1
|
Srivastav VK, Singh V, Tiwari M. Recent Advancements in Docking Methodologies. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Nowadays molecular docking has become an important methodology in CADD (Computer-Aided Drug Design)-assisted drug discovery process. It is an important computational tool widely used to predict binding mode, binding affinity and binding free energy of a protein-ligand complex. The important factors responsible for accurate results in docking studies are correct binding site prediction, use of suitable small-molecule databases, consistent docking pose, high dock score with good MD (Molecular Dynamics), clarity whether the compound is an inhibitor or agonist, etc. However, still there are several limitations which make it difficult to obtain accurate results from docking studies. In this chapter, the main focus is on recent advancements in various aspects of molecular docking such as ligand sampling, protein flexibility, scoring functions, fragment docking, post-processing, docking into homology models and protein-protein docking.
Collapse
Affiliation(s)
| | - Vineet Singh
- Shri Govindram Seksaria Institute of Technology and Science, India
| | - Meena Tiwari
- Shri Govindram Seksaria Institute of Technology and Science, India
| |
Collapse
|
2
|
Sharma A, Piplani P. Understanding the quantitative structure–activity relationship of acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2015. [DOI: 10.1142/s0219633615500406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in old aged people and clinically used drugs for treatment are associated with side effects. Thus, there is a current demand for the discovery and development of new potential molecules. However, the recent advances in drug therapy have challenged the predominance of the disease. In this manuscript, an attempt has been made to develop the 2D and 3D quantitative structure–activity relationship (QSAR) models for a series of rutaecarpine, quinazolines and 7,8-dehydrorutaecarpine derivatives to obtain insights to Acetylcholinesterase (AChE) inhibition. Five different QSAR models have been generated and validated using a set of 52 compounds comprising of varying scaffolds with IC50 values ranging from 11,000 nM to 0.6 nM. These AChE-specific prediction models (M1–M5) adequately reflect the structure–activity relationship of the existing AChE inhibitors. Out of all developed models, QSAR model generated using ADME properties has been found to be the best with satisfactory statistical significance (regression (r2) of 0.9309 and regression adjusted coefficient of variation [Formula: see text] of 0.9194). The QSAR models highlight the importance of aromatic moiety as their presence in the structure influence the biological activity. Additional insights on the compounds show that acyclic amines attached to side chain have lower activity than cyclic amines. The QSAR models pinpointing structural basis for the AChEIs suggest new guidelines for the design of novel molecules.
Collapse
Affiliation(s)
- Anuradha Sharma
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences and Centre of Advanced Study in Pharmaceutical Sciences (UGC-CAS), Panjab University, Chandigarh-14, India
| | - Poonam Piplani
- Pharmaceutical Chemistry Division, University Institute of Pharmaceutical Sciences and Centre of Advanced Study in Pharmaceutical Sciences (UGC-CAS), Panjab University, Chandigarh-14, India
| |
Collapse
|