1
|
de Azevedo LD, Leite DI, de Oliveira AP, Junior FPS, Dantas RF, Bastos MM, Boechat N, Pimentel LCF. Spirooxadiazoline-oxindoles derived from imatinib show antimyeloproliferative potential in K562 cells. Arch Pharm (Weinheim) 2024; 357:e2400029. [PMID: 38627294 DOI: 10.1002/ardp.202400029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 08/06/2024]
Abstract
Imatinib mesylate was the first representative BCR-ABL1 tyrosine kinase inhibitor (TKI) class for the treatment of chronic myeloid leukemia. Despite the revolution promoted by TKIs in the treatment of this pathology, a resistance mechanism occurs against all BCR-ABL1 inhibitors, necessitating a constant search for new therapeutic options. To develop new antimyeloproliferative substances, we applied a medicinal chemistry tool known as molecular hybridization to design 25 new substances. These compounds were synthesized and biologically evaluated against K562 cells, which express BCR-ABL1, a constitutively active tyrosine kinase enzyme, as well as in WSS-1 cells (healthy cells). The new compounds are conjugated hybrids that contain phenylamino-pyrimidine-pyridine (PAPP) and an isatin backbone, which are the main pharmacophoric fragments of imatinib and sunitinib, respectively. A spiro-oxindole nucleus was used as a linker because it occurs in many compounds with antimyeloproliferative activity. Compounds 2a, 2b, 3c, 4c, and 4e showed promise, as they inhibited cell viability by between 45% and 61% at a concentration of 10 µM. The CC50 of the most active substances was determined to be within 0.8-9.8 µM.
Collapse
MESH Headings
- Humans
- K562 Cells
- Imatinib Mesylate/pharmacology
- Oxindoles/pharmacology
- Oxindoles/chemical synthesis
- Oxindoles/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Cell Survival/drug effects
- Structure-Activity Relationship
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/chemical synthesis
- Protein Kinase Inhibitors/chemistry
- Cell Proliferation/drug effects
- Molecular Structure
- Dose-Response Relationship, Drug
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/metabolism
- Spiro Compounds/pharmacology
- Spiro Compounds/chemistry
- Spiro Compounds/chemical synthesis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Drug Screening Assays, Antitumor
Collapse
Affiliation(s)
- Liviane D de Azevedo
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| | - Debora I Leite
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| | - Andressa P de Oliveira
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| | - Floriano P S Junior
- Fundação Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Rafael F Dantas
- Fundação Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Rio de Janeiro, Brasil
| | - Monica M Bastos
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| | - Nubia Boechat
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| | - Luiz C F Pimentel
- Departamento de Síntese Orgânica, Fundação Oswaldo Cruz, Farmanguinhos, Rio de Janeiro, Brasil
| |
Collapse
|
2
|
Deeksha, Bittu, Singh R. Synthetic strategies for the construction of C3-fluorinated oxindoles. Org Biomol Chem 2023; 21:6456-6467. [PMID: 37531214 DOI: 10.1039/d3ob01012k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
C3-fluorinated oxindoles are important scaffolds known to demonstrate various biological properties. As bio-isosteres of oxindoles, these compounds have shown tremendous potential in drug research discovery programs. Besides, they also serve as starting materials for synthesizing other fluorine-containing new architectures, thus launching research for developing new methods for their synthesis. Consequently, various approaches have been developed over the years to synthesize C3-fluorinated oxindoles. This review highlights the strategies developed to date to access C3-difluoro and monofluorooxindoles via intermolecular and intramolecular approaches. The key findings of the strategies developed are discussed along with the prevailing mechanism.
Collapse
Affiliation(s)
- Deeksha
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Bittu
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| | - Ritesh Singh
- Department of Chemistry, Central University of Rajasthan, Ajmer, Rajasthan 305817, India.
| |
Collapse
|
3
|
Wodi C, Belali T, Morse R, Porazinski S, Ladomery M. SPHINX-Based Combination Therapy as a Potential Novel Treatment Strategy for Acute Myeloid Leukaemia. Br J Biomed Sci 2023; 80:11041. [PMID: 36895328 PMCID: PMC9988938 DOI: 10.3389/bjbs.2023.11041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/08/2023] [Indexed: 02/23/2023]
Abstract
Introduction: Dysregulated alternative splicing is a prominent feature of cancer. The inhibition and knockdown of the SR splice factor kinase SRPK1 reduces tumour growth in vivo. As a result several SPRK1 inhibitors are in development including SPHINX, a 3-(trifluoromethyl)anilide scaffold. The objective of this study was to treat two leukaemic cell lines with SPHINX in combination with the established cancer drugs azacitidine and imatinib. Materials and Methods: We selected two representative cell lines; Kasumi-1, acute myeloid leukaemia, and K562, BCR-ABL positive chronic myeloid leukaemia. Cells were treated with SPHINX concentrations up to 10μM, and in combination with azacitidine (up to 1.5 μg/ml, Kasumi-1 cells) and imatinib (up to 20 μg/ml, K562 cells). Cell viability was determined by counting the proportion of live cells and those undergoing apoptosis through the detection of activated caspase 3/7. SRPK1 was knocked down with siRNA to confirm SPHINX results. Results: The effects of SPHINX were first confirmed by observing reduced levels of phosphorylated SR proteins. SPHINX significantly reduced cell viability and increased apoptosis in Kasumi-1 cells, but less prominently in K562 cells. Knockdown of SRPK1 by RNA interference similarly reduced cell viability. Combining SPHINX with azacitidine augmented the effect of azacitidine in Kasumi-1 cells. In conclusion, SPHINX reduces cell viability and increases apoptosis in the acute myeloid leukaemia cell line Kasumi-1, but less convincingly in the chronic myeloid leukaemia cell line K562. Conclusion: We suggest that specific types of leukaemia may present an opportunity for the development of SRPK1-targeted therapies to be used in combination with established chemotherapeutic drugs.
Collapse
Affiliation(s)
- Chigeru Wodi
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Tareg Belali
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Ruth Morse
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| | - Sean Porazinski
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Michael Ladomery
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
4
|
Santos C, Pimentel L, Canzian H, Oliveira A, Junior F, Dantas R, Hoelz L, Marinho D, Cunha A, Bastos M, Boechat N. Hybrids of Imatinib with Quinoline: Synthesis, Antimyeloproliferative Activity Evaluation, and Molecular Docking. Pharmaceuticals (Basel) 2022; 15:ph15030309. [PMID: 35337107 PMCID: PMC8950477 DOI: 10.3390/ph15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 02/01/2023] Open
Abstract
Imatinib (IMT) is the first-in-class BCR-ABL commercial tyrosine kinase inhibitor (TKI). However, the resistance and toxicity associated with the use of IMT highlight the importance of the search for new TKIs. In this context, heterocyclic systems, such as quinoline, which is present as a pharmacophore in the structure of the TKI inhibitor bosutinib (BST), have been widely applied. Thus, this work aimed to obtain new hybrids of imatinib containing quinoline moieties and evaluate them against K562 cells. The compounds were synthesized with a high purity degree. Among the produced molecules, the inhibitor 4-methyl-N3-(4-(pyridin-3-yl)pyrimidin-2-yl)-N1-(quinolin-4-yl)benzene-1,3-diamine (2g) showed a suitable reduction in cell viability, with a CC50 value of 0.9 µM (IMT, CC50 = 0.08 µM). Molecular docking results suggest that the interaction between the most active inhibitor 2g and the BCR-ABL1 enzyme occurs at the bosutinib binding site through a competitive inhibition mechanism. Despite being less potent and selective than IMT, 2g is a suitable prototype for use in the search for new drugs against chronic myeloid leukemia (CML), especially in patients with acquired resistance to IMT.
Collapse
Affiliation(s)
- Carine Santos
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Luiz Pimentel
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Henayle Canzian
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Andressa Oliveira
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Floriano Junior
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil; (F.J.); (R.D.)
| | - Rafael Dantas
- Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz FIOCRUZ, Av. Brasil 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil; (F.J.); (R.D.)
| | - Lucas Hoelz
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Debora Marinho
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
| | - Anna Cunha
- Departamento de Química Orgânica, Campus do Valonguinho, Universidade Federal Fluminense–UFF, Niterói 24020-150, Brazil;
| | - Monica Bastos
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
| | - Nubia Boechat
- Laboratório de Sintese de Farmacos-LASFAR, Instituto de Tecnologia em Farmacos-Farmanguinhos, FIOCRUZ, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil; (C.S.); (L.P.); (H.C.); (A.O.); (L.H.); (D.M.); (M.B.)
- Programa de Pós-graduação em Farmacologia e Química Medicinal do Instituto de Ciências Biomédicas–ICB-UFRJ, Centro de Ciências da Saúde-CCS, Bloco J, Ilha do Fundão, Rio de Janeiro 21941-902, Brazil
- Correspondence: ; Tel.: +55-(21)-3977-2465
| |
Collapse
|
5
|
New Imatinib Derivatives with Antiproliferative Activity against A549 and K562 Cancer Cells. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030750. [PMID: 35164014 PMCID: PMC8838532 DOI: 10.3390/molecules27030750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022]
Abstract
Tyrosine kinase enzymes are among the primary molecular targets for the treatment of some human neoplasms, such as those in lung cancer and chronic myeloid leukemia. Mutations in the enzyme domain can cause resistance and new inhibitors capable of circumventing these mutations are highly desired. The objective of this work was to synthesize and evaluate the antiproliferative ability of ten new analogs that contain isatins and the phenylamino-pyrimidine pyridine (PAPP) skeleton, the main pharmacophore group of imatinib. The 1,2,3-triazole core was used as a spacer in the derivatives through a click chemistry reaction and gave good yields. All the analogs were tested against A549 and K562 cells, lung cancer and chronic myeloid leukemia (CML) cell lines, respectively. In A549 cells, the 3,3-difluorinated compound (3a), the 5-chloro-3,3-difluorinated compound (3c) and the 5-bromo-3,3-difluorinated compound (3d) showed IC50 values of 7.2, 6.4, and 7.3 μM, respectively, and were all more potent than imatinib (IC50 of 65.4 μM). In K562 cells, the 3,3-difluoro-5-methylated compound (3b) decreased cell viability to 57.5% and, at 10 µM, showed an IC50 value of 35.8 μM (imatinib, IC50 = 0.08 μM). The results suggest that 3a, 3c, and 3d can be used as prototypes for the development of more potent and selective derivatives against lung cancer.
Collapse
|
6
|
Functional analysis of repositioned anilide derivatives as anticancer compounds. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2021.100276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Pimentel LCF, Hoelz LVB, Canzian HF, Branco FSC, de Oliveira AP, Campos VR, Júnior FPS, Dantas RF, Resende JALC, Cunha AC, Boechat N, Bastos MM. (Phenylamino)pyrimidine-1,2,3-triazole derivatives as analogs of imatinib: searching for novel compounds against chronic myeloid leukemia. Beilstein J Org Chem 2021; 17:2260-2269. [PMID: 34621389 PMCID: PMC8450943 DOI: 10.3762/bjoc.17.144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/19/2021] [Indexed: 11/23/2022] Open
Abstract
The enzyme tyrosine kinase BCR-Abl-1 is the main molecular target in the treatment of chronic myeloid leukemia and can be competitively inhibited by tyrosine kinase inhibitors such as imatinib. New potential competitive inhibitors were synthesized using the (phenylamino)pyrimidine-pyridine (PAPP) group as a pharmacophoric fragment, and these compounds were biologically evaluated. The synthesis of twelve new compounds was performed in three steps and assisted by microwave irradiation in a 1,3-dipolar cycloaddition to obtain 1,2,3-triazole derivatives substituted on carbon C-4 of the triazole nucleus. All compounds were evaluated for their inhibitory activities against a chronic myeloid leukemia cell line (K562) that expresses the enzyme tyrosine kinase BCR-Abl-1 and against healthy cells (WSS-1) to observe their selectivity. Three compounds showed promising results, with IC50 values between 1.0 and 7.3 μM, and were subjected to molecular docking studies. The results suggest that such compounds can interact at the same binding site as imatinib, probably sharing a competitive inhibition mechanism. One compound showed the greatest interaction affinity for BCR-Abl-1 in the docking studies.
Collapse
Affiliation(s)
- Luiz Claudio Ferreira Pimentel
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Lucas Villas Boas Hoelz
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Henayle Fernandes Canzian
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Frederico Silva Castelo Branco
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Andressa Paula de Oliveira
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Vinicius Rangel Campos
- Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, CEP 24020-150,Niterói, Brazil
| | - Floriano Paes Silva Júnior
- Laboratório de Bioquímica Experimental e Computacional de Farmacos, Fundaçao Oswaldo Cruz, Instituto Oswaldo Cruz, CEP 21040-900, Rio de Janeiro, Brazil
| | - Rafael Ferreira Dantas
- Laboratório de Bioquímica Experimental e Computacional de Farmacos, Fundaçao Oswaldo Cruz, Instituto Oswaldo Cruz, CEP 21040-900, Rio de Janeiro, Brazil
| | | | - Anna Claudia Cunha
- Departamento de Química Orgânica, Universidade Federal Fluminense, Campus do Valonguinho, CEP 24020-150,Niterói, Brazil
| | - Nubia Boechat
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| | - Mônica Macedo Bastos
- Laboratorio de Sintese de Farmacos – LASFAR, Fundacao Oswaldo Cruz, Instituto de Tecnologia em Farmacos, Farmanguinhos –Manguinhos, CEP 21041-250, Rio de Janeiro, Brazil
| |
Collapse
|
8
|
Aita S, Badavath VN, Gundluru M, Sudileti M, Nemallapudi BR, Gundala S, Zyryanov GV, Chamarti NR, Cirandur SR. Novel α-Aminophosphonates of imatinib Intermediate: Synthesis, anticancer Activity, human Abl tyrosine kinase Inhibition, ADME and toxicity prediction. Bioorg Chem 2021; 109:104718. [PMID: 33618257 DOI: 10.1016/j.bioorg.2021.104718] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/13/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
An efficient method for the synthesis of a new class of α-aminophosphonates of imatinib derivative has been developed in one-pot Kabachnik-Fields reaction of N-(5-amino-2-methyl phenyl)-4-(3-pyridyl)-2-pyrimidine amine with various aldehydes and diethyl phosphite under microwave irradiation and neat conditions using NiO nanoparticles as an reusable and heterogeneous catalyst, with 96% yield at 450 W within 15 min. All the compounds were evaluated for their in vitro cytotoxicity with various cancer cell lines by MTT assay method. Compounds with halo (4f, -4Br, IC50 = 1.068 ± 0.88 µM to 2.033 ± 0.97 µM), nitro substitution (4 h, -3NO2, IC50 = 1.380 ± 0.94 µM to 2.213 ± 0.64 µM), (4 g, -4NO2, IC50 = 1.402 ± 0.79 µM to 2.335 ± 0.73 µM) and (4i, 4-Cl, 3-NO2, IC50 = 1.437 ± 0.92 µM to 2.558 ± 0.76 µM) were showed better anticancer activity when compared with standard drugs Doxorubicin and Imatinib using MTT assay method. Further in silico target hunting reveals the anticancer activity of the designed compounds by inhibiting human ABL tyrosine kinase and all the designed compounds have shown significant drug-like characteristics.
Collapse
Affiliation(s)
- Saikiran Aita
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | - Vishnu Nayak Badavath
- Institute for Drug Research, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel.
| | - Mohan Gundluru
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India; DST-PURSE Centre, Sri Venkateswara University, Tirupati-517502, A.P., India.
| | - Murali Sudileti
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | | | - Sravya Gundala
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation.
| | - Grigoriy Vasilievich Zyryanov
- Chemical Engineering Institute, Ural Federal University, Yekaterinburg 620002, Russian Federation; Ural Division of the Russian Academy of Sciences, I. Ya. Postovskiy Institute of Organic Synthesis, 22 S. Kovalevskoy Street, Yekaterinburg 620219, Russian Federation.
| | - Naga Raju Chamarti
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| | - Suresh Reddy Cirandur
- Department of Chemistry, Sri Venkateswara University, Tirupati 517 502, A.P., India.
| |
Collapse
|
9
|
Hetarylfuroxans: cytotoxic effect and induction of apoptosis in chronic myeloid leukemia K562 cells. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2431-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Repurposing strategies for Chagas disease therapy: the effect of imatinib and derivatives against Trypanosoma cruzi. Parasitology 2019; 146:1006-1012. [PMID: 30859917 DOI: 10.1017/s0031182019000234] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chagas disease (CD) is a neglected parasitic condition endemic in the Americas caused by Trypanosoma cruzi. Patients present an acute phase that may or not be symptomatic, followed by lifelong chronic stage, mostly indeterminate, or with cardiac and/or digestive progressive lesions. Benznidazole (BZ) and nifurtimox are the only drugs approved for treatment but not effective in the late chronic phase and many strains of the parasite are naturally resistant. New alternative therapy is required to address this serious public health issue. Repositioning and combination represent faster, and cheaper trial strategies encouraged for neglected diseases. The effect of imatinib (IMB), a tyrosine kinase inhibitor designed for use in neoplasias, was assessed in vitro on T. cruzi and mammalian host cells. In comparison with BZ, IMB was moderately active against different strains and forms of the parasite. The combination IMB + BZ in fixed-ratio proportions was additive. Novel 14 derivatives of IMB were screened and a 3,2-difluoro-2-phenylacetamide (3e) was as potent as BZ on T. cruzi but had low selectivity index. The results demonstrate the importance of phenotypic assays, encourage the improvement of IMB derivatives to reach selectivity and testify to the use of repurposing and combination in drug screening for CD.
Collapse
|
11
|
Synthesis, Spectroscopic Identification and Molecular Docking of Certain N-(2-{[2-(1 H-Indol-2-ylcarbonyl) Hydrazinyl](oxo)Acetylphenyl)Acetamides and N-[2-(2-{[2-(Acetylamino)Phenyl](oxo)Acetylhydrazinyl)-2-Oxoethyl]-1 H-Indole-2-Carboxamides: New Antimicrobial Agents. Molecules 2018; 23:molecules23051043. [PMID: 29710842 PMCID: PMC6102541 DOI: 10.3390/molecules23051043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 04/25/2018] [Accepted: 04/27/2018] [Indexed: 02/07/2023] Open
Abstract
N-(2-{[2-(1H-Indol-2-ylcarbonyl)hydrazinyl](oxo)acetyl}phenyl)acetamides (5a–h) and N-[2-(2-{[2-(acetylamino)phenyl](oxo)acetyl}hydrazinyl)-2-oxoethyl]-1H-indole-2-carboxamides (5i–l) were synthesized and characterized with different analytical tools. N-Acetylisatines 4a–d were subjected to ring opening at their C2 carbons with the aid of different indole-bearing hydrazides 3a,b and 7 to afford the respective glyoxylamides 5a–l. The antimicrobial activity of the target compounds 5a–l was assessed with the aid of Diameter of the Inhibition Zone (DIZ) and Minimum Inhibitory Concentration (MIC) assays against a panel of Gram-positive and Gram-negative bacteria and certain fungal strains. The antimicrobial screening revealed that Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans are the most sensitive microorganisms towards the synthesized compounds 5a–l. In addition, compounds 5c and 5h emerged as the most active congeners towards Staphylococcus aureus and Candida albicans, respectively. Molecular docking studies revealed the possible binding mode of compounds 5c and 5h to their target proteins.
Collapse
|