1
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2024:10.1007/s11030-024-10924-7. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
2
|
Vo NB, Ngo QA. Synthesis, Anti‐inflammatory and Cytotoxic Activity of Novel Pyrazolo[4,3‐
c
][2,1]benzothiazine 4,4‐dioxide Derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ngoc Binh Vo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quoc Anh Ngo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
3
|
Saddique FA, Ahmad M, Ashfaq UA, Muddassar M, Sultan S, Zaki MEA. Identification of Cyclic Sulfonamides with an N-Arylacetamide Group as α-Glucosidase and α-Amylase Inhibitors: Biological Evaluation and Molecular Modeling. Pharmaceuticals (Basel) 2022; 15:106. [PMID: 35056163 PMCID: PMC8777765 DOI: 10.3390/ph15010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/31/2021] [Accepted: 01/06/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetes mellitus (DM), a complicated metabolic disorder, is due to insensitivity to insulin function or reduction in insulin secretion, which results in postprandial hyperglycemia. α-Glucosidase inhibitors (AGIs) and α-amylase inhibitors (AAIs) block the function of digestive enzymes, which delays the carbohydrate hydrolysis process and ultimately helps to control the postprandial hyperglycemia. Diversified 2-(3-(3-methoxybenzoyl)-4-hydroxy-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)-N-arylacetamides were synthesized and evaluated for their in vitro inhibitory potential against α-glucosidase and α-amylase enzymes. The compounds with chloro, bromo and methyl substituents demonstrated good inhibition of α-glucosidase enzymes having IC50 values in the range of 25.88-46.25 μM, which are less than the standard drug, acarbose (IC50 = 58.8 μM). Similarly, some derivatives having chloro, bromo and nitro substituents were observed potent inhibitors of α-amylase enzyme, with IC50 values of 7.52 to 15.06 μM, lower than acarbose (IC50 = 17.0 μM). In addition, the most potent compound, N-(4-bromophenyl)-2-(4-hydroxy-3-(3-methoxybenzoyl)-1,1-dioxido-2H-benzo[e][1,2]thiazin-2-yl)acetamide (12i), was found to be a non-competitive and competitive inhibitor of α-glucosidase and α-amylase enzymes, respectively, during kinetic studies. The molecular docking studies provided the binding modes of active compounds and the molecular dynamics simulation studies of compound 12i in complex with α-amylase also showed that the compound is binding in a fashion similar to that predicted by molecular docking studies.
Collapse
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad 45500, Pakistan;
| | - Sadia Sultan
- Faculty of Pharmacy, Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia;
- Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Puncak Alam Campus, Universiti Teknologi MARA, Bandar Puncak Alam 42300, Selangor Darul Ehsan, Malaysia
| | - Magdi E. A. Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| |
Collapse
|
4
|
Kumar S, Gupta S, Rani V, Sharma P. Pyrazole Containing Anti-HIV Agents: An Update. Med Chem 2022; 18:831-846. [PMID: 34994333 DOI: 10.2174/1573406418666220106163846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pyrazole scaffolds have gained importance in drug discovery and development for various pharmacological activities like antiviral, antifungal, anticancer, antidepressant, anti-inflammatory, antibacterial, etc. Additionally, the pyrazole moiety has shown potent anti-HIV activity as a core heterocycle or substituted heterocycles derivatives (mono, di, tri, tetra, and fused pyrazole derivatives). To assist the development of further potential anti-HIV agents containing pyrazole nucleus, here we have summarized pyrazole containing anti-HIV compounds that have been reported by researchers all over the world for the last two decades. OBJECTIVE The present review concentrates on an assortment of pyrazole containing compounds, particularly for potential therapeutic activity against HIV. METHODS Google Scholar, Pubmed, and SciFinder were searched databases with ''pyrazol'' keywords. Further, the year of publication and keywords ''Anti-HIV'' filter was applied to obtain relevant reported literature for anti-HIV agents containing pyrazole as a core or substituted derivatives. RESULTS This review article has shown the comprehensive compilation of 220 compounds containing pyrazole nucleus and possessing anti-HIV activity by sorting approximately 40 research articles from 2001 to date. 1-(4-Benzoylpiperazin-1-yl)-2-(4-fluoro-7-(1H-pyrazol-3-yl)-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (13), 3-(3-(2-(4-benzoylpiperazin-1-yl)-2-oxoacetyl)-4-fluoro-1H-pyrrolo[2,3-c]pyridin-7-yl)-1H-pyrazole-5-carboxamide (31), 3-(3-(2-(4-benzoylpiperazin-1-yl)-2-oxoacetyl)-4-fluoro-1H-pyrrolo[2,3-c]pyridin-7-yl)-1H-pyrazole-5-carboxamide (88), 3-cyanophenoxypyrazole derivative (130), and 4-(4-chlorophenyl)-5-(4-methyl-5-((4-nitrophenyl)diazenyl)thiazol-2-yl)-3-phenyl-5,6-dihydro-4H-pyrazolo[4,3-d]isoxazole (178) were the most potent mono-, di-, tri-, tetra-substituted, and fused pyrazole derivatives, respectively, which have shown potent anti-HIV activity among all the described derivatives as compared with standard anti-HIV drugs. CONCLUSION This review article provides an overview of the potential therapeutic activity of pyrazole derivatives against HIV that will be helpful for designing pyrazole containing compounds for anti-HIV activity.
Collapse
Affiliation(s)
- Sanjay Kumar
- Punjab Biotechnology Incubator, Mohali, Punjab - 160 059, India
- Regional Advance Water Testing Laboratory, Mohali, Punjab - 160 059, India
| | - Shiv Gupta
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab - 144 411, India
| | - Varsha Rani
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, UP, 221005, India
| | - Priyanka Sharma
- Biocon Bristol Myers Squibb Syngene International Pvt. Ltd., Bangalore - 560 099, India
| |
Collapse
|
5
|
Ahmad S, Mahmood T, Ahmad M, Arshad MN, Ullah F, Shafiq M, Aslam S, Asiri AM. Synthesis, single crystal X-ray, spectroscopic and computational (DFT) studies 2,1-benzothiazine based hydrazone derivatives. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Ahmad Saddique F, Ahmad M, Kanwal A, Aslam S, Fawad Zahoor A. Recent trends toward the synthesis of fused-benzothiazines and their derivatives. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1830420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Afshan Kanwal
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| |
Collapse
|
7
|
Petrou A, Eleftheriou P, Geronikaki A, Akrivou MG, Vizirianakis I. Novel Thiazolidin-4-ones as Potential Non-nucleoside Inhibitors of HIV-1 Reverse Transcriptase. Molecules 2019; 24:E3821. [PMID: 31652782 PMCID: PMC6864537 DOI: 10.3390/molecules24213821] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND HIV is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), an infectious disease with increasing incidence worldwide. Non-nucleoside reverse transcriptase inhibitors (NNRTIs) play an important role in the treatment of AIDS. Although, many compounds are already being used as anti-HIV drugs, research for the development of new inhibitors continues as the virus develops resistant strains. METHODS The best features of available NNRTIs were taken into account for the design of novel inhibitors. PASS (Prediction of activity spectra for substances) prediction program and molecular docking studies for the selection of designed compounds were used for the synthesis. Compounds were synthesized using conventional and microwave irradiation methods and HIV RT inhibitory action was evaluated by colorimetric photometric immunoassay. RESULTS The evaluation of HIV-1 RT inhibitory activity revealed that seven compounds have significantly lower ΙC50 values than nevirapine (0.3 μΜ). It was observed that the activity of compounds depends not only on the nature of substituent and it position in benzothiazole ring but also on the nature and position of substituents in benzene ring. CONCLUSION Twenty four of the tested compounds exhibited inhibitory action lower than 4 μΜ. Seven of them showed better activity than nevirapine, while three of the compounds exhibited IC50 values lower than 5 nM. Two compounds 9 and 10 exhibited very good inhibitory activity with IC50 1 nM.
Collapse
Affiliation(s)
- Anthi Petrou
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Phaedra Eleftheriou
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, Thessaloniki, Greece.
| | - Athina Geronikaki
- School of Pharmacy, Department of Pharmaceutical Chemistry,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Melpomeni G Akrivou
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Ioannis Vizirianakis
- School of Pharmacy Department of Pharmacology and Pharmacognosy,Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
8
|
Alpha-glucosidase activity of novel pyrazolobenzothiazine 5,5-dioxide derivatives for the treatment of diabetes mellitus. Invitro combined with molecular docking approach. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00294-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Ahmad S, Jalil S, Zaib S, Aslam S, Ahmad M, Rasul A, Arshad MN, Sultan S, Hameed A, Asiri AM, Iqbal J. Synthesis, X-ray crystal and monoamine oxidase inhibitory activity of 4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine 5,5-dioxides: In vitro studies and docking analysis. Eur J Pharm Sci 2019; 131:9-22. [PMID: 30735822 DOI: 10.1016/j.ejps.2019.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 02/03/2019] [Indexed: 02/06/2023]
Abstract
We report the synthesis and biological evaluation of two new series of 2-amino-6-benzyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides and 2-amino-6-methyl-4-phenyl-4,6-dihydrobenzo[c]pyrano[2,3-e][1,2]thiazine-3‑carbonitrile 5,5-dioxides. The synthetic methodology involves a multistep reaction starting with methyl anthranilate which was coupled with methane sulfonyl chloride. The product of the reaction was subjected to N-benzylation and N-methylation reactions followed by ring closure with sodium hydride resulting in the formation of respective 2,1-benzothiazine 2,2-dioxides. These 2,1-benzothiazine precursors were subjected to multicomponent reaction with malononitrile and substituted benzaldehydes for the synthesis of two new series of pyranobenzothiazines (6a-r and 7a-r). The synthesized compounds were screened as selective inhibitors of monoamine oxidase A and monoamine oxidase B. The in vitro results suggested that compound 6d and 7q are the selective inhibitors of monoamine oxidase A, however, the selective and potent inhibitors of monoamine oxidase B included compounds 6h and 7r. Moreover, some dual inhibitors were noticed like 7l having more inhibitory activity towards both the isozymes. Moreover, the binding modes of the selective and potent inhibitors of monoamine oxidase A and B were investigated by molecular docking analysis. The results suggested that the synthetic derivatives may be potential towards the monoamine oxidase isozymes.
Collapse
Affiliation(s)
- Shakeel Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan
| | - Saquib Jalil
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University, Faisalabad 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad 38000, Pakistan.
| | - Azhar Rasul
- Department of Zoology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Nadeem Arshad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Sadia Sultan
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia; Atta-ur-Rahman Institute for Natural Products Discovery (AuRIns), Universiti Teknologi MARA, Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor Darul Ehsan, Malaysia
| | - Abdul Hameed
- HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia; Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
10
|
Etsè KS, Dassonneville B, Zaragoza G, Demonceau A. One-pot, Pd/Cu-catalysed synthesis of alkynyl-substituted 3-ylidene-dihydrobenzo[d]isothiazole 1,1-dioxides. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.01.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Saif MJ, Ahmad M, Idrees N. X-ray crystal and DFT study of a potent anti-HIV-1 agent: 2-(5,5-Dioxido-3-phenylpyrazolo[4,3-c][1,2]benzothiazin-4(2H)-yl)-N′-[(3-nitrophenyl)methylidene]acetohydrazide. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2016. [DOI: 10.1142/s0219633616500383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study presents structural features of an important benzothiazine derivative -[Formula: see text]2-(5,5-Dioxido-3-phenylpyrazolo[4,3-c][1,2]benzothiazin-4(2H)-yl)-N[Formula: see text]-[(3-nitrophenyl)methylidene]acetohydrazide. Molecular structure is characterized by single crystal XRD and compared with optimized geometry at B3LYP/6-31G(d,p) and PBE0/6-31G(d,p) levels of density functional theory (DFT). Simulated properties (1H-NMR & IR) are in good correlation with experimental results. Electronic properties (coefficients of HOMO and LUMO) are also presented.
Collapse
Affiliation(s)
- Muhammad Jawwad Saif
- Department of Applied Chemistry, Government College University, Faisalabad-38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad-38000, Pakistan
| | - Nazeran Idrees
- Department of Mathematics, Government College University, Faisalabad-38000, Pakistan
| |
Collapse
|