1
|
E Y, Li W, Guo H, Zhang X, Caiyin Q, Yuan Y. Dynamic profiling of metabolite changes and health-promoting functions in 'yuling paste' during nine steaming and nine sun-drying processes. Food Chem X 2024; 23:101668. [PMID: 39139487 PMCID: PMC11321412 DOI: 10.1016/j.fochx.2024.101668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 08/15/2024] Open
Abstract
Yuling paste, a traditional Chinese health food derived from longan pulp and American ginseng, undergoes a unique processing method involving nine cycles of steaming and sun-drying. Ultra-high-performance liquid chromatography tandem mass spectrometry combined with widely targeted metabolomics has been used to examine the dynamic change in metabolite profiles through the processing. A total of 758 metabolites were identified. Processing significantly affects metabolite changes, and network pharmacology is subsequently used to explore potential pharmacological ingredients. After processing, the contents of active ingredients such as ginsenoside rh2, oleanolic acid, choline, d-glucose, and D-galacturonic acid were found to increase significantly. These increases can be correlated to the enhancement of five distinct pathways, and the contents of naringenin-7-O-glucoside, adenosine, pantothenic acid, and D-sucrose decreased after the processing, correlating with decreases in two different pathways. This study provides a comprehensive reference and scientific basis for understanding the health benefits associated with this traditional health food.
Collapse
Affiliation(s)
- Yue E
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, 312300 Shaoxing, Zhejiang, China
| | - Weimiao Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hongbin Guo
- Zhejiang Institute of Tianjin University, Shaoxing, 312300 Shaoxing, Zhejiang, China
| | - Xianman Zhang
- Zhejiang Zhongxin Fluoride Materials Co., Ltd, No. 5 North Thirteen Road, Shangyu, Shaoxing, Zhejiang, 312369, China
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yi Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Suárez-Rozas C, Jara JA, Cortés G, Rojas D, Araya-Valdés G, Molina-Berrios A, González-Herrera F, Fuentes-Retamal S, Aránguiz-Urroz P, Campodónico PR, Maya JD, Vivar R, Catalán M. Antimigratory Effect of Lipophilic Cations Derived from Gallic and Gentisic Acid and Synergistic Effect with 5-Fluorouracil on Metastatic Colorectal Cancer Cells: A New Synthesis Route. Cancers (Basel) 2024; 16:2980. [PMID: 39272835 PMCID: PMC11393949 DOI: 10.3390/cancers16172980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer deaths in the world. Standard drugs currently used for the treatment of advanced CRC-such as 5-fluorouracil (5FU)-remain unsatisfactory in their results due to their high toxicity, high resistance, and adverse effects. In recent years, mitochondria have become an attractive target for cancer therapy due to higher transmembrane mitochondrial potential. We synthesized gallic acid derivatives linked to a ten-carbon aliphatic chain associated with triphenylphosphonium (TPP+C10), a lipophilic cationic molecule that induces the uncoupling of the electron transport chain (ETC). Other derivatives, such as gentisic acid (GA-TPP+C10), have the same effects on colorectal cancer cells. Although part of our group had previously reported preparing these structures by a convergent synthesis route, including their application via flow chemistry, there was no precedent for a new methodology for preparing these compounds. In this scenario, this study aims to develop a new linear synthesis strategy involving an essential step of Steglich esterification under mild conditions (open flask) and a high degree of reproducibility. Moreover, the study seeks to associate GA-TPP+C10 with 5FU to evaluate synergistic antineoplastic effects. In addition, we assess the antimigratory effect of GA-TPP+C10 and TPP+C10 using human and mouse metastatic CRC cell lines. The results show a new and efficient synthesis route of these compounds, having synergistic effects in combination with 5FU, increasing apoptosis and enhancing cytotoxic properties. Additionally, the results show a robust antimigratory effect of GATPP+C10 and TPP+C10, reducing the activation pathways linked to tumor progression and reducing the expression of VEGF and MMP-2 and MMP-9, common biomarkers of advanced CRC. Moreover, TPP+C10 and GA-TPP+C10 increase the activity of metabolic signaling pathways through AMPK activation. The data allow us to conclude that these compounds can be used for in vivo evaluations and are a promising alternative associated with conventional therapies for advanced colorectal cancer. Additionally, the reported intermediates of the new synthesis route could give rise to analog compounds with improved therapeutic activity.
Collapse
Affiliation(s)
- Cristian Suárez-Rozas
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - José Antonio Jara
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Gonzalo Cortés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Diego Rojas
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Gabriel Araya-Valdés
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Alfredo Molina-Berrios
- Institute for Research in Dental Sciences (ICOD), Faculty of Dentistry, Universidad de Chile, Santiago 8330111, Chile
| | - Fabiola González-Herrera
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Sebastián Fuentes-Retamal
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Santiago 8320000, Chile
| | - Pablo Aránguiz-Urroz
- School of Health Science, Universidad de Viña del Mar, Viña del Mar 2580022, Chile
| | - Paola Rossana Campodónico
- Centro de Química Médica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago 7610658, Chile
| | - Juan Diego Maya
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Raúl Vivar
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| | - Mabel Catalán
- Molecular and Clinical Program, Biomedical Science Institute (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8330111, Chile
| |
Collapse
|
3
|
Yadav S, Pandey A, Mali SN. From lab to nature: Recent advancements in the journey of gastroprotective agents from medicinal chemistry to phytotherapy. Eur J Med Chem 2024; 272:116436. [PMID: 38704935 DOI: 10.1016/j.ejmech.2024.116436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Peptic ulcer, affecting 10 % of the global population, results from imbalances in gastric juice pH and diminished mucosal defences. Key underlying factors are non-steroidal anti-inflammatory drugs (NSAIDs) and Helicobacter pylori infection, undermining mucosal resistance. Traditional treatments like proton pump inhibitors (PPIs) and histamine-2 (H2) receptor antagonists exhibit drawbacks such as adverse effects, relapses, and drug interactions. This review extensively explores the ethnomedicinal, synthetic and pharmacological facets of various potential peptic ulcer treatments. Rigorous methodologies involving electronic databases, and chemical structure verification via 'PubChem' and 'SciFinder' enhance the review's credibility. The provided information, spanning medicinal insights to intricate pharmacological mechanisms, establishes a robust groundwork for future research and the development of plant-derived or synthetic molecules for peptic ulcers, offering a promising alternative to conventional therapies.
Collapse
Affiliation(s)
- Susmita Yadav
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Anima Pandey
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India.
| |
Collapse
|
4
|
Zheng Y, Geng Y, Hou W, Li Z, Cheng C, Wang X, Yang Y. Study on the Antifungal Activity of Gallic Acid and Its Azole Derivatives against Fusarium graminearum. Molecules 2024; 29:1996. [PMID: 38731487 PMCID: PMC11085095 DOI: 10.3390/molecules29091996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
The wheat scab caused by Fusarium graminearum (F. graminearum) has seriously affected the yield and quality of wheat in China. In this study, gallic acid (GA), a natural polyphenol, was used to synthesize three azole-modified gallic acid derivatives (AGAs1-3). The antifungal activity of GA and its derivatives against F. graminearum was studied through mycelial growth rate experiments and field efficacy experiments. The results of the mycelial growth rate test showed that the EC50 of AGAs-2 was 0.49 mg/mL, and that of AGAs-3 was 0.42 mg/mL. The biological activity of AGAs-3 on F. graminearum is significantly better than that of GA. The results of field efficacy tests showed that AGAs-2 and AGAs-3 significantly reduced the incidence rate and disease index of wheat scab, and the control effect reached 68.86% and 72.11%, respectively. In addition, preliminary investigation was performed on the possible interaction between AGAs-3 and F. graminearum using density functional theory (DFT). These results indicate that compound AGAs-3, because of its characteristic of imidazolium salts, has potential for use as a green and environmentally friendly plant-derived antifungal agent for plant pathogenic fungi.
Collapse
Affiliation(s)
- Yilin Zheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (Y.Z.); (Y.G.); (W.H.); (Y.Y.)
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Yuqi Geng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (Y.Z.); (Y.G.); (W.H.); (Y.Y.)
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Wenlong Hou
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (Y.Z.); (Y.G.); (W.H.); (Y.Y.)
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Zhe Li
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Caihong Cheng
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (Y.Z.); (Y.G.); (W.H.); (Y.Y.)
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Xiuping Wang
- Analysis and Testing Center, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao 066000, China;
| | - Yuedong Yang
- Hebei Key Laboratory of Active Components and Functions in Natural Products, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China; (Y.Z.); (Y.G.); (W.H.); (Y.Y.)
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| |
Collapse
|
5
|
Gallic acid diminishes pro-inflammatory interferon-γ- and interleukin-17-producing sub-populations in vitro in patients with psoriasis. Immunol Res 2023; 71:475-487. [PMID: 36754913 DOI: 10.1007/s12026-023-09361-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/10/2023] [Indexed: 02/10/2023]
Abstract
Psoriasis is an inflammation of the skin mediated via the IL-23/Thl17/IL-17 pathway. We have previously demonstrated that the anthocyanin delphinidin diminishes in vitro the IL-17 and IFN-γ production of peripheral monocytes isolated by psoriasis patients (PBMCs). The degradation product of delphinidin is gallic acid (GA). This phenolic acid compound found in fruits, red wine, or green tea exerts pleiotropic antioxidant, anticarcinogenic, antimicrobial, and anti-inflammatory properties. Previous research has demonstrated the inhibitory effect of GA on pro-inflammatory transcription factors, such as STAT3, RORγt, and NF-κB, or cytokines as IL-1β and TNF, which contribute to psoriasis development. We investigated the effect of GA in vitro on PBMCs, which were stimulated ex vivo, from 40 individuals (28 diagnosed with psoriasis vulgaris and 12 healthy controls (HCs)). In our experiments, PBMCs were cultured untreated or were activated in the presence of phorbol 12-myristate 13-acetate/ionomycin with or without GA. We utilized multicolor flow cytometry to assess the production of inteleukin-17 (IL-17) and interferon-γ (IFN-γ) in T and NK cells. GA did not alter the fractions of IL-17- or IFN-γ-producing T and IFN-γ-producing NK cells in HCs. However, in psoriasis patients, the effect of GA on that cell population was significant. Specifically, GA decreased the frequency of IL-17-producing cells within the CD3+ (T) and CD3+CD4+ (Th) compartment; the frequency of IFN-γ-producing cells within the CD3+, CD3+CD4+, and CD3+CD4- (Tc) compartment, and the frequency of IFN-γ-producing cells within the CD3-CD56+ (NK) compartment. Whether GA's effect also appears in vivo needs to be investigated in future.
Collapse
|
6
|
Tang X, Liu CL, Chen YY, Wei Y, Zhuang XY, Xiao Q, Chen J, Chen FQ, Yang QM, Weng HF, Fang BS, Zhang YH, Xiao AF. Combination of simultaneous extraction–hydrolysis and intermittent feeding of tara pod for efficient production of gallic acid. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
7
|
Magerusan L, Pogacean F, Rada S, Pruneanu S. Sulphur-doped graphene based sensor for rapid and efficient gallic acid detection from food related samples. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
8
|
Mohamad EA, Mohamed ZN, Hussein MA, Elneklawi MS. GANE can Improve Lung Fibrosis by Reducing Inflammation via Promoting p38MAPK/TGF-β1/NF-κB Signaling Pathway Downregulation. ACS OMEGA 2022; 7:3109-3120. [PMID: 35097306 PMCID: PMC8792938 DOI: 10.1021/acsomega.1c06591] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/24/2021] [Indexed: 05/30/2023]
Abstract
There is a trend to use nanoparticles as distinct treatments for cancer treatment because they have overcome many of the limitations of traditional drug delivery systems. Gallic acid (GA) is an effective polyphenol in the treatment of tissue injuries. In this study, GA was loaded onto niosomes to produce gallic acid nanoemulsion (GANE) using a green synthesis technique. GANE's efficiency, morphology, UV absorption, release, and Fourier-transform infrared spectroscopy (FTIR) analysis were evaluated. An in vitro study was conducted on the A549 lung carcinoma cell line to determine the GANE cytotoxicity. Also, our study was extended to evaluate the protective effect of GANE against lipopolysaccharide (LPS)-induced pulmonary fibrosis in rats. GANE showed higher encapsulation efficiency and strong absorption at 280 nm. Transmission electron microscopy presented a spherical shape of the prepared nanoparticles, and FTIR demonstrated different spectra for the free gallic acid sample compared to GANE. GANE showed cytotoxicity for the A549 carcinoma lung cell line with a low IC50 value. It was found that oral administration of GANE at 32.8 and 82 mg/kg.b.w. and dexamethasone (0.5 mg/kg) provided significant protection against LPS-induced pulmonary fibrosis. GANE enhanced production of superoxide dismutase, GPx, and GSH. It simultaneously reduced the MDA level. The GANE and dexamethasone, induced the production of IL-4, but suppressed TNF-α and IL-6. On the other hand, the lung p38MAPK, TGF-β1, and NF-κB gene expression was downregulated in rats administrated with GANE when compared with the LPS-treated rats. Histological studies confirmed the effective effect of GANE as it had a lung-protective effect against LPS-induced lung fibrosis. It was noticed that GANE can inhibit oxidative stress, lipid peroxidation, and cytokines and downregulate p38MAPK, TGF-β1, and NF-κB gene expression to suppress the proliferation and migration of lung fibrotic cells.
Collapse
Affiliation(s)
- Ebtesam A. Mohamad
- Biophysics
Department, Faculty of Science, Cairo University, Cairo University Street, Giza 12613, Egypt
| | - Zahraa N. Mohamed
- Medical
Laboratory Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City 28125, Giza, Egypt
| | - Mohammed A. Hussein
- Biochemistry
Department, Faculty of Applied Medical Sciences, October 6 University, 6th of
October City 28125, Giza, Egypt
| | - Mona S. Elneklawi
- Biomedical
Equipment Department, Faculty of Applied Medical Sciences, October 6 University, 6th of October City 28125, Giza, Egypt
| |
Collapse
|
9
|
Effect of oxidized dextran on the stability of gallic acid-modified chitosan-sodium caseinate nanoparticles. Int J Biol Macromol 2021; 192:360-368. [PMID: 34634328 DOI: 10.1016/j.ijbiomac.2021.09.209] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 09/04/2021] [Accepted: 09/30/2021] [Indexed: 12/15/2022]
Abstract
We incorporated oxidized dextran (Odex) into nanoparticles composed of gallic acid-modified chitosan (GA-CS) and sodium caseinate (NaCas). The mass ratio of GA-CS to NaCas and the pH of the reaction solution were optimized to obtain nanoparticles with excellent performance and stability. The interactions among various nanomaterials were confirmed by Fourier-transform infrared spectroscopy (FT-IR) and fluorescence spectrometer. The optimized complex nanoparticles had a diameter of approximately 131.2 nm with a polydispersity index (PDI) of 0.14, and a zeta potential of 26.2 mV. Our results showed that Odex enhanced the stability and function of GA-CS/NaCas nanoparticles (NP). At a curcumin loading of 10%, the encapsulation efficiency of Odex-crosslinked GA-CS/NaCas (NP (Odex)) was 96.2%, whereas that for uncrosslinked nanoparticles was 66.9%. Compared to the burst release profile of free curcumin in simulated GI fluids, the sustained release profile of encapsulated curcumin was observed. Radical-scavenging assays confirmed that the nanoparticles had excellent antioxidant activity themselves due to the grafting of phenolic acid on chitosan backbone. Overall, NP (Odex) with good GI stability and antioxidant activity hold promising for the oral delivery of hydrophobic bioactives.
Collapse
|
10
|
Xie Y, Liu J, Shi Y, Bin Wang, Wang X, Wang W, Sun M, Xu X, He S. Synthesis and evaluation of new sesamol-based phenolic acid derivatives with hypolipidemic, antioxidant, and hepatoprotective effects. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem 2020; 204:112609. [DOI: 10.1016/j.ejmech.2020.112609] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
|
12
|
Yang K, Zhang L, Liao P, Xiao Z, Zhang F, Sindaye D, Xin Z, Tan C, Deng J, Yin Y, Deng B. Impact of Gallic Acid on Gut Health: Focus on the Gut Microbiome, Immune Response, and Mechanisms of Action. Front Immunol 2020; 11:580208. [PMID: 33042163 PMCID: PMC7525003 DOI: 10.3389/fimmu.2020.580208] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Gallic acid (GA) is a naturally occurring polyphenol compound present in fruits, vegetables, and herbal medicines. According to previous studies, GA has many biological properties, including antioxidant, anticancer, anti-inflammatory, and antimicrobial properties. GA and its derivatives have multiple industrial uses, such as food supplements or additives. Additionally, recent studies have shown that GA and its derivatives not only enhance gut microbiome (GM) activities, but also modulate immune responses. Thus, GA has great potential to facilitate natural defense against microbial infections and modulate the immune response. However, the exact mechanisms of GA acts on the GM and immune system remain unclear. In this review, first the physicochemical properties, bioavailability, absorption, and metabolism of GA are introduced, and then we summarize recent findings concerning its roles in gastrointestinal health. Furthermore, the present review attempts to explain how GA influences the GM and modulates the immune response to maintain intestinal health.
Collapse
Affiliation(s)
- Kang Yang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Limeng Zhang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Pinfeng Liao
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zaili Xiao
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fan Zhang
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Daniel Sindaye
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhongquan Xin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Chengquan Tan
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jinping Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Baichuan Deng
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
|
14
|
Shen W, Xiao T, Chen S, Liu F, Chen YZ, Jiang Y. Predicting the Enzymatic Hydrolysis Half‐lives of New Chemicals Using Support Vector Regression Models Based on Stepwise Feature Elimination. Mol Inform 2017. [DOI: 10.1002/minf.201600153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Wanxiang Shen
- Department of ChemistryTsinghua University Beijing 100084 P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at ShenzhenTsinghua University Shenzhen 518055 P. R. China
| | - Tao Xiao
- Department of ChemistryTsinghua University Beijing 100084 P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at ShenzhenTsinghua University Shenzhen 518055 P. R. China
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of PharmacyNational University of Singapore Singapore 117543 Singapore
| | - Feng Liu
- Department of ChemistryTsinghua University Beijing 100084 P. R. China
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at ShenzhenTsinghua University Shenzhen 518055 P. R. China
| | - Yu Zong Chen
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at ShenzhenTsinghua University Shenzhen 518055 P. R. China
- Bioinformatics and Drug Design Group, Department of PharmacyNational University of Singapore Singapore 117543 Singapore
- Shenzhen Kivita Innovative Drug Discovery Institute Shenzhen 518055 P. R. China
| | - Yuyang Jiang
- The State Key Laboratory Breeding Base-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at ShenzhenTsinghua University Shenzhen 518055 P. R. China
- School of Pharmaceutical SciencesTsinghua University Beijing 100084 P. R. China
| |
Collapse
|
15
|
Yadav M, Jindal DK, Dhingra MS, Kumar A, Parle M, Dhingra S. Protective effect of gallic acid in experimental model of ketamine-induced psychosis: possible behaviour, biochemical, neurochemical and cellular alterations. Inflammopharmacology 2017; 26:413-424. [PMID: 28577133 DOI: 10.1007/s10787-017-0366-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Gallic acid has been reported to possess a number of psychopharmacological activities. These activities are attributed to the antioxidant potential due to the presence of phenolic moeity. The present study was carried out to investigate the protective effects of gallic acid in an experimental model of ketamine-induced psychosis in mice. Ketamine (50 mg/kg, i.p.) was used to induce stereotyped psychotic behavioural symptoms in mice. Behavioural studies (locomotor activity, stereotype behaviour, immobility duration and memory retention) were carried out to investigate the protective of gallic acid on ketamine-induced psychotic symptoms, followed by biochemical and neurochemical changes and cellular alterations in the brain. Chronic treatment with gallic acid for 15 consecutive days significantly attenuated stereotyped behavioural symptoms in mice. Biochemical estimations revealed that gallic acid reduced the lipid peroxidation and restored the total brain proteins. Furthermore, gallic acid remarkably reduced the dopamine levels, AChE activity and inflammatory surge (serum TNF-α), and increased the levels of GABA and increased glutathione in mice. The study revealed that gallic acid could ameliorate psychotic symptoms and biochemical changes in mice, indicating protective effects in psychosis.
Collapse
Affiliation(s)
- Monu Yadav
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Deepak Kumar Jindal
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Mamta Sachdeva Dhingra
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Anil Kumar
- University Institute of Pharmaceutical Sciences, UGC Center of Advanced Study (UGC-CAS) in Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Milind Parle
- Department of Pharmaceutical Sciences, Faculty of Medical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sameer Dhingra
- Faculty of Medical Sciences, School of Pharmacy, The University of the West Indies, St. Augustine, Trinidad and Tobago.
| |
Collapse
|
16
|
Gallic acid ameliorates renal functions by inhibiting the activation of p38 MAPK in experimentally induced type 2 diabetic rats and cultured rat proximal tubular epithelial cells. Chem Biol Interact 2015; 240:292-303. [PMID: 26341651 DOI: 10.1016/j.cbi.2015.08.026] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/14/2015] [Accepted: 08/31/2015] [Indexed: 12/26/2022]
Abstract
Diabetic nephropathy (DN) is one of the leading causes of morbidity and mortality in diabetic patients that accounts for about 40% of deaths in type 2 diabetes. p38 mitogen activated protein kinase (p38 MAPK), a serine-threonine kinase, plays an important role in tissue inflammation and is known to be activated under conditions of oxidative stress and hyperglycemia. The role of p38 MAPK has been demonstrated in DN, and its inhibition has been suggested as an alternative approach in the treatment of DN. In the present study, we investigated the nephroprotective effects of an anti-inflammatory phenolic compound, gallic acid (GA, 3,4,5-trihydroxybenzoic acid), in high fat diet/streptozotocin (HFD/STZ) induce type 2 diabetic wistar albino rats. GA (25 mg/kgbw and 50 mg/kgbw, p.o.) treatment for 16 weeks post induction of diabetes led to a significant reduction in the levels of blood glucose, HbA1c, serum creatinine, blood urea nitrogen and proteinuria as well as a significant reduction in the levels of creatinine clearance. GA significantly inhibited the renal p38 MAPK and nuclear factor kappa B (N-κB) activation as well as significantly reduced the levels of renal transforming growth factor beta (TGF-β) and fibronectin. Treatment with GA resulted in a significant reduction in the serum levels of proinflammatory cytokines viz. interleukin 1 beta (IL-1β), IL-6 and tumor necrosis factor alpha (TNF-α). Moreover, GA significantly lowered renal pathology and attenuated renal oxidative stress. In cultured rat NRK 52E proximal tubular epithelial cells, GA treatment inhibited high glucose induced activation of p38 MAPK and NF-κB as well as suppressed proinflammatory cytokine synthesis. The results of the present study provide in vivo and in vitro evidences that the p38 MAPK pathway plays an important role in the pathogenesis of DN, and GA attenuates the p38 MAPK-mediated renal dysfunction in HFD/STZ induced type 2 diabetic rats.
Collapse
|