1
|
Pai P, Kumar A, Shetty MG, Kini SG, Krishna MB, Satyamoorthy K, Babitha KS. Identification of potent HDAC 2 inhibitors using E-pharmacophore modelling, structure-based virtual screening and molecular dynamic simulation. J Mol Model 2022; 28:119. [PMID: 35419753 PMCID: PMC9007783 DOI: 10.1007/s00894-022-05103-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
Histone deacetylase 2 (HDAC 2) of class I HDACs plays a major role in embryonic and neural developments. However, HDAC 2 overexpression triggers cell proliferation by diverse mechanisms in cancer. Over the decades, many pan and class-specific inhibitors of HDAC were discovered. Limitations such as toxicity and differential cell localization of each isoform led researchers to hypothesize that isoform selective inhibitors may be relevant to bring about desired effects. In this study, we have employed the PHASE module to develop an e-pharmacophore model and virtually screened four focused libraries of around 300,000 compounds to identify isoform selective HDAC 2 inhibitors. The compounds with phase fitness score greater than or equal to 2.4 were subjected to structure-based virtual screening with HDAC 2. Ten molecules with docking score greater than -12 kcal/mol were chosen for selectivity study, QikProp module (ADME prediction) and dG/bind energy identification. Compound 1A with the best dock score of -13.3 kcal/mol and compound 1I with highest free binding energy, -70.93 kcal/mol, were selected for molecular dynamic simulation studies (40 ns simulation). The results indicated that compound 1I may be a potent and selective HDAC 2 inhibitor. Further, in vitro and in vivo studies are necessary to validate the potency of selected lead molecule and its derivatives.
Collapse
Affiliation(s)
- Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Avinash Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manasa Gangadhar Shetty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Suvarna Ganesh Kini
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Manoj Bhat Krishna
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kampa Sundara Babitha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Sirous H, Campiani G, Calderone V, Brogi S. Discovery of novel hit compounds as potential HDAC1 inhibitors: The case of ligand- and structure-based virtual screening. Comput Biol Med 2021; 137:104808. [PMID: 34478925 DOI: 10.1016/j.compbiomed.2021.104808] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/24/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022]
Abstract
Histone deacetylases (HDACs) as an important family of epigenetic regulatory enzymes are implicated in the onset and progression of carcinomas. As a result, HDAC inhibition has been proven as a compelling strategy for reversing the aberrant epigenetic changes associated with cancer. However, non-selective profile of most developed HDAC inhibitors (HDACIs) leads to the occurrence of various side effects, limiting their clinical utility. This evidence provides a solid ground for ongoing research aimed at identifying isoform-selective inhibitors. Among the isoforms, HDAC1 have particularly gained increased attention as a preferred target for the design of selective HDACIs. Accordingly, in this paper, we have developed a reliable virtual screening process, combining different ligand- and structure-based methods, to identify novel benzamide-based analogs with potential HDAC1 inhibitory activity. For this purpose, a focused library of 736,160 compounds from PubChem database was first compiled based on 80% structural similarity with four known benzamide-based HDAC1 inhibitors, Mocetinostat, Entinostat, Tacedinaline, and Chidamide. Our inclusive in-house 3D-QSAR model, derived from pharmacophore-based alignment, was then employed as a 3D-query to discriminate hits with the highest predicted HDAC1 inhibitory activity. The selected hits were subjected to subsequent structure-based approaches (induced-fit docking (IFD), MM-GBSA calculations and molecular dynamics (MD) simulation) to retrieve potential compounds with the highest binding affinity for HDAC1 active site. Additionally, in silico ADMET properties and PAINS filtration were also considered for selecting an enriched set of the best drug-like molecules. Finally, six top-ranked hit molecules, CID_38265326, CID_56064109, CID_8136932, CID_55802151, CID_133901641 and CID_18150975 were identified to expose the best stability profiles and binding mode in the HDAC1 active site. The IFD and MD results cooperatively confirmed the interactions of the promising selected hits with critical residues within HDAC1 active site. In summary, the presented computational approach can provide a set of guidelines for the further development of improved benzamide-based derivatives targeting HDAC1 isoform.
Collapse
Affiliation(s)
- Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461 Isfahan, Iran.
| | - Giuseppe Campiani
- Department of Excellence of Biotechnology, Chemistry and Pharmacy, 2018-2022, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, I-56126 Pisa, Italy.
| |
Collapse
|
3
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
4
|
Cappellacci L, Perinelli DR, Maggi F, Grifantini M, Petrelli R. Recent Progress in Histone Deacetylase Inhibitors as Anticancer Agents. Curr Med Chem 2020; 27:2449-2493. [PMID: 30332940 DOI: 10.2174/0929867325666181016163110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 10/09/2018] [Indexed: 12/13/2022]
Abstract
Histone Deacetylase (HDAC) inhibitors are a relatively new class of anti-cancer agents that play important roles in epigenetic or non-epigenetic regulation, inducing death, apoptosis, and cell cycle arrest in cancer cells. Recently, their use has been clinically validated in cancer patients resulting in the approval by the FDA of four HDAC inhibitors, vorinostat, romidepsin, belinostat and panobinostat, used for the treatment of cutaneous/peripheral T-cell lymphoma and multiple myeloma. Many more HDAC inhibitors are at different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. Also, clinical trials of several HDAC inhibitors for use as anti-cancer drugs (alone or in combination with other anti-cancer therapeutics) are ongoing. In the intensifying efforts to discover new, hopefully, more therapeutically efficacious HDAC inhibitors, molecular modelingbased rational drug design has played an important role. In this review, we summarize four major structural classes of HDAC inhibitors (hydroxamic acid derivatives, aminobenzamide, cyclic peptide and short-chain fatty acids) that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Loredana Cappellacci
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Diego R Perinelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Mario Grifantini
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| | - Riccardo Petrelli
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032 Camerino, Italy
| |
Collapse
|
5
|
Krishna S, Lakra AD, Shukla N, Khan S, Mishra DP, Ahmed S, Siddiqi MI. Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation. J Biomol Struct Dyn 2019; 38:3280-3295. [DOI: 10.1080/07391102.2019.1654925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shagun Krishna
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shukla
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Khan
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakil Ahmed
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
6
|
|
7
|
Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Structural modification of histone deacetylase inhibitors with a phenylglycine scaffold. Anticancer Drugs 2018; 29:145-156. [PMID: 33052636 DOI: 10.1097/cad.0000000000000579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
During the discovery of histone deacetylase inhibitors (HDACIs) as antitumor drugs, a series of potent phenylglycine-based HDACIs were developed. However, further development is restricted by the poor solubility. Therefore, structural modifications were performed in the present study in the development of potent HDACIs with improved pharmacokinetic properties. The synthesized molecules were designed by the substitution of fatty linkers for aromatic linkers, and showed good solubility profiles. Among the compounds derived, molecule HD9 showed a potent enzyme-inhibitory effect (IC50 values of 76 nmol/l) and in-vitro antiproliferative activities (IC50 values of 0.51, 0.83, and 0.76 µmol/l against U937, K562, and HL60 cells, respectively). Molecule HD9 showed selectivity of HDAC3 over HDAC6 in the isoform selectivity assays. Molecular docking studies showed good binding patterns of molecule HD9 to the active site of HDAC3. Results from the present work indicated that molecule HD9 is a promising lead compound for the tumor therapy.
Collapse
|
9
|
Kumboonma P, Senawong T, Saenglee S, Yenjai C, Phaosiri C. Identification of phenolic compounds from Zingiber offinale and their derivatives as histone deacetylase inhibitors and antioxidants. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1785-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Huang YX, Zhao J, Song QH, Zheng LH, Fan C, Liu TT, Bao YL, Sun LG, Zhang LB, Li YX. Virtual screening and experimental validation of novel histone deacetylase inhibitors. BMC Pharmacol Toxicol 2016; 17:32. [PMID: 27443303 PMCID: PMC4955146 DOI: 10.1186/s40360-016-0075-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 07/12/2016] [Indexed: 12/11/2022] Open
Abstract
Background Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of cancer, diabetes and other human diseases. HDAC inhibitors, as a new class of potential therapeutic agents, have attracted a great deal of interest for both research and clinical applications. Increasing efforts have been focused on the discovery of HDAC inhibitors and some HDAC inhibitors have been approved for use in cancer therapy. However, most HDAC inhibitors, including the clinically approved agents, do not selectively inhibit the deacetylase activity of class I and II HDAC isforms, and many suffer from metabolic instability. This study aims to identify new HDAC inhibitors by using a high-throughput virtual screening approach. Methods An integration of in silico virtual screening and in vitro experimental validation was used to identify novel HDAC inhibitors from a chemical database. Results A virtual screening workflow for HDAC inhibitors were created by integrating ligand- and receptor- based virtual screening methods. Using the virtual screening workflow, 22 hit compounds were selected and further tested via in vitro assays. Enzyme inhibition assays showed that three of the 22 compounds had HDAC inhibitory properties. Among these three compounds, ZINC12555961 significantly inhibited HDAC activity. Further in vitro experiments indicated that ZINC12555961 can selectively inhibit proliferation and promote apoptosis of cancer cells. Conclusions In summary, our study presents three new and potent HDAC inhibitors and one of these HDAC inhibitors shows anti-proliferative and apoptosis-inducing activity against various cancer cell lines. These results suggest that the developed virtual screening workflow can provide a useful source of information for the screening and validation of new HDAC inhibitors. The new-found HDAC inhibitors are worthy to further and more comprehensive investigations. Electronic supplementary material The online version of this article (doi:10.1186/s40360-016-0075-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan-Xin Huang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China.
| | - Jian Zhao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Qiu-Hang Song
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Li-Hua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Cong Fan
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Ting-Ting Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Lu-Guo Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130024, China
| | - Li-Biao Zhang
- School of Computer Science and Information Technology, Northeast Normal University, Changchun, 130117, China.
| | - Yu-Xin Li
- Research Center of Agriculture and Medicine Gene Engineering of Ministry of Education, Northeast Normal University, ChangChun, 130117, China.
| |
Collapse
|
11
|
Goracci L, Deschamps N, Randazzo GM, Petit C, Dos Santos Passos C, Carrupt PA, Simões-Pires C, Nurisso A. A Rational Approach for the Identification of Non-Hydroxamate HDAC6-Selective Inhibitors. Sci Rep 2016; 6:29086. [PMID: 27404291 PMCID: PMC4941420 DOI: 10.1038/srep29086] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
The human histone deacetylase isoform 6 (HDAC6) has been demonstrated to play a major role in cell motility and aggresome formation, being interesting for the treatment of multiple tumour types and neurodegenerative conditions. Currently, most HDAC inhibitors in preclinical or clinical evaluations are non-selective inhibitors, characterised by a hydroxamate zinc-binding group (ZBG) showing off-target effects and mutagenicity. The identification of selective HDAC6 inhibitors with novel chemical properties has not been successful yet, also because of the absence of crystallographic information that makes the rational design of HDAC6 selective inhibitors difficult. Using HDAC inhibitory data retrieved from the ChEMBL database and ligand-based computational strategies, we identified 8 original new non-hydroxamate HDAC6 inhibitors from the SPECS database, with activity in the low μM range. The most potent and selective compound, bearing a hydrazide ZBG, was shown to increase tubulin acetylation in human cells. No effects on histone H4 acetylation were observed. To the best of our knowledge, this is the first report of an HDAC6 selective inhibitor bearing a hydrazide ZBG. Its capability to passively cross the blood-brain barrier (BBB), as observed through PAMPA assays, and its low cytotoxicity in vitro, suggested its potential for drug development.
Collapse
Affiliation(s)
- Laura Goracci
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Laboratory for Cheminformatics and Molecular Modeling, Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto, 8, 06123 Perugia, Italy
| | - Nathalie Deschamps
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Giuseppe Marco Randazzo
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Charlotte Petit
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Carolina Dos Santos Passos
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Pierre-Alain Carrupt
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Claudia Simões-Pires
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland
| | - Alessandra Nurisso
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne Quai Ernest-Ansermet, 30, CH-1211, Geneva 4, Switzerland.,Département de Biochimie, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
| |
Collapse
|
12
|
Meng F, Cheng S, Ding H, Liu S, Liu Y, Zhu K, Chen S, Lu J, Xie Y, Li L, Liu R, Shi Z, Zhou Y, Liu YC, Zheng M, Jiang H, Lu W, Liu H, Luo C. Discovery and Optimization of Novel, Selective Histone Methyltransferase SET7 Inhibitors by Pharmacophore- and Docking-Based Virtual Screening. J Med Chem 2015; 58:8166-81. [DOI: 10.1021/acs.jmedchem.5b01154] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Fanwang Meng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Sufang Cheng
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Ding
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shien Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yan Liu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kongkai Zhu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shijie Chen
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Junyan Lu
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yiqian Xie
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Linjuan Li
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Rongfeng Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Zhe Shi
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Yu Zhou
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yu-Chih Liu
- Shanghai ChemPartner
Co., Ltd., Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Mingyue Zheng
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Wencong Lu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Hong Liu
- Chinese Academy of Sciences Key Laboratory of Receptor Research,
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheng Luo
- Drug Discovery
and Design Center, State Key Laboratory of Drug Research, Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
13
|
Mottamal M, Zheng S, Huang TL, Wang G. Histone deacetylase inhibitors in clinical studies as templates for new anticancer agents. Molecules 2015; 20:3898-941. [PMID: 25738536 PMCID: PMC4372801 DOI: 10.3390/molecules20033898] [Citation(s) in RCA: 480] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/04/2023] Open
Abstract
Histone dacetylases (HDACs) are a group of enzymes that remove acetyl groups from histones and regulate expression of tumor suppressor genes. They are implicated in many human diseases, especially cancer, making them a promising therapeutic target for treatment of the latter by developing a wide variety of inhibitors. HDAC inhibitors interfere with HDAC activity and regulate biological events, such as cell cycle, differentiation and apoptosis in cancer cells. As a result, HDAC inhibitor-based therapies have gained much attention for cancer treatment. To date, the FDA has approved three HDAC inhibitors for cutaneous/peripheral T-cell lymphoma and many more HDAC inhibitors are in different stages of clinical development for the treatment of hematological malignancies as well as solid tumors. In the intensifying efforts to discover new, hopefully more therapeutically efficacious HDAC inhibitors, molecular modeling-based rational drug design has played an important role in identifying potential inhibitors that vary in molecular structures and properties. In this review, we summarize four major structural classes of HDAC inhibitors that are in clinical trials and different computer modeling tools available for their structural modifications as a guide to discover additional HDAC inhibitors with greater therapeutic utility.
Collapse
Affiliation(s)
- Madhusoodanan Mottamal
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Tien L Huang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- College of Pharmacy, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA.
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, USA.
| |
Collapse
|
14
|
Li GB, Yang LL, Yuan Y, Zou J, Cao Y, Yang SY, Xiang R, Xiang M. Virtual screening in small molecule discovery for epigenetic targets. Methods 2015; 71:158-66. [DOI: 10.1016/j.ymeth.2014.11.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/27/2014] [Accepted: 11/14/2014] [Indexed: 12/31/2022] Open
|
15
|
Kalyaanamoorthy S, Chen YPP. A steered molecular dynamics mediated hit discovery for histone deacetylases. Phys Chem Chem Phys 2014; 16:3777-91. [PMID: 24429775 DOI: 10.1039/c3cp53511h] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The inhibitors of class I histone deacetylases (HDACIs) have gained significant interest in cancer therapeutics. Virtual high throughput screening (vHTS) is one of the popular approaches used in the identification of novel scaffolds of HDACIs. However, an accurate description of ligand-protein flexibilities in the vHTS remains challenging. In this work, we implement an integrated approach, which combines the vHTS with the 'state-of-the-art' steered molecular dynamics (SMD). This approach serves as an efficient tool to identify potential hits and characterize their binding potencies against the class I HDACs in a flexible solvent environment. A hybrid pharmacophore-based and structure-based vHTS method identifies the hits with more favourable physico-chemical features against the class I HDACs. Our pharmacophore-based screening enhanced the quality of the vHTS outcomes. Further, the molecular interactions between the hits and the HDACs are investigated using the SMD-driven force profiles, which in turn resulted in filtering the hits with higher binding potencies against the HDACs. Our results, therefore, reveal that vHTS and SMD can be a complementary and effective analytical tool for accelerating the hit identification phase in structure-based drug design.
Collapse
Affiliation(s)
- Subha Kalyaanamoorthy
- Faculty of Science, Technology and Engineering, La Trobe University, Melbourne, Victoria 3086, Australia.
| | | |
Collapse
|
16
|
Zhang L, Zhang Y, Chou CJ, Inks ES, Wang X, Li X, Hou J, Xu W. Histone deacetylase inhibitors with enhanced enzymatic inhibition effects and potent in vitro and in vivo antitumor activities. ChemMedChem 2013; 9:638-48. [PMID: 24227760 DOI: 10.1002/cmdc.201300297] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 10/13/2013] [Indexed: 11/08/2022]
Abstract
In the present work, a series of small molecules were designed and synthesized based on structural optimization. A significant improvement in the enzyme inhibitory activity of these compounds was discovered. Moreover, the tested compounds have moderate preference for class I HDACs over HDAC6, as demonstrated by enzyme selectivity assays. In vitro antiproliferation assay results show that representative compounds can selectively inhibit the growth of non-solid lymphoma and leukemic cells such as U937, K562, and HL60. In the in vivo antitumor assay, (S)-4-(2-(5-(dimethylamino)naphthalene-1-sulfonamido)-2-phenylacetamido)-N-hydroxybenzamide (D17) showed better performance than SAHA in blocking U937 tumor growth. Western blot analysis revealed that representative molecules can block the function of both class I HDACs and HDAC6. More importantly, our western blot results reveal that the levels of some oncogenic proteins (p-Akt in the PI3K/AKT/mTOR signal pathway, c-Raf and p-Erk in the MAPK signal pathway) were dramatically down-regulated by our compounds in the U937 cell line rather than MDA-MB-231 cells. This distinction in cellular mechanism might be an important reason why the U937 cell line was found to more sensitive to our HDAC inhibitors than the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, School of Medicine, Qingdao University, 308 Dengzhou Road, Qingdao, Shandong 266071 (China).
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhang L, Wang X, Li X, Zhang L, Xu W. Discovery of a series of hydroximic acid derivatives as potent histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2013; 29:582-9. [DOI: 10.3109/14756366.2013.827678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lei Zhang
- Department of Pharmacy, School of Medicine, Qingdao University
Qingdao, ShandongChina
| | - Xuejian Wang
- School of Pharmacy and Biology Science, Weifang Medicinal University
Weifang, ShandongChina
| | - Xiaoguang Li
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University
Jinan, ShandongChina
| | - Lihui Zhang
- Department of Stomatology, Jiaotong Hospital
Qingdao, ShandongChina
| | - Wenfang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University
Jinan, ShandongChina
| |
Collapse
|
18
|
Zhang L, Wang X, Li X, Xu W. Discovery of a series of small molecules as potent histone deacetylase inhibitors. J Enzyme Inhib Med Chem 2013; 29:333-7. [PMID: 23534931 DOI: 10.3109/14756366.2013.780237] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A series of small molecules were designed and synthesized based on our previous virtual screening approach, which was performed to discover potent histone deacetylase inhibitors (HDACIs) with novel structures. The derived compounds were tested by Hela cell nucleus extract for enzyme inhibition assay. Tumor cell growth inhibition assays were performed using a series of tumor cell lines. Molecule 4h has the best performance among these compounds with enzyme inhibition IC₅₀ of 0.14 μM and tumor cell growth inhibition IC₅₀ of 1.85 (U937), 2.02 (HL60), 2.67 (K562). Docking studies showed that multiple H-bonds and hydrophobic interactions make 4h binding to the active site of HDAC. 4h has the advantage of low molecular weight, so a variety of structural modifications can be performed in our further studies.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Shandong University , Jinan, Shandong , China and
| | | | | | | |
Collapse
|