1
|
Ungureanu D, Oniga O, Moldovan C, Ionuț I, Marc G, Stana A, Pele R, Duma M, Tiperciuc B. An Insight into Rational Drug Design: The Development of In-House Azole Compounds with Antimicrobial Activity. Antibiotics (Basel) 2024; 13:763. [PMID: 39200063 PMCID: PMC11350776 DOI: 10.3390/antibiotics13080763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Antimicrobial resistance poses a major threat to global health as the number of efficient antimicrobials decreases and the number of resistant pathogens rises. Our research group has been actively involved in the design of novel antimicrobial drugs. The blueprints of these compounds were azolic heterocycles, particularly thiazole. Starting with oxadiazolines, our research group explored, one by one, the other five-membered heterocycles, developing more or less potent compounds. An overview of this research activity conducted by our research group allowed us to observe an evolution in the methodology used (from inhibition zone diameters to minimal inhibitory concentrations and antibiofilm potential determination) correlated with the design of azole compounds based on results obtained from molecular modeling. The purpose of this review is to present the development of in-house azole compounds with antimicrobial activity, designed over the years by this research group from the departments of Pharmaceutical and Therapeutical Chemistry in Cluj-Napoca.
Collapse
Affiliation(s)
- Daniel Ungureanu
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
- “Prof. Dr. Ion Chiricuță” Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania
- Department of Clinical Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 12 Ion Creangă Street, 400010 Cluj-Napoca, Romania
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Cristina Moldovan
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Anca Stana
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Raluca Pele
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| | - Mihaela Duma
- State Veterinary Laboratory for Animal Health and Safety, 1 Piața Mărăști Street, 400609 Cluj-Napoca, Romania;
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, “Iuliu Hațieganu” University of Medicine and Pharmacy, 41 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (D.U.); (O.O.); (C.M.); (I.I.); (G.M.); (A.S.); (B.T.)
| |
Collapse
|
2
|
Hassan EM, Soliman SM, Moneer EA, Hagar M, Barakat A, Haukka M, Rasheed H. Synthesis, X-ray Structure, Hirshfeld, DFT Conformational, Cytotoxic, and Anti-Toxoplasma Studies of New Indole-Hydrazone Derivatives. Int J Mol Sci 2023; 24:13251. [PMID: 37686056 PMCID: PMC10487720 DOI: 10.3390/ijms241713251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
The hydrazones 3a-c, were synthesized from the reaction of indole-3-carbaldehyde and nicotinic acid hydrazide, isonicotinic acid hydrazide, and benzoic acid hydrazide, respectively. Their structures were confirmed using FTIR, 1HNMR, and 13CNMR spectroscopic techniques. Exclusively, hydrazones 3b and 3c were confirmed using single crystal X-ray crystallography to exist in the Eanti form. With the aid of DFT calculations, the most stable configuration of the hydrazones 3a-c in gas phase and in nonpolar solvents (CCl4 and cyclohexane) is the ESyn form. Interestingly, the DFT calculations indicated the extrastability of the EAnti in polar aprotic (DMSO) and polar protic (ethanol) solvents. Hirshfeld topology analysis revealed the importance of the N…H, O…H, H…C, and π…π intermolecular interactions in the molecular packing of the studied systems. Distribution of the atomic charges for the hydrazones 3a-c was presented. The hydrazones 3a-c showed a polar character where 3b has the highest polarity of 5.7234 Debye compared to the 3a (4.0533 Debye) and 3c (5.3099 Debye). Regarding the anti-toxoplasma activity, all the detected results verified that 3c had a powerful activity against chronic toxoplasma infection. Compound 3c showed a considerable significant reduction percent of cyst burden in brain homogenates of toxoplasma infected mice representing 49%.
Collapse
Affiliation(s)
- Eman M. Hassan
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.H.); (S.M.S.)
| | - Saied M. Soliman
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.H.); (S.M.S.)
| | - Esraa A. Moneer
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21500, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.H.); (S.M.S.)
| | - Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Hanaa Rasheed
- Department of Chemistry, Faculty of Science, Alexandria University, P.O. Box 426, Ibrahimia, Alexandria 21321, Egypt; (E.M.H.); (S.M.S.)
| |
Collapse
|
3
|
Kushwaha AK, Maury SK, Kamal A, Singh HK, Pandey S, Singh S. Visible-light-absorbing C-N cross-coupling for the synthesis of hydrazones involving C(sp 2)-H/C(sp 3)-H functionalization. Chem Commun (Camb) 2023; 59:4075-4078. [PMID: 36938640 DOI: 10.1039/d2cc07001d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
An efficient C-N cross-coupling approach for the synthesis of hydrazones was developed through C(sp2)-H and C(sp3)-H functionalization of indole and methylarene under visible light irradiation using photocatalyst eosin Y, ethanol:water as a green solvent and atmospheric air as an oxidant. With the aid of eosin Y, the C-H bonds of indole and methylarenes were activated followed by coupling with arylhydrazines. The procedure was applied to a wide variety of substrates with good functional group compatibility, offering a creative way to make hydrazones from inexpensive and easily accessible raw materials. The absence of metals, low cost, environmental friendliness, green solvent, non-toxicity, ease of handling, and utilization of renewable energy sources like visible light are some of this method's primary advantages.
Collapse
Affiliation(s)
- Ambuj Kumar Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Suresh Kumar Maury
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Arsala Kamal
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Himanshu Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Shikha Pandey
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| | - Sundaram Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi - 221 005, UP, India.
| |
Collapse
|
4
|
Goyat R, Singh J, Umar A, Saharan Y, Kumar V, Algadi H, Akbar S, Baskoutas S. Modified low-temperature synthesis of graphene oxide nanosheets: Enhanced adsorption, antibacterial and antioxidant properties. ENVIRONMENTAL RESEARCH 2022; 215:114245. [PMID: 36087770 DOI: 10.1016/j.envres.2022.114245] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Herein, we report a simple, low-temperature, ecofriendly synthesis of graphene oxide nanosheets (GONs). Graphite powder was treated with KMnO4 and a concentrated H2SO4/H3PO4 mixture to synthesize GONs. The effects of various reaction conditions such as reaction time, temperature, amounts of cleaving agents (H2SO4/H3PO4), and oxidant (KMnO4) were investigated. The synthesized GONs were examined by various techniques in order to investigate their characteristics. The best results of the synthesized GONs were observed at 35 °C within 10 h of reaction time having 8:2 ratios of H2SO4/H3PO4 acid mixture. The main absorption peak in the UV-vis spectra of GONs was at 258 nm, which is due to the π-π* transition of the atomic CC bonds. The existence of stretching vibrations of C꞊O, O-H, C-H, and C-O in the Fourier transform infrared (FTIR) spectra verified the formation of GONs. Presence of a sharp peak at 2θ = 10° with an interlayer spacing distance of 0.88 nm in the observed XRD pattern revealed that the synthesized GONs were totally oxidized and that the interlayer spacing increased. The morphological investigations confirmed the formation of ultrathin, transparent, curly, and homogenous GONs. The synthesized GONs were applied as an adsorbent for the rapid uptake of four different pesticides viz.; Profenofos, Ethion, Cypermethrin, Thiamethoxam (TMX) from the pesticides spiked water samples. About 86% adsorption of Profenofos + Cypermethrin, and 50% adsorption of ethion and thiamethoxam took place within 20 min in presence of 10 mg GONs. In addition to this, the prepared GONs were tested for the antibacterial activity against four bacterial strains by agar well diffusion method. The synthesized GONs provide a significant inhibition for gram -positive (Bacillus subtilis, and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacterial strains. Moreover, the radical scavenging activities (RSA) of GONs were also checked and compared with Gallic acid as a standard. The obtained RSA of GONs was 60% in comparison to the 80% as of the standard Gallic acid at 1000 μg/mL concentration.
Collapse
Affiliation(s)
- Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia; Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Vikas Kumar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India
| | - Hassan Algadi
- Department of Electrical Engineering, Faculty of Engineering, Najran University, Najran, 11001, Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Sotirios Baskoutas
- Department of Materials Science, University of Patras, 26504, Patras, Greece
| |
Collapse
|
5
|
Abstract
Bacterial resistance to antibiotics threatens our progress in healthcare, modern medicine, food production and ultimately life expectancy. Antibiotic resistance is a global concern, which spreads rapidly across borders and continents due to rapid travel of people, animals and goods. Derivatives of metabolically stable pyrazole nucleus are known for their wide range of pharmacological properties, including antibacterial activities. This review highlights recent reports of pyrazole derivatives targeting different bacterial strains focusing on the drug-resistant variants. Pyrazole derivatives target different metabolic pathways of both Gram-positive and Gram-negative bacteria.
Collapse
|
6
|
Mohmad M, Agnihotri N, Kumar V, Kumar R, Kaviani S. Iridium(III)-3-hydroxy-2-(3’-methyl-2’-thienyl)-4-oxo-4H-1-benzopyran Complex : The Analytical, In-vitro Antibacterial and DFT Studies. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
A study of antituberculosis activities and crystal structures of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine and (E)-N
1-(arylidene)pyrimidine-2-carbohydrazide derivatives. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
A study of the anti-tuberculosis activity against Mycobacterium tuberculosis ATTC 27294 and an X-ray structural determination of (E)-2-[2-(arylidene)hydrazinyl]pyrimidine, 1, and (E)-N
1-(arylidene)pyrimidine-2-carbohydazide, 2, derivatives are presented. The effect of the substituents in the aryl moiety on the antituberculosis (anti-TB) activities of 1 and 2 is compared with that of other heteroaryl hydrazonyl and acylhydrazonyl derivatives. The biological activities of 1 do not depend on the coordinating ability of the substituted aryl group: in 2, the most effective aryl group is 5-nitrofuranyl. The structure determinations of (E)-2-((2-(pyrimidin-2-yl)hydrazono)methyl)-phenol, (E)-N′-(2,5-dihydroxybenzylidene)pyrimidine-2-carbohydrazide and of the hydrate of (E)-N′-(2-hydroxy-4-methylbenzylidene)pyrimidine-2-carbohydrazide, and a literature search of related structures in the CCDC data base, allowed an examination of the more important interactions, including the occurrence of X–Y⋯π interactions.
Collapse
|
8
|
Kamal R, Kumar V, Kumar R, Kumar V, Sharma PC, Bansal KK. Chloramine‐T Mediated Facile One Pot Synthesis of Pyrazolyltriazolobenzothiazole Hybrids as Potent Anti‐Infective Agents. ChemistrySelect 2019. [DOI: 10.1002/slct.201901312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Raj Kamal
- Department of ChemistryKurukshetra University, Kurukshetra Haryana (India) – 136119
| | - Vipan Kumar
- Department of ChemistryKurukshetra University, Kurukshetra Haryana (India) – 136119
| | - Ravinder Kumar
- Department of ChemistryKurukshetra University, Kurukshetra Haryana (India) – 136119
| | - Vikas Kumar
- Department of BiotechnologyMaharishi Markandeshwar (Deemed to be University), Mullana, Ambala Haryana (India)-133207
| | - Prabodh C. Sharma
- Department of Pharmaceutical SciencesKurukshetra University, Kurukshetra Haryana (India) – 136119
| | - Kushal K. Bansal
- Department of Pharmaceutical SciencesKurukshetra University, Kurukshetra Haryana (India) – 136119
| |
Collapse
|
9
|
Xiao HM, Wang X, Yang X, Zheng F, Feng YQ. Hydralazine derivative of aldehyde: A new type of [M - H] + ion formed in electrospray ionization mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2019; 54:239-249. [PMID: 30650224 DOI: 10.1002/jms.4330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/19/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
Hydralazine has been widely employed in the development of drugs, derivatization reagents, and ligands. In the present work, we reported a new type of dehydrogenated ion [M - H]+ that was produced from the hydralazine derivative of hexanal in electrospray ionization mass spectrometry (ESI-MS). The formation of [M - H]+ ions in the ESI-MS was found to be independent on the mobile phase composition of the liquid chromatography and ESI source parameters. A series of hydralazine derivatives of aldehyde were investigated to confirm this phenomenon. The results showed that hydralazine derivatives of aldehydes that contained an sp3 hybridization carbon with a hydrogen at the α-position of aldehydes could form the unexpected [M - H]+ ions, whereas hydralazine derivative of acetone could only generate [M + H]+ ion in the ESI-MS. We proposed the possible formation mechanism of [M - H]+ ion for the hydralazine derivatives of aldehydes: the [M - H]+ ion was possibly formed by the loss a hydrogen molecule (H2 ) from the protonated ion [M + H]+ . The results obtained from density functional theory (DFT) calculations supported this proposed formation mechanism of [M - H]+ ion.
Collapse
Affiliation(s)
- Hua-Ming Xiao
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xian Wang
- Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, People's Republic of China
| | - Xing Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Feng Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
10
|
Kamal R, Kumar R, Kumar V, Kumar V, Bansal KK, Sharma PC. Synthesis, Anthelmintic and Antimicrobial Evaluation of New 2‐Arylidene‐1‐(4‐methyl‐6‐phenylpyrimidin‐2‐yl)hydrazines. ChemistrySelect 2019. [DOI: 10.1002/slct.201802822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Raj Kamal
- Department of ChemistryKurukshetra University, Kurukshetra, Haryana India)- 136119
| | - Ravinder Kumar
- Department of ChemistryKurukshetra University, Kurukshetra, Haryana India)- 136119
| | - Vipan Kumar
- Department of ChemistryKurukshetra University, Kurukshetra, Haryana India)- 136119
| | - Vikas Kumar
- Department of BiotechnologyMaharishi Markandeshwar (Deemed to be University), Mullana, Haryana India)- 133207
| | - Kushal K. Bansal
- Department of Pharmaceutical SciencesKurukshetra University, Kurukshetra, Haryana India)- 136119
| | - Prabodh C. Sharma
- Department of Pharmaceutical SciencesKurukshetra University, Kurukshetra, Haryana India)- 136119
| |
Collapse
|
11
|
Borcea AM, Marc G, Ionuț I, Vodnar DC, Vlase L, Gligor F, Pricopie A, Pîrnău A, Tiperciuc B, Oniga O. A Novel Series of Acylhydrazones as Potential Anti- Candida Agents: Design, Synthesis, Biological Evaluation and In Silico Studies. Molecules 2019; 24:E184. [PMID: 30621322 PMCID: PMC6337626 DOI: 10.3390/molecules24010184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 01/01/2023] Open
Abstract
In the context of an increased incidence of invasive fungal diseases, there is an imperative need of new antifungal drugs with improved activity and safety profiles. A novel series of acylhydrazones bearing a 1,4-phenylene-bisthiazole scaffold was designed based on an analysis of structures known to possess anti-Candida activity obtained from a literature review. Nine final compounds were synthesized and evaluated in vitro for their inhibitory activity against various strains of Candida spp. The anti-Candida activity assay revealed that some of the new compounds are as active as fluconazole against most of the tested strains. A molecular docking study was conducted in order to evaluate the binding poses towards lanosterol 14α-demethylase. An in silico ADMET analysis showed that the compounds possess drug-like properties and represent a biologically active framework that should be further optimized as potential hits.
Collapse
Affiliation(s)
- Anca-Maria Borcea
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
- Preclinic Department, Pharmacy Specialization, Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania.
| | - Gabriel Marc
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Ioana Ionuț
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Dan C Vodnar
- Department of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 3-5 Mănăştur Street, 400372 Cluj-Napoca, Romania.
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmaceutics, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Felicia Gligor
- Preclinic Department, Pharmacy Specialization, Faculty of Medicine, Lucian Blaga University of Sibiu, 2A Lucian Blaga Street, 550169 Sibiu, Romania.
| | - Andreea Pricopie
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Adrian Pîrnău
- National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donath Street, 400293 Cluj-Napoca, Romania.
| | - Brîndușa Tiperciuc
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| | - Ovidiu Oniga
- Department of Pharmaceutical Chemistry, "Iuliu Haţieganu" University of Medicine and Pharmacy, 41 Victor Babeş Street, 400012 Cluj-Napoca, Romania.
| |
Collapse
|
12
|
Kamal R, Kumar V, Kumar R, Bhardwaj JK, Saraf P, Kumari P, Bhardwaj V. Design, Synthesis, and Screening of Triazolopyrimidine-Pyrazole Hybrids as Potent Apoptotic Inducers. Arch Pharm (Weinheim) 2017; 350. [PMID: 29034498 DOI: 10.1002/ardp.201700137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 08/24/2017] [Accepted: 09/11/2017] [Indexed: 01/06/2025]
Abstract
An efficient synthesis of novel 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-5,7-dimethyl-[1,2,4]triazolo[4,3-a]-pyrimidines was accomplished by the oxidation of pyrimidinylhydrazones by using organoiodine(III) reagent. All new triazolopyrimidine derivatives bearing the pyrazole scaffold were screened to evaluate them as a reproductive toxicant in the testicular germ cells of goat (Capra hircus). This study aimed at assessing the cytological and biochemical changes in testicular germ cells after the exposure to triazolopyrimidines in a dose- and time-dependent manner. Histomorphological analysis, fluorescence assays, apoptosis quantification, and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling (TUNEL) assays were performed to determine cytological changes, whereas thiobarbituric acid-reactive substance (TBARS) and ferric reducing antioxidant power (FRAP) assays were carried out to measure the oxidative stress in triazolopyrimidines treated germ cells. The parallel use of these methods enabled us to determine the role of triazolopyrimidines in inducing apoptosis as a consequence of cytogenetic damage and oxidative stress generated in testicular germ cells of goat.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vipan Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Ravinder Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, Haryana, India
| | - Jitender K Bhardwaj
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priyanka Saraf
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Priya Kumari
- Reproductive Physiology Laboratory, Department of Zoology, Kurukshetra University, Kurukshetra, Haryana, India
| | - Vikas Bhardwaj
- Seth Jai Prakash Mukand Lal Institute of Engineering & Technology, Radaur, Yamuna Nagar, Haryana, India
| |
Collapse
|
13
|
Can NÖ, Osmaniye D, Levent S, Sağlık BN, İnci B, Ilgın S, Özkay Y, Kaplancıklı ZA. Synthesis of New Hydrazone Derivatives for MAO Enzymes Inhibitory Activity. Molecules 2017; 22:molecules22081381. [PMID: 28825649 PMCID: PMC6152084 DOI: 10.3390/molecules22081381] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2017] [Accepted: 08/15/2017] [Indexed: 01/18/2023] Open
Abstract
In the present work, 14 new 1-substituted-2-phenylhydrazone derivatives were synthesized to evaluate their inhibitory activity against hMAO enzymes. The structures of the newly synthesized hydrazones 2a–2n were characterized by IR, 1H-NMR, 13C-NMR, HR-MS spectroscopic methods. The inhibitory activity of compounds 2a–2n against hMAO-A and hMAO-B enzymes was elucidated by using an in-vitro Amplex Red® reagent assay based on fluorometric methods. According to the activity studies, 2a and 2b were found to be the most active compounds against hMAO-A enzyme, with IC50 values of 0.342 µM and 0.028 µM, respectively. The most active compounds 2a–2b were evaluated by means of enzyme kinetics and docking studies. Moreover, these compounds were subjected to cytotoxicity and genotoxicity tests to establish their preliminary toxicological profiles and were found to be non-cytotoxic and non-genotoxic. Consequently, the findings of this study display the biological importance of compounds 2a, 2b as selective, irreversible and competitive inhibitors of hMAO-A. Docking studies revealed that there is a strong interaction between hMAO-A and the most active compound 2b.
Collapse
Affiliation(s)
- Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Derya Osmaniye
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Serkan Levent
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Begüm Nurpelin Sağlık
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Beril İnci
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Sinem Ilgın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
- Doping and Narcotic Compounds Analysis Laboratory, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu Universty, 26470 Eskişehir, Turkey.
| |
Collapse
|
14
|
Kral K, Bieg T, Kudelko A, Barabaś A, Dąbrowska A, Wandzik I. New N-substituted hydrazones, derivatives of uridyl aldehyde. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2017; 36:159-169. [PMID: 28045605 DOI: 10.1080/15257770.2016.1231321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
N-substituted isomeric hydrazones of uridyl aldehyde have been synthesized. The occurrence of the dominant E isomers with respect to the azomethine group was confirmed by means of NMR spectroscopy. Synthesized hydrazones feature an acetonide moiety as a protection of two hydroxyl groups on the ribose part. The attempt to remove the protecting group resulted in an azo-hydrazone tautomeric mixture. The described compounds may be valuable chiral ligands for metal chelation. Assessment of manganese(II) ion affinity to one selected hydrazone was performed.
Collapse
Affiliation(s)
- Katarzyna Kral
- a Department of Organic Chemistry , Bioorganic Chemistry and Biotechnology, Silesian University of Technology , Gliwice , Poland
| | - Tadeusz Bieg
- a Department of Organic Chemistry , Bioorganic Chemistry and Biotechnology, Silesian University of Technology , Gliwice , Poland
| | - Agnieszka Kudelko
- b Department of Chemical Organic Technology and Petrochemistry , Silesian University of Technology , Gliwice , Poland
| | - Anna Barabaś
- c Laboratory of Bioinorganic Synthesis, Department of General and Inorganic Chemistry , University of Gdańsk , Gdańsk , Poland
| | - Aleksandra Dąbrowska
- c Laboratory of Bioinorganic Synthesis, Department of General and Inorganic Chemistry , University of Gdańsk , Gdańsk , Poland
| | - Ilona Wandzik
- a Department of Organic Chemistry , Bioorganic Chemistry and Biotechnology, Silesian University of Technology , Gliwice , Poland
| |
Collapse
|
15
|
Zhang M, Shang ZR, Li XT, Zhang JN, Wang Y, Li K, Li YY, Zhang ZH. Simple and efficient approach for synthesis of hydrazones from carbonyl compounds and hydrazides catalyzed by meglumine. SYNTHETIC COMMUN 2016. [DOI: 10.1080/00397911.2016.1258476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Mo Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Ze-Ren Shang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Xiao-Tang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Jia-Nan Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Yong Wang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Kang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Yang-Yang Li
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| | - Zhan-Hui Zhang
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, China
| |
Collapse
|
16
|
Synthesis of some novel oxazolidinone-thiazole hybrids as potential antimicrobial, antioxidant and UV mediated DNA damage protecting agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Kaur K, Kumar V, Beniwal V, Kumar V, Aneja KR, Sharma V, Jaglan S. Novel (E)-1-aryl-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)ethanones: solvent-free synthesis and antimicrobial, antioxidant and UV-mediated DNA damage protective activity studies. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1452-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Solvent-free synthesis of novel (E)-2-(3,5-dimethyl-4-(aryldiazenyl)-1H-pyrazol-1-yl)-4-arylthiazoles: determination of their biological activity. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1429-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Ramakrishnan A, Chourasiya SS, Bharatam PV. Azine or hydrazone? The dilemma in amidinohydrazones. RSC Adv 2015. [DOI: 10.1039/c5ra05574a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Amidinohydrazone, an important class of biologically active molecules, is generally represented as a hydrazone. This moiety prefers to exist in its azine tautomeric state and hence, influences the physical, chemical and receptor binding properties.
Collapse
Affiliation(s)
- Ashok Ramakrishnan
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| | - Sumit S. Chourasiya
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| | - Prasad V. Bharatam
- Department of Medicinal Chemistry
- National Institute of Pharmaceutical Education and Research
- Mohali
- India
| |
Collapse
|