1
|
Singh A, Singh K, Sharma A, Kaur K, Chadha R, Bedi PMS. Recent advances in antifungal drug development targeting lanosterol 14α-demethylase (CYP51): A comprehensive review with structural and molecular insights. Chem Biol Drug Des 2023; 102:606-639. [PMID: 37220949 DOI: 10.1111/cbdd.14266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4-triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α-demethylase (CYP51) is responsible for the oxidative removal of 14α-methyl group of sterol precursors lanosterol and 24(28)-methylene-24,25-dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole- as well as non-azoles-based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.
Collapse
Affiliation(s)
- Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Karanvir Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Aman Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | - Preet Mohinder Singh Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
- Drug and Pollution testing Laboratory, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
2
|
Chitosan-Strontium Oxide Nanocomposite: Preparation, Characterization, and Catalytic Potency in Thiadiazoles Synthesis. Polymers (Basel) 2022; 14:polym14142827. [PMID: 35890603 PMCID: PMC9322490 DOI: 10.3390/polym14142827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/01/2023] Open
Abstract
Recently, Strontium oxide (SrO) nanoparticles (NPs) and hybrids outperformed older commercial catalysts in terms of catalytic performance. Herein, we present a microwave-assisted easy in situ solution casting approach for the manufacture of strontium oxide nanoparticles doped within a naturally occurring polymer, chitosan (CS), at varying weight percentages (2.5, 5, 10, 15, and 20 wt.% SrO/chitosan). To construct the new hybrid material as a thin film, the produced nanocomposite solutions were cast in petri dishes. The aim of the research was to synthesize these hybrid nanocomposites, characterize them, and evaluate their catalytic potential in a variety of organic processes. The strontium oxide-chitosan nanocomposites were characterized using Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning electron microscope (SEM) techniques. All the results confirmed the formation of chitosan–strontium oxide nanocomposite. FTIR spectrum of nanocomposite showed the presence of a characteristic peak of Sr-O bond. Furthermore, XRD revealed that SrO treatment increased the crystallinity of chitosan. The particle size was calculated using the Debye–Scherrer formula, and it was determined to be around 36 nm. The CS-SrO nanocomposite has been proven to be a highly efficient base promoter for the synthesis of 2-hydrazono [1,3,4]thiadiazole derivatives. To optimize the catalytic method, the reaction factors were investigated. The approach has various advantages, including higher reaction yields, shorter reaction durations, and milder reaction conditions, as well as the catalyst’s reusability for several applications.
Collapse
|
3
|
Bashal AH, Riyadh SM, Alharbi W, Alharbi KH, Farghaly TA, Khalil KD. Bio-Based (Chitosan-ZnO) Nanocomposite: Synthesis, Characterization, and Its Use as Recyclable, Ecofriendly Biocatalyst for Synthesis of Thiazoles Tethered Azo Groups. Polymers (Basel) 2022; 14:polym14030386. [PMID: 35160376 PMCID: PMC8840260 DOI: 10.3390/polym14030386] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 02/05/2023] Open
Abstract
In recent years, nanotechnology has become a considerable research interest in the area of preparation of nanocatalysts based on naturally occurring polysaccharides. Chitosan (CS), as a naturally occurring biodegradable and biocompatible polysaccharide, is successfully utilized as an ideal template for the immobilization of metal oxide nanoparticles. In this study, zinc oxide nanoparticles have been doped within a chitosan matrix at dissimilar weight percentages (5, 10, 15, 20, and 25 wt.% CS/ZnO) and have been fabricated by using a simple solution casting method. The prepared solutions of the nanocomposites were cast in a Petri-dish and were subsequently shaped as a thin film. After that, the structural features of the nanocomposite film have been studied by measuring the FTIR, SEM, and XRD analytical tools. FTIR spectra showed the presence of some changes in the major characteristic peaks of chitosan due to interaction with ZnO nanoparticles. In addition, SEM graphs exhibited dramatic morphology changes on the chitosan surface, which is attributed to the surface adsorption of ZnO molecules. Based on the results of the investigated organic catalytic reactions, the prepared CS/ZnO nanocomposite film (20 wt.%) could be a viable an effective, recyclable, and heterogeneous base catalyst in the synthesis of thiazoles. The results showed that the nanocomposite film is chemically stable and can be collected and reused in the investigated catalytic reactions more than three times without loss of its catalytic activity.
Collapse
Affiliation(s)
- Ali H. Bashal
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia; (A.H.B.); (S.M.R.)
| | - Sayed M. Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Almunawrah 30002, Saudi Arabia; (A.H.B.); (S.M.R.)
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Walaa Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.A.); (K.H.A.)
| | - Khadijah H. Alharbi
- Department of Chemistry, Science and Arts College, Rabigh Campus, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (W.A.); (K.H.A.)
| | - Thoraya A. Farghaly
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
| | - Khaled D. Khalil
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt;
- Department of Chemistry, Faculty of Science, Taibah University, Yanbu 46423, Saudi Arabia
- Correspondence:
| |
Collapse
|
4
|
Riyadh SM, El-Motairi SA, Ahmed HEA, Khalil KD, Habib ESE. Synthesis, Biological Evaluation, and Molecular Docking of Novel Thiazoles and [1,3,4]Thiadiazoles Incorporating Sulfonamide Group as DHFR Inhibitors. Chem Biodivers 2018; 15:e1800231. [PMID: 29956887 DOI: 10.1002/cbdv.201800231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022]
Abstract
2-(1-{4-[(4-Methylphenyl)sulfonamido]phenyl}ethylidene)thiosemicarbazide (3) was exploited as a starting material for the synthesis of two novel series of 5-arylazo-2-hydrazonothiazoles 6a - 6j and 2-hydrazono[1,3,4]thiadiazoles 10a - 10d, incorporating sulfonamide group, through its reactions with appropriate hydrazonoyl halides. The structures of the newly synthesized products were confirmed by spectral and elemental analyses. Also, the antimicrobial, anticancer, and DHFR inhibition potency for two series of thiazoles and [1,3,4]thiadiazoles were evaluated and explained by molecular docking studies and SAR analysis.
Collapse
Affiliation(s)
- Sayed M Riyadh
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Shojaa A El-Motairi
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Khaled D Khalil
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawaraha, 30002, Saudi Arabia.,Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - El-Sayed E Habib
- Pharmaceutics and Pharmaceutical Technology Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawaraha, 41477, Saudi Arabia.,Microbiology Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|