1
|
Large-scale comparison between the diffraction-component precision indexes favors Cruickshank’s Rfree function. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc200518076a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This study aims to provide a first large-scale comparison between the various diffraction-component precision index (DPI) equations, assess the applicability of the parameter, and make recommendations on DPI computation. The DPI estimates the average accuracy of the atomic coordinates obtained by the structural refinement of protein diffraction data, with application in crystallography and cheminformatics. Although, Cruickshank and Blow proposed DPI equations based on R and Rfree in order to calculate DPI values, which remain scarcely employed in the quality assessment of the Protein Data Base (PDB) files, due to the unclear data extraction protocols (to assign variables), the complex equations, the lack of extensive applicability studies and the limited access to automated computations. In order to address these shortcomings, the entire RCSB PDB database was evaluated using Cruickshank?s and Blow?s R and Rfree DPI variations. Computations of 143070 X-ray structures indicate that Rfree-based DPI equations apply to 30 % more protein structures compared to R-based DPI equations, with Cruickshank Rfree-based DPI (CRF) exceeding the number of successful Blow?s Rfree-based DPI (BRF) computations. Although our results indicate that, in general, the resolutions < 2 ? assure consistency among the various DPIs computations (differences <0.05 ?), we recommend the use of CRF DPI because of its wider applicability.
Collapse
|
2
|
Halip L, Avram S, Neanu C. The B-factor index for the binding site (BFIbs) to prioritize crystal protein structures for docking. Struct Chem 2021. [DOI: 10.1007/s11224-021-01751-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Kaushal R, Kaur M. Bio-medical potential of chalcone derivatives and their metal complexes as antidiabetic agents: a review. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1875450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Raj Kaushal
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| | - Mandeep Kaur
- Department of Chemistry, National Institute of Technology, Hamirpur, Himachal Pradesh, India
| |
Collapse
|
4
|
Exploiting oxadiazole-sulfonamide hybrids as new structural leads to combat diabetic complications via aldose reductase inhibition. Bioorg Chem 2020; 99:103852. [DOI: 10.1016/j.bioorg.2020.103852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023]
|
5
|
Chalcones and their pyrazine analogs: synthesis, inhibition of aldose reductase, antioxidant activity, and molecular docking study. MONATSHEFTE FUR CHEMIE 2018. [DOI: 10.1007/s00706-018-2146-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|