1
|
Shayanfar S, Shayanfar A. Comparison of various methods for validity evaluation of QSAR models. BMC Chem 2022; 16:63. [PMID: 35999611 PMCID: PMC9396839 DOI: 10.1186/s13065-022-00856-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Quantitative structure-activity relationship (QSAR) modeling is one of the most important computational tools employed in drug discovery and development. The external validation of QSAR models is the main point to check the reliability of developed models for the prediction activity of not yet synthesized compounds. It was performed by different criteria in the literature. METHODS In this study, 44 reported QSAR models for biologically active compounds reported in scientific papers were collected. Various statistical parameters of external validation of a QSAR model were calculated, and the results were discussed. RESULTS The findings revealed that employing the coefficient of determination (r2) alone could not indicate the validity of a QSAR model. The established criteria for external validation have some advantages and disadvantages which should be considered in QSAR studies. CONCLUSION This study showed that these methods alone are not only enough to indicate the validity/invalidity of a QSAR model.
Collapse
Affiliation(s)
- Shadi Shayanfar
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Editorial Office of Pharmaceutical Sciences Journal, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Liu Y, Li Y, Xu L, Shi J, Yu X, Wang X, Li X, Jiang H, Yang T, Yin X, Du L, Lu Q. Quercetin Attenuates Podocyte Apoptosis of Diabetic Nephropathy Through Targeting EGFR Signaling. Front Pharmacol 2022; 12:792777. [PMID: 35069207 PMCID: PMC8766833 DOI: 10.3389/fphar.2021.792777] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
Podocytes injury is one of the leading causes of proteinuria in patients with diabetic nephropathy (DN), and is accompanied by podocytes apoptosis and the reduction of podocyte markers such as synaptopodin and nephrin. Therefore, attenuation of podocyte apoptosis is considered as an effective strategy to prevent the proteinuria in DN. In this study, we evaluated the anti-podocyte-apoptosis effect of quercetin which is a flavonol compound possessing an important role in prevention and treatment of DN and verified the effect by using db/db mice and high glucose (HG)-induced mouse podocytes (MPs). The results show that administration of quercetin attenuated the level of podocyte apoptosis by decreasing the expression of pro-apoptotic protein Bax, cleaved caspase 3 and increasing the expression of anti-apoptotic protein Bcl-2 in the db/db mice and HG-induced MPs. Furthermore, epidermal growth factor receptor (EGFR) was predicted to be the potential physiological target of quercetin by network pharmacology. In vitro and vivo experiments confirmed that quercetin inhibited activation of the EGFR signaling pathway by decreasing phosphorylation of EGFR and ERK1/2. Taken together, this study demonstrates that quercetin attenuated podocyte apoptosis through inhibiting EGFR signaling pathway, which provided a novel approach for further research of the mechanism of quercetin in the treatment of DN.
Collapse
Affiliation(s)
- Yiqi Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuan Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Liu Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Jiasen Shi
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiujuan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xue Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xizhi Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Hong Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lei Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
3
|
Molecular modelling of quinoline derivatives as telomerase inhibitors through 3D-QSAR, molecular dynamics simulation, and molecular docking techniques. J Mol Model 2021; 27:30. [PMID: 33415518 DOI: 10.1007/s00894-020-04648-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Rising mortality due to cancer has led to the development and identification of newer targets and molecules to cure the disease. Telomerase is one of the attractive targets for design of many chemotherapeutic drugs. This research highlights the designing of novel telomerase inhibitors using ligand-based (3D-QSAR) and structure-based (molecular docking and molecular dynamics simulation) approaches. For the development of the 3D-QSAR model, 37 synthetic molecules reported earlier as telomerase inhibitors were selected from diversified literature. Three different alignment methods were explored; among them, distill alignment was found to be the best method with good statistical results and was used for the generation of QSAR model. Statistically significant CoMSIA model with a correlation coefficient (r2ncv) value of 0.974, leave one out (q2) value of 0.662 and predicted correlation coefficient (r2pred) value of 0.560 was used for the analysis of QSAR. For the MDS study, A-chain of telomerase was stabilised for 50 ns with respect to 1-atm pressure, with an average temperature of 299.98 k and with potential energy of 1,145,336 kJ/m converged in 997 steps. Furthermore, the behaviour study of variants towards the target revealed that active variable gave better affinity without affecting amino acid sequences and dimensions of protein which was accomplished through RMSD, RMSF and Rg analysis. Results of molecular docking study supported the outcomes of QSAR contour maps as ligand showed similar interactions with surrounded amino acids which were identified in contour map analysis. The results of the comprehensive study might be proved valuable for the development of potent telomerase inhibitors.
Collapse
|
4
|
Zhou WN, Zhang YM, Qiao X, Pan J, Yin LF, Zhu L, Zhao JN, Lu S, Lu T, Chen YD, Liu HC. Virtual Screening Strategy Combined Bayesian Classification Model, Molecular Docking for Acetyl-CoA Carboxylases Inhibitors. Curr Comput Aided Drug Des 2019; 15:193-205. [PMID: 30411690 DOI: 10.2174/1573409914666181109110030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 08/11/2018] [Accepted: 10/16/2018] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Acetyl-CoA Carboxylases (ACC) have been an important target for the therapy of metabolic syndrome, such as obesity, hepatic steatosis, insulin resistance, dyslipidemia, non-alcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH), type 2 diabetes (T2DM), and some other diseases. METHODS In this study, virtual screening strategy combined with Bayesian categorization modeling, molecular docking and binding site analysis with protein ligand interaction fingerprint (PLIF) was adopted to validate some potent ACC inhibitors. First, the best Bayesian model with an excellent value of Area Under Curve (AUC) value (training set AUC: 0.972, test set AUC: 0.955) was used to screen compounds of validation library. Then the compounds screened by best Bayesian model were further screened by molecule docking again. RESULTS Finally, the hit compounds evaluated with four percentages (1%, 2%, 5%, 10%) were verified to reveal enrichment rates for the compounds. The combination of the ligandbased Bayesian model and structure-based virtual screening resulted in the identification of top four compounds which exhibited excellent IC 50 values against ACC in top 1% of the validation library. CONCLUSION In summary, the whole strategy is of high efficiency, and would be helpful for the discovery of ACC inhibitors and some other target inhibitors.
Collapse
Affiliation(s)
- Wei-Neng Zhou
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yan-Min Zhang
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xin Qiao
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jing Pan
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ling-Feng Yin
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lu Zhu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jun-Nan Zhao
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Tao Lu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Ya-Dong Chen
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hai-Chun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Gao J, Liang L, Chen Q, Zhang L, Huang T. Insight into the molecular mechanism of yeast acetyl-coenzyme A carboxylase mutants F510I, N485G, I69E, E477R, and K73R resistant to soraphen A. J Comput Aided Mol Des 2018; 32:547-557. [PMID: 29464467 DOI: 10.1007/s10822-018-0108-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 02/16/2018] [Indexed: 11/25/2022]
Abstract
Acetyl-coenzyme A carboxylases (ACCs) is the first committed enzyme of fatty acid synthesis pathway. The inhibition of ACC is thought to be beneficial not only for diseases related to metabolism, such as type-2 diabetes, but also for infectious disease like bacterial infection disease. Soraphen A, a potent allosteric inhibitor of BC domain of yeast ACC, exhibit lower binding affinities to several yeast ACC mutants and the corresponding drug resistance mechanisms are still unknown. We report here a theoretical study of binding of soraphen A to wild type and yeast ACC mutants (including F510I, N485G, I69E, E477R, and K73R) via molecular dynamic simulation and molecular mechanics/generalized Born surface area free energy calculations methods. The calculated binding free energies of soraphen A to yeast ACC mutants are weaker than to wild type, which is highly consistent with the experimental results. The mutant F510I weakens the binding affinity of soraphen A to yeast ACC mainly by decreasing the van der Waals contributions, while the weaker binding affinities of Soraphen A to other yeast ACC mutants including N485G, I69E, E477R, and K73R are largely attributed to the decreased net electrostatic (ΔEele + ΔGGB) interactions. Our simulation results could provide important insights for the development of more potent ACC inhibitors.
Collapse
Affiliation(s)
- Jian Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| | - Li Liang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Qingqing Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Ling Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China
| | - Tonghui Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, People's Republic of China.
| |
Collapse
|