1
|
Tendulkar CP, Dessai PG, Mamle Desai S, Kadam A. Docking, Synthesis and Evaluation of 4-hydroxy-1-phenyl-2(1H)-quinolone Derivatives as Anticancer Agents. Curr Drug Discov Technol 2024; 21:e190723218893. [PMID: 37469155 DOI: 10.2174/1570163820666230719110932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND The estimated number of cancer cases in India for the year 2022 was found to be 14,61,427. The development of chemotherapeutic agents has reduced the mortality rate, however, they have high toxicity which is a disadvantage. Many researchers have found out that quinolin-2- one possesses anticancer activity, with this background we thought of synthesizing the quinolin-2-one derivatives. OBJECTIVE This study aimed to carry out docking, synthesis, characterization, and evaluation of 2-(2- (4-Hydroxy-2-oxoquinolin-1(2H)-yl)phenyl/ substituted phenyl)-3-(phenylamino) thiazolidon-4-one derivatives (IVa-g) as an anticancer agent. METHOD Diphenylamine and malonic acid treated with phosphoryl chloride gave compound I, which on formylation afforded compound II, which on reaction with various substituted aromatic phenylhydrazine derivatives gave compounds IIIa-g, which on further reaction with thioglycolic acid and anhydrous zinc chloride yielded the compounds IVa-g. RESULT Among all the synthesized novel derivatives, compounds IV a-d showed 50% lysis in the IC50 range of 25-50μg for the A549 cell line, and compounds IVa, and IVb showed 50% lysis in the IC50 range of 25-50μg for the MDA-MB cell line. The compound, 3-((4-fluorophenyl)amino)-2-(2-(4- hydroxy-2-oxoquinolin-1(2H)-yl)phenyl)thiazolidin-4-one (IVg) was found to be the most active against both the cell line, A549 and MDA-MB with IC50 value of 0.0298μmol and 0.0338μmol respectively. The docking results revealed that the synthesized compounds exhibited well-conserved hydrogen bonding with one or more amino acid residues in the active pocket of EGFR tyrosine kinase domain with 4-anilinoquinazoline inhibitor erlotinib (PDB ID:1M17). Compound IVg showed the highest MolDock score of -137.813 compared to the standard drug Imatinib having a MolDock score of -119.354. CONCLUSION Compound IVg showed the highest MolDock score and was also found to be most potent against both the cell line, A549, and MDA-MB.
Collapse
Affiliation(s)
- Chaitali Prabhu Tendulkar
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Prachita Gauns Dessai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Shivlingrao Mamle Desai
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| | - Amrita Kadam
- Department of Pharmaceutical Chemistry, P.E.S's Rajaram and Tarabai Bandekar College of Pharmacy, Farmagudi, Ponda-Goa, 403401, India
| |
Collapse
|
2
|
Design, Synthesis, Antimicrobial Evaluation, Antioxidant Studies, and Molecular Docking of Some New 1
H
‐Benzimidazole Derivatives. ChemistrySelect 2023. [DOI: 10.1002/slct.202203651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Thiazolidine-2-Thione and 2-Imino-1,3-Dithiolane Derivatives: Synthesis and Evaluation of Antimicrobial Activity. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Saleh OR, Shaldum MA, Goda RM, Shehata IA, El‐Ashmawy MB. Synthesis and Antibacterial Evaluation of New2‐Phenylbenzimidazole Derivatives. ChemistrySelect 2019. [DOI: 10.1002/slct.201902227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Omayma R. Saleh
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| | - Moataz A. Shaldum
- Department of Pharmaceutical ChemistryFaculty of PharmacyKafrelsheikh University Kafrelsheikh 33516 Egypt
| | - Reham M. Goda
- Department of Microbiology and ImmunologyFaculty of PharmacyDelta University for Science and Technology Gamasa City 11152 Egypt
| | - Ihsan A. Shehata
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| | - Mahmoud B. El‐Ashmawy
- Department of Medicinal ChemistryFaculty of PharmacyMansoura University Mansoura 35516 Egypt
| |
Collapse
|
5
|
Bansal Y, Kaur M, Bansal G. Antimicrobial Potential of Benzimidazole Derived Molecules. Mini Rev Med Chem 2019; 19:624-646. [PMID: 29090668 DOI: 10.2174/1389557517666171101104024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/12/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023]
Abstract
Structural resemblance of benzimidazole nucleus with purine nucleus in nucleotides makes benzimidazole derivatives attractive ligands to interact with biopolymers of a living system. The most prominent benzimidazole compound in nature is N-ribosyldimethylbenzimidazole, which serves as an axial ligand for cobalt in vitamin B12. This structural similarity prompted medicinal chemists across the globe to synthesize a variety of benzimidazole derivatives and to screen those for various biological activities, such as anticancer, hormone antagonist, antiviral, anti-HIV, anthelmintic, antiprotozoal, antimicrobial, antihypertensive, anti-inflammatory, analgesic, anxiolytic, antiallergic, coagulant, anticoagulant, antioxidant and antidiabetic activities. Hence, benzimidazole nucleus is considered as a privileged structure in drug discovery, and it is exploited by many research groups to develop numerous compounds that are purported to be antimicrobial. Despite a large volume of research in this area, no novel benzimidazole derived compound has emerged as clinically effective antimicrobial drug. In the present review, we have compiled various reports on benzimidazole derived antimicrobials, classified as monosubstituted, disubstituted, trisubstituted and tetrasubstituted benzimidazoles, bisbenzimidazoles, fused-benzimidazoles, and benzimidazole derivative-metal complexes. The purpose is to collate these research reports, and to generate a generalised outlay of benzimidazole derived molecules that can assist the medicinal chemists in selecting appropriate combination of substituents around the nucleus for designing potent antimicrobials.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Manjinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
6
|
Šlachtová V, Janovská L, Brulíková L. Solid phase synthesis of new thiazolidinedione-pyrimidine conjugates and their antibacterial properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.01.073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Jangam SS, Wankhede SB, Chitlange SS. Molecular docking, synthesis and anticonvulsant activity of some novel 3-(2-substituted)-4-oxothiazolidine-3-yl)-2-phenylquinazoline-4(3H)-ones. RESEARCH ON CHEMICAL INTERMEDIATES 2018. [DOI: 10.1007/s11164-018-3612-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem 2016; 126:705-753. [PMID: 27951484 DOI: 10.1016/j.ejmech.2016.12.010] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/10/2016] [Accepted: 12/03/2016] [Indexed: 12/21/2022]
Abstract
Benzimidazole, a fused heterocycle bearing benzene and imidazole has gained considerable attention in the field of contemporary medicinal chemistry. The moiety is of substantial importance because of its wide array of pharmacological activities. This nitrogen containing heterocycle is a part of a number of therapeutically used agents. Moreover, a number of patents concerning this moiety in the last few years further highlight its worth. The present review covers the recent work published by scientists across the globe during last five years.
Collapse
Affiliation(s)
- Wasim Akhtar
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Mohemmed Faraz Khan
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - Garima Verma
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Shaquiquzzaman
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M A Rizvi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Hassan Mehdi
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mymoona Akhter
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India
| | - M Mumtaz Alam
- Drug Design and Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
9
|
Synthesis and study of 1,3,5-triazine based thiazole derivatives as antimicrobial agents. JOURNAL OF SAUDI CHEMICAL SOCIETY 2016. [DOI: 10.1016/j.jscs.2012.12.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Song D, Ma S. Recent Development of Benzimidazole-Containing Antibacterial Agents. ChemMedChem 2016; 11:646-59. [PMID: 26970352 DOI: 10.1002/cmdc.201600041] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 02/20/2016] [Indexed: 11/11/2022]
Abstract
Clinically significant antibiotic resistance is one of the greatest challenges of the twenty-first century. However, new antibacterial agents are currently being developed at a much slower pace than our growing need for such drugs. Given their diverse biological activities and clinical applications, many bioactive heterocyclic compounds containing a benzimidazole nucleus have been the focus of interest for many researchers. The benzimidazole nucleus is a structural isostere of naturally occurring nucleotides. This advantage allows benzimidazoles to readily interact with the various biopolymers found in living systems. In view of this situation, much attention has been given to the exploration of benzimidazole-based antibacterial agents, leading to the discovery of many new chemical entities with intriguing profiles. In this minireview we summarize novel benzimidazole derivatives active against various bacterial strains. In particular, we outline the relationship between the structures of variously modified benzimidazoles and their antibacterial activity.
Collapse
Affiliation(s)
- Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, P.R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, P.R. China.
| |
Collapse
|
11
|
Keri RS, Hiremathad A, Budagumpi S, Nagaraja BM. Comprehensive Review in Current Developments of Benzimidazole-Based Medicinal Chemistry. Chem Biol Drug Des 2014; 86:19-65. [PMID: 25352112 DOI: 10.1111/cbdd.12462] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 10/12/2014] [Indexed: 12/13/2022]
Abstract
The properties of benzimidazole and its derivatives have been studied over more than one hundred years. Benzimidazole derivatives are useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest. Substituted benzimidazole derivatives have found applications in diverse therapeutic areas such as antiulcer, anticancer agents, and anthelmintic species to name just a few. This work systematically gives a comprehensive review in current developments of benzimidazole-based compounds in the whole range of medicinal chemistry as anticancer, antibacterial, antifungal, anti-inflammatory, analgesic agents, anti-HIV, antioxidant, anticonvulsant, antitubercular, antidiabetic, antileishmanial, antihistaminic, antimalarial agents, and other medicinal agents. This review will further be helpful for the researcher on the basis of substitution pattern around the nucleus with an aim to help medicinal chemists for developing an SAR on benzimidazole drugs/compounds.
Collapse
Affiliation(s)
- Rangappa S Keri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, 562112, India
| | - Asha Hiremathad
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, 562112, India
| | - Srinivasa Budagumpi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, 562112, India
| | - Bhari Mallanna Nagaraja
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka, 562112, India
| |
Collapse
|
12
|
Chen S, Fan RQ, Wang XM, Yang YL. Novel bright blue emissions IIB group complexes constructed with various polyhedron-induced 2-[2′-(6-methoxy-pyridyl)]-benzimidazole derivatives. CrystEngComm 2014. [DOI: 10.1039/c4ce00382a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
13
|
A new hybrid approach and in vitro antimicrobial evaluation of novel 4(3H)-quinazolinones and thiazolidinone motifs. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Desai NC, Pandya MR, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM. Synthesis and antimicrobial screening of novel series of imidazo-[1,2-a]pyridine derivatives. Med Chem Res 2012. [DOI: 10.1007/s00044-012-9988-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Desai NC, Shihora PN, Rajpara KM, Joshi VV, Vaghani HV, Satodiya HM, Dodiya AM. Synthesis, characterization, and antimicrobial evaluation of novel naphthalene-based 1,2,4-triazoles. Med Chem Res 2011. [DOI: 10.1007/s00044-011-9833-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|