:64-74. [PMID: 25701676 DOI: 10.1016/j.toxicon.2015.02.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2014] [Revised: 11/10/2014] [Accepted: 02/17/2015] [Indexed: 12/23/2022]
Abstract
Scorpionism represents a serious public health problem resulting in the death of children and debilitated individuals. Scorpion sting treatment employs various strategies including the use of specific medicines such as antiserum, especially for patients with severe symptoms. In 1909 Charles Todd described the production of an antiserum against the venom of the scorpion Buthus quinquestriatus. Based on Todd's work, researchers worldwide began producing antiserum using the same approach i.e., immunization of horses with crude venom as antigen. Despite achieving satisfactory results using this approach, researchers in this field have developed alternative approaches for the production of scorpion antivenom serum. In this review, we describe the work published by experts in toxinology to the development of scorpion venom antiserum. Methods and results describing the use of specific antigens, detoxified venom or toxins, purified toxins and or venom fractions, native toxoids, recombinant toxins, synthetic peptides, monoclonal and recombinant antibodies, and alternative animal models are presented.
Collapse
Affiliation(s)
- A O Carmo
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - M Chatzaki
- Department of Molecular Biology & Genetics, Democritus University of Thrace, University Campus, 69100 Komotini, Greece.
| | - C C R Horta
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B F Magalhães
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - B B R Oliveira-Mendes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - C Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| | - E Kalapothakis
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG 31270-901, Brazil.
| |
Collapse
|
15
|
Roncolato EC, Campos LB, Pessenda G, Costa e Silva L, Furtado GP, Barbosa JE. Phage display as a novel promising antivenom therapy: A review. Toxicon 2015; 93:79-84. [DOI: 10.1016/j.toxicon.2014.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/17/2014] [Accepted: 11/04/2014] [Indexed: 11/15/2022]
|
16
|
Engineering venom's toxin-neutralizing antibody fragments and its therapeutic potential. Toxins (Basel) 2014; 6:2541-67. [PMID: 25153256 PMCID: PMC4147596 DOI: 10.3390/toxins6082541] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/16/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022] Open
Abstract
Serum therapy remains the only specific treatment against envenoming, but anti-venoms are still prepared by fragmentation of polyclonal antibodies isolated from hyper-immunized horse serum. Most of these anti-venoms are considered to be efficient, but their production is tedious, and their use may be associated with adverse effects. Recombinant antibodies and smaller functional units are now emerging as credible alternatives and constitute a source of still unexploited biomolecules capable of neutralizing venoms. This review will be a walk through the technologies that have recently been applied leading to novel antibody formats with better properties in terms of homogeneity, specific activity and possible safety.
Collapse
|
17
|
Fields C, O'Connell D, Xiao S, Lee GU, Billiald P, Muzard J. Creation of recombinant antigen-binding molecules derived from hybridomas secreting specific antibodies. Nat Protoc 2013; 8:1125-48. [DOI: 10.1038/nprot.2013.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Rodríguez-Rodríguez ER, Ledezma-Candanoza LM, Contreras-Ferrat LG, Olamendi-Portugal T, Possani LD, Becerril B, Riaño-Umbarila L. A Single Mutation in Framework 2 of the Heavy Variable Domain Improves the Properties of a Diabody and a Related Single-Chain Antibody. J Mol Biol 2012; 423:337-50. [DOI: 10.1016/j.jmb.2012.07.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 07/02/2012] [Accepted: 07/06/2012] [Indexed: 10/28/2022]
|
19
|
Muzard J, Fields C, O'Mahony JJ, Lee GU. Probing the soybean Bowman-Birk inhibitor using recombinant antibody fragments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6164-72. [PMID: 22642722 DOI: 10.1021/jf3004724] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The nutritional and health benefits of soy protein have been extensively studied over recent decades. The Bowman-Birk inhibitor (BBI), derived from soybeans, is a double-headed inhibitor of chymotrypsin and trypsin with anticarcinogenic and anti-inflammatory properties, which have been demonstrated in vitro and in vivo. However, the lack of analytical and purification methodologies complicates its potential for further functional and clinical investigations. This paper reports the construction of anti-BBI antibody fragments based on the principle of protein design. Recombinant antibody (scFv and diabody) molecules targeting soybean BBI were produced and characterized in vitro (K(D)~1.10(-9) M), and the antibody-binding site (epitope) was identified as part of the trypsin-specific reactive loop. Finally, an extremely fast purification strategy for BBI from soybean extracts, based on superparamagnetic particles coated with antibody fragments, was developed. To the best of the authors' knowledge, this is the first report on the design and characterization of recombinant anti-BBI antibodies and their potential application in soybean processing.
Collapse
Affiliation(s)
- Julien Muzard
- Bionanosciences, UCD Centre for Nanomedicine, School of Chemistry and Chemical Biology, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | | | | |
Collapse
|
20
|
di Tommaso A, Juste MO, Martin-Eauclaire MF, Dimier-Poisson I, Billiald P, Aubrey N. Diabody mixture providing full protection against experimental scorpion envenoming with crude Androctonus australis venom. J Biol Chem 2012; 287:14149-56. [PMID: 22375011 PMCID: PMC3340170 DOI: 10.1074/jbc.m112.348912] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Indexed: 01/24/2023] Open
Abstract
Androctonus australis is primarily involved in envenomations in North Africa, notably in Tunisia and Algeria, and constitutes a significant public health problem in this region. The toxicity of the venom is mainly due to various neurotoxins that belong to two distinct structural and immunological groups, group I (the AahI and AahIII toxins) and group II (AahII). Here, we report the use of a diabody mixture in which the molar ratio matches the characteristics of toxins and polymorphism of the venom. The mixture consists of the Db9C2 diabody (anti-group I) and the Db4C1op diabody (anti-AahII), the latter being modified to facilitate in vitro production and purification. The effectiveness of the antivenom was tested in vivo under conditions simulating scorpion envenomation. The intraperitoneal injection of 30 μg of the diabody mixture protected almost all the mice exposed to 3 LD(50) s.c. of venom. We also show that the presence of both diabodies is necessary for the animals to survive. Our results are the first demonstration of the strong protective power of small quantities of antivenom used in the context of severe envenomation with crude venom.
Collapse
Affiliation(s)
- Anne di Tommaso
- From the Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly
| | - Matthieu O. Juste
- From the Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly
| | | | - Isabelle Dimier-Poisson
- From the Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly
| | | | - Nicolas Aubrey
- From the Université de Tours, UMR1282 Infectiologie et Santé Publique, 37200 Tours
- Institut National de la Recherche Agronomique, UMR1282 Infectiologie et Santé Publique, 37380 Nouzilly
| |
Collapse
|
21
|
Fabrichny IP, Mondielli G, Conrod S, Martin-Eauclaire MF, Bourne Y, Marchot P. Structural insights into antibody sequestering and neutralizing of Na+ channel α-type modulator from old world scorpion venom. J Biol Chem 2012; 287:14136-48. [PMID: 22371498 DOI: 10.1074/jbc.m111.315382] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Old World scorpion Androctonus australis hector (Aah) produces one of the most lethal venoms for humans. Peptidic α-toxins AahI to AahIV are responsible for its potency, with AahII accounting for half of it. All four toxins are high affinity blockers of the fast inactivation phase of mammalian voltage-activated Na(+) channels. However, the high antigenic polymorphism of α-toxins prevents production of a polyvalent neutralizing antiserum, whereas the determinants dictating their trapping by neutralizing antibodies remain elusive. From an anti-AahII mAb, we generated an antigen binding fragment (Fab) with high affinity and selectivity for AahII and solved a 2.3 Å-resolution crystal structure of the complex. Sequestering of the C-terminal region of the bound toxin within a groove formed by the Fab combining loops is associated with a toxin orientation and main and side chain conformations that dictate the AahII antigenic specificity and efficient neutralization. From an anti-AahI mAb, we also preformed and crystallized a high affinity AahI-Fab complex. The 1.6 Å-resolution structure solved revealed a Fab molecule devoid of a bound AahI and with combining loops involved in packing interactions, denoting expulsion of the bound antigen upon crystal formation. Comparative analysis of the groove-like combining site of the toxin-bound anti-AahII Fab and planar combining surface of the unbound anti-AahI Fab along with complementary data from a flexible docking approach suggests occurrence of distinctive trapping orientations for the two toxins relative to their respective Fab. This study provides complementary templates for designing new molecules aimed at capturing Aah α-toxins and suitable for immunotherapy.
Collapse
Affiliation(s)
- Igor P Fabrichny
- Faculté de Médecine Secteur Nord, Centre de Recherche en Neurobiologie-Neurophysiologie de Marseille, CRN2M, CNRS/Aix-Marseille Université UMR-6231, Institut Fédératif de Recherche Jean Roche, CS80011, F-13344 Marseille cedex 15, France
| | | | | | | | | | | |
Collapse
|
22
|
Quintero-Hernández V, Del Pozo-Yauner L, Pedraza-Escalona M, Juárez-González VR, Alcántara-Recillas I, Possani LD, Becerril B. Evaluation of three different formats of a neutralizing single chain human antibody against toxin Cn2: neutralization capacity versus thermodynamic stability. Immunol Lett 2012; 143:152-60. [PMID: 22306104 DOI: 10.1016/j.imlet.2012.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 01/18/2012] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The single-chain antibody fragment (scFv) 6009F, obtained by directed evolution, neutralizes the effects of the Cn2 toxin, which is the major toxic component of Centruroides noxius scorpion venom. In this work we compared the neutralization capacity and the thermodynamic stability of scFv 6009F with those of two other derived formats: Fab 6009F and diabody 6009F. Additionally, the affinity constants to Cn2 toxin of the three recombinant antibody fragments were determined by means of BIAcore. We found a correlation between the thermodynamic stability of these antibody fragments with their neutralization capacity. The order of thermodynamic stability determined was Fab≫scFv>diabody. The Fab and scFv were capable of neutralizing the toxic effects of Cn2 and whole venom but the diabody was unable to fully neutralize intoxication. In silico analysis of the diabody format indicates that the reduction of stability and neutralization capacity could be explained by a less cooperative interface between the heavy and the light variable domains.
Collapse
Affiliation(s)
- Veronica Quintero-Hernández
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | |
Collapse
|
23
|
Harrison RA, Cook DA, Renjifo C, Casewell NR, Currier RB, Wagstaff SC. Research strategies to improve snakebite treatment: challenges and progress. J Proteomics 2011; 74:1768-80. [PMID: 21723969 DOI: 10.1016/j.jprot.2011.06.019] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 06/20/2011] [Indexed: 11/17/2022]
Abstract
Antivenom is an effective treatment of snakebite but, because of the complex interplay of fiscal, epidemiological, therapeutic efficacy and safety issues, the mortality of snakebite remains unacceptably high. Efficiently combating this high level of preventable death amongst the world's most disadvantaged communities requires the globally-coordinated action of multiple intervention programmes. This is the overall objective of the Global Snakebite Initiative. This paper describes the challenges facing the research community to develop snakebite treatments that are more efficacious, safe and affordable than current therapy.
Collapse
Affiliation(s)
- Robert A Harrison
- Alistair Reid Venom Research Unit, Liverpool School of Tropical Medicine, Liverpool, UK.
| | | | | | | | | | | |
Collapse
|
24
|
Riaño-Umbarila L, Contreras-Ferrat G, Olamendi-Portugal T, Morelos-Juárez C, Corzo G, Possani LD, Becerril B. Exploiting cross-reactivity to neutralize two different scorpion venoms with one single chain antibody fragment. J Biol Chem 2010; 286:6143-51. [PMID: 21156801 DOI: 10.1074/jbc.m110.189175] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We report the optimization of a family of human single chain antibody fragments (scFv) for neutralizing two scorpion venoms. The parental scFv 3F recognizes the main toxins of Centruroides noxius Hoffmann (Cn2) and Centruroides suffusus suffusus (Css2), albeit with low affinity. This scFv was subjected to independent processes of directed evolution to improve its recognition toward Cn2 (Riaño-Umbarila, L., Juárez-González, V. R., Olamendi-Portugal, T., Ortíz-León, M., Possani, L. D., and Becerril, B. (2005) FEBS J. 272, 2591-2601) and Css2 (this work). Each evolved variant showed strong cross-reactivity against several toxins, and was capable of neutralizing Cn2 and Css2. Furthermore, each variant neutralized the whole venoms of the above species. As far as we know, this is the first report of antibodies with such characteristics. Maturation processes revealed key residue changes to attain expression, stability, and affinity improvements as compared with the parental scFv. Combination of these changes resulted in the scFv LR, which is capable of rescuing mice from severe envenomation by 3 LD(50) of freshly prepared whole venom of C. noxius (7.5 μg/20 g of mouse) and C. suffusus (26.25 μg/20 g of mouse), with surviving rates between 90 and 100%. Our research is leading to the formulation of an antivenom consisting of a discrete number of human scFvs endowed with strong cross-reactivity and low immunogenicity.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, Cuernavaca, Morelos 62250, México
| | | | | | | | | | | | | |
Collapse
|
25
|
Hmila I, Saerens D, Abderrazek RB, Vincke C, Abidi N, Benlasfar Z, Govaert J, Ayeb ME, Bouhaouala‐Zahar B, Muyldermans S. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB J 2010; 24:3479-89. [DOI: 10.1096/fj.09-148213] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Issam Hmila
- Laboratoire des Venins et ToxinesInstitut Pasteur de Tunis Tunis Tunisia
| | - Dirk Saerens
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit Brussel (VIB) Brussels Belgium
- Department of Cellular and Molecular InteractionsVrije Universiteit Brussel (VIB) Brussels Belgium
| | | | - Cécile Vincke
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit Brussel (VIB) Brussels Belgium
- Department of Cellular and Molecular InteractionsVrije Universiteit Brussel (VIB) Brussels Belgium
| | - Naima Abidi
- Laboratoire des Venins et ToxinesInstitut Pasteur de Tunis Tunis Tunisia
| | - Zakaria Benlasfar
- Service des Unités AnimalièresInstitut Pasteur de Tunis Tunis Tunisia
| | - Jochen Govaert
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit Brussel (VIB) Brussels Belgium
- Department of Cellular and Molecular InteractionsVrije Universiteit Brussel (VIB) Brussels Belgium
| | - Mohamed El Ayeb
- Laboratoire des Venins et ToxinesInstitut Pasteur de Tunis Tunis Tunisia
| | - Balkiss Bouhaouala‐Zahar
- Laboratoire des Venins et ToxinesInstitut Pasteur de Tunis Tunis Tunisia
- Faculté de Médecine de TunisUniversité de Tunis–El Manar Tunis Tunisia
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular ImmunologyVrije Universiteit Brussel (VIB) Brussels Belgium
- Department of Cellular and Molecular InteractionsVrije Universiteit Brussel (VIB) Brussels Belgium
| |
Collapse
|
26
|
Muzard J, Bouabdelli M, Zahid M, Ollivier V, Lacapère JJ, Jandrot-Perrus M, Billiald P. Design and humanization of a murine scFv that blocks human platelet glycoprotein VI in vitro. FEBS J 2009; 276:4207-22. [PMID: 19558491 DOI: 10.1111/j.1742-4658.2009.07129.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Platelet adhesion and aggregation at the site of vascular injury is essential for hemostasis, but can also lead to arterial occlusion in thrombotic disorders. Glycoprotein (GP) VI is the major platelet membrane receptor that interacts directly with collagen, the most thrombogenic compound in the blood vessels. GPVI could therefore be a major therapeutic target. Fab fragments of the anti-GPVI murine monoclonal IgG 9O12 have previously been shown to completely block collagen-induced platelet aggregation, to inhibit the procoagulant activity of collagen-stimulated platelets, and to prevent thrombus formation under arterial flow conditions without significantly prolonging the bleeding time. Here, we engineered recombinant scFvs that preserve the functional properties of 9O12, and could constitute building blocks for designing new compounds with potentially therapeutic antithrombotic properties. First, the 9O12 variable domains were cloned, sequenced, and expressed as a recombinant murine scFv, which was fully characterized. This scFv preserved all the characteristics that make 9O12 Fab potentially useful for therapeutic applications, including its high affinity for GPVI, ability to inhibit platelet adhesion, and aggregation with collagen under arterial flow conditions. A humanized version of this scFv was also designed after complementarity-determining region grafting and structural refinements using homology-based modeling. The final product was produced in recombinant bacteria. It retained GPVI-binding specificity and high affinity, which are the main parameters usually impaired by humanization procedures. This is a simple, efficient and straightforward method that could also be used for humanizing other antibodies.
Collapse
Affiliation(s)
- Julien Muzard
- Muséum national d'Histoire naturelle, CNRS FRE 3206, Paris, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Grafting of protein L-binding activity onto recombinant antibody fragments. Anal Biochem 2009; 388:331-8. [PMID: 19268418 DOI: 10.1016/j.ab.2009.02.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 02/20/2009] [Accepted: 02/25/2009] [Indexed: 11/24/2022]
Abstract
Recombinant antibody fragments consisting of variable domains can be easily produced in various host cells, but there is no universal system that can be used to purify and detect them in the free form or complexed with their antigen. Protein L (PpL) is a cell wall protein isolated from Peptostreptococcus magnus, which has been reported to interact with the V-KAPPA chain of some, but not all, antibodies. Here we grafted the V-KAPPA framework region 1 (FR1) sequence of a high-affinity PpL-binding antibody onto single-chain antibody fragments (scFvs), which have no reactivity with PpL. This substitution made it possible to purify and detect scFvs using PpL conjugates. It did not hinder scFv folding and expression in recombinant bacteria, and it did not interfere with their antigen-binding function. We also identified residue 12 as being potentially able to alter PpL binding. This study, therefore, suggests a way of engineering a PpL-binding site on any scFv without interfering with its function. This could provide a universally applicable method both for the rapid purification of functional recombinant antibody fragments and for their detection even when complexed with their antigen without requiring fusion to an epitope Flag.
Collapse
|
28
|
Antidotes against venomous animals: State of the art and prospectives. J Proteomics 2009; 72:183-99. [DOI: 10.1016/j.jprot.2009.01.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 01/14/2009] [Accepted: 01/14/2009] [Indexed: 12/12/2022]
|
29
|
|
30
|
Hmila I, Abdallah R BAB, Saerens D, Benlasfar Z, Conrath K, Ayeb ME, Muyldermans S, Bouhaouala-Zahar B. VHH, bivalent domains and chimeric Heavy chain-only antibodies with high neutralizing efficacy for scorpion toxin AahI'. Mol Immunol 2008; 45:3847-56. [PMID: 18614235 DOI: 10.1016/j.molimm.2008.04.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/14/2008] [Accepted: 04/17/2008] [Indexed: 11/19/2022]
Abstract
Many efforts aim at solving the serious problems encountered with immunotherapy against scorpion envenoming. The most attractive approach consists in generating single-chain antibody fragments (scFv) as their pharmaco-kinetic properties should match closely those of the scorpion toxins. Although high affinity scFv reagents have been generated in the past, their production level, stability, and toxin neutralizing capacity remain disappointingly poor. In the current study, we identified one Nanobody (Nb), a single-domain antigen-binding fragment of a dromedary Heavy-chain antibody (HCAb) that recognizes specifically the Androctonus australis hector AahI' toxin. This Nb has excellent production, stability and solubility characteristics. With this Nb we further manufactured a tandem linked bivalent construct and assembled a HCAb with improved antigen binding due to avidity effects. All these constructs were shown in mouse models to possess a scorpion toxin neutralization capacity that exceeds by far all previous attempts with scFv-based materials, even when used at lower doses. It is therefore clear that in the near future Nanobodies will be at the core of novel serotherapeutics as they combine multiple benefits over other reagents to treat scorpion envenomed patients.
Collapse
Affiliation(s)
- Issam Hmila
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, 13 Place Pasteur, BP-74, 1002 Tunis, Tunisia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Juste M, Muzard J, Billiald P. Cloning of the antibody κ light chain V-gene from murine hybridomas by bypassing the aberrant MOPC21-derived transcript. Anal Biochem 2006; 349:159-61. [PMID: 16325758 DOI: 10.1016/j.ab.2005.10.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 10/27/2005] [Indexed: 11/29/2022]
Affiliation(s)
- Matthieu Juste
- Faculté de Pharmacie, UMR Université François Rabelais-INRA 483, 37200 Tours, France
| | | | | |
Collapse
|
32
|
Riaño-Umbarila L, Juárez-González VR, Olamendi-Portugal T, Ortíz-León M, Possani LD, Becerril B. A strategy for the generation of specific human antibodies by directed evolution and phage display. FEBS J 2005; 272:2591-601. [PMID: 15885107 DOI: 10.1111/j.1742-4658.2005.04687.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study describes the construction of a library of single-chain antibody fragments (scFvs) from a single human donor by individual amplification of all heavy and light variable domains (1.1 x 10(8) recombinants). The library was panned using the phage display technique, which allowed selection of specific scFvs (3F and C1) capable of recognizing Cn2, the major toxic component of Centruroides noxius scorpion venom. The scFv 3F was matured in vitro by three cycles of directed evolution. The use of stringent conditions in the third cycle allowed the selection of several improved clones. The best scFv obtained (6009F) was improved in terms of its affinity by 446-fold, from 183 nm (3F) to 410 pm. This scFv 6009F was able to neutralize 2 LD(50) of Cn2 toxin when a 1 : 10 molar ratio of toxin-to-antibody fragment was used. It was also able to neutralize 2 LD(50) of the whole venom. These results pave the way for the future generation of recombinant human antivenoms.
Collapse
Affiliation(s)
- Lidia Riaño-Umbarila
- Department of Molecular Medicine and Bioprocesses, Institute of Biotechnology, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | | | | | | |
Collapse
|
33
|
Gazarian KG, Gazarian T, Hernández R, Possani LD. Immunology of scorpion toxins and perspectives for generation of anti-venom vaccines. Vaccine 2005; 23:3357-68. [PMID: 15837360 DOI: 10.1016/j.vaccine.2004.12.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2004] [Revised: 08/31/2004] [Accepted: 12/22/2004] [Indexed: 10/25/2022]
Abstract
Scorpions and other venomous animals contain concentrates of biologically active substances developed to block vital physiological and biochemical functions of the victims. These have contrasting human health concerns, provide important pharmacological raw material and pose a serious threat to human life and health in tropical and subtropical regions. Because only occasional and minor quantities of venom are introduced into the human organism with a scorpion sting and their mortal effect is an acute phenomenon these substances are unknown to the immune defense system and thus no immunity has appeared against them during evolution. Antidotes prepared from animal anti-sera are effective against some species of scorpions but depend on the manufacturer and the availability of product to the medical community. Although significant progress has been made in immunological studies of certain groups of toxins, few centers are dedicated to this research. Information is still insufficient to generate a comprehensive picture of the subject and to propose vaccines against venoms. A novel approach based on mimotopes selected from phage-displayed random peptide libraries show potential to impel further progress of toxin immunological studies and to provide putative vaccine resources. In this report we revise the "state of the art" in the field.
Collapse
Affiliation(s)
- Karlen G Gazarian
- Department of Molecular Biology and Biotechnology of Institute of Biomedical Research, Mexican National University (UNAM), Ciudad Universitaria, Circuito escolar s/n, Ciudad Universitaria, 04510 México DF, México.
| | | | | | | |
Collapse
|
34
|
Juárez-González VR, Riaño-Umbarila L, Quintero-Hernández V, Olamendi-Portugal T, Ortiz-León M, Ortíz E, Possani LD, Becerril B. Directed Evolution, Phage Display and Combination of Evolved Mutants: A Strategy to Recover the Neutralization Properties of the scFv Version of BCF2 a Neutralizing Monoclonal Antibody Specific to Scorpion Toxin Cn2. J Mol Biol 2005; 346:1287-97. [PMID: 15713481 DOI: 10.1016/j.jmb.2004.12.060] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/15/2004] [Accepted: 12/30/2004] [Indexed: 11/25/2022]
Abstract
BCF2, a monoclonal antibody raised against scorpion toxin Cn2, is capable of neutralizing both, the toxin and the whole venom of the Mexican scorpion Centruroides noxius Hoffmann. The single chain antibody fragment (scFv) of BCF2 was constructed and expressed in Escherichia coli. Although its affinity for the Cn2 toxin was shown to be in the nanomolar range, it was non-neutralizing in vivo due to a low stability. In order to recover the neutralizing capacity, the scFv of BCF2 was evolved by error-prone PCR and the variants were panned by phage display. Seven improved mutants were isolated from three different libraries. One of these mutants, called G5 with one mutation at CDR1 and another at CDR2 of the light chain, showed an increased affinity to Cn2, as compared to the parental scFv. A second mutant, called B7 with a single change at framework 2 of heavy chain, also had a higher affinity. Mutants G5 and B7 were also improved in their stability but they were unable to neutralize the toxin. Finally, we constructed a variant containing the changes present in G5 and B7. The purpose of this construction was to combine the increments in affinity and stability borne by these mutants. The result was a triple mutant capable of neutralizing the Cn2 toxin. This variant showed the best affinity constant (KD=7.5x10(-11) M), as determined by surface plasmon resonance (BIAcore). The k(on) and k(off) were improved threefold and fivefold, respectively, leading to 15-fold affinity improvement. Functional stability determinations by ELISA in the presence of different concentrations of guanidinium hydrochloride (Gdn-HCl) revealed that the triple mutant is significantly more stable than the parental scFv. These results suggest that not only improving the affinity but also the stability of our scFv were important for recovering its neutralization capacity. These findings pave the way for the generation of recombinant neutralizing antisera against scorpion stings based on scFvs.
Collapse
Affiliation(s)
- V R Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, UNAM, Apartado Postal 510-3, Cuernavaca, Morelos 62250, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Devaux C, Jouirou B, Naceur Krifi M, Clot-Faybesse O, El Ayeb M, Rochat H. Quantitative variability in the biodistribution and in toxinokinetic studies of the three main alpha toxins from the Androctonus australis hector scorpion venom. Toxicon 2004; 43:661-9. [PMID: 15109887 DOI: 10.1016/j.toxicon.2004.02.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 02/17/2004] [Accepted: 02/25/2004] [Indexed: 10/26/2022]
Abstract
Scorpion stings represent a medical problem in numerous countries. The scorpion Androctonus australis hector produces three alpha toxins (Aah I to III), which are responsible for most of the lethality in mammals. These toxins act on sodium channel and do not cross-react immunologically. We used RIA and ELISA to measure the concentrations of these three toxins in plasma, urine and different organs after i.v. and s.c. injections of water extracts of venoms in rabbits or mice. In both animals, the toxins rapidly appeared in plasma after s.c. injection as it was previously described for the whole venom. However, the toxins disappeared from the blood more quickly than did other main components of the venom. Thus, serotherapy must be initiated immediately to prevent the toxin from reaching its target. We also detected the toxins in urine, kidneys, heart and lungs, but not in the brain. However, the concentration of Aah II was always lower than that of Aah I. Analysis of five samples of venom collected in different areas of southern Tunisia showed that a large polymorphism exists for the three toxins. This is yet another difficulty for serotherapy as there is no cross-antigenicity between them.
Collapse
Affiliation(s)
- Christiane Devaux
- CNRS UMR 6560, Faculté de Médecine-Nord, Boulevard Dramard, 13916 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
36
|
Aubrey N, Muzard J, Christophe Peter J, Rochat H, Goyffon M, Devaux C, Billiald P. Engineering of a recombinant Fab from a neutralizing IgG directed against scorpion neurotoxin AahI, and functional evaluation versus other antibody fragments. Toxicon 2004; 43:233-41. [PMID: 15033320 DOI: 10.1016/j.toxicon.2003.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2003] [Revised: 10/15/2003] [Accepted: 11/25/2003] [Indexed: 11/16/2022]
Abstract
Antibody-based therapy is the only specific treatment for scorpion envenomation. However, there are still major drawbacks associated with its use; mainly because antivenoms are still prepared from immune equine serum raised against crude venoms, whereas only a limited number of neurotoxins are responsible for the lethality of the venom. Using a murine hybridoma that secretes a well-characterized neutralizing IgG directed to neurotoxins AahI and AahIII from the venom of the scorpion Androctonus australis, we constructed a recombinant Fab (rFab) fragment, which was produced and purified from transformed bacteria. It recognized toxin AahI with a high affinity (KD = 8.2 x 10(-11)) equivalent to the homologous pFab prepared by papain digestion of whole IgG. Although the AahI-neutralizing capacity of protein L-purified rFab was low compared to other recombinant antibody formats (scFv and diabody) investigated in parallel, the antibody engineering approach presented here provides an innovative way to synthesize novel toxin-neutralizing molecules. It may serve as a strategy for designing a new generation of antivenoms.
Collapse
Affiliation(s)
- Nicolas Aubrey
- Muséum National d'Histoire Naturelle, USM 0505-Lerai, 57 rue Cuvier, F75231 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|