1
|
Wang X, Jiang Z, Du C, Ma L, Yue D, Yang C, Duan S, Shen X. Iodine-Catalyzed Diversity-Oriented Synthesis of 3,4-Heterocycle-Fused Coumarins from 4-Aminocoumarins and Aurones in Different Solvent. J Org Chem 2024; 89:6456-6464. [PMID: 38621144 DOI: 10.1021/acs.joc.4c00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
An unprecedented protocol has been developed for the synthesis of 3,4-heterocycle-fused coumarins from 4-aminocoumarins and aurones through iodine-catalyzed cascade reactions. Dihydropyridine-fused coumarin, pyridine-fused coumarin, and pyrrole-fused coumarin derivatives were achieved in good yields with high selectivity when CH3CN, AcOH, and DMSO were used as the solvent, respectively. This protocol provides several advantages, such as easily available starting materials, high atom economy, friendly environment, and simple procedure.
Collapse
Affiliation(s)
- Xuequan Wang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Zhen Jiang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Chahui Du
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Lin Ma
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Dan Yue
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Changhui Yang
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Suyue Duan
- Key Laboratory of Natural Pharmaceutical and Chemical Biology of Yunnan Province, School of Chemistry and Resources Engineering, Honghe University, Mengzi, Yunnan 661100, P. R. China
| | - Xianfu Shen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan 655011, P. R. China
| |
Collapse
|
2
|
Abd El-Wahab AHF, Borik RMA, Al-Dies AAM, Fouda AM, Mohamed HM, El-Eisawy RA, Mora A, El-Nassag MAA, Abd Elhady AM, Elhenawy AA, El-Agrody AM. Design, synthesis and bioactivity study on oxygen-heterocyclic-based pyran analogues as effective P-glycoprotein-mediated multidrug resistance in MCF-7/ADR cell. Sci Rep 2024; 14:7589. [PMID: 38555345 PMCID: PMC10981727 DOI: 10.1038/s41598-024-56197-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
P-glycoprotein (P-gp) imparts multi-drug resistance (MDR) on the cancers cell and malignant tumor clinical therapeutics. We report a class of newly designed and synthesized oxygen-heterocyclic-based pyran analogues (4a-l) bearing different aryl/hetaryl-substituted at the 1-postion were synthesized, aiming to impede the P-gp function. These compounds (4a-l) have been tested against cancerous PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines as well as non-cancerous HFL-1 and WI-38 cell lines to determine their anti-proliferative potency.The findings demonstrated the superior potency of 4a-c with 4-F, 2-Cl, and 3-Cl derivatives and 4h,g with 4-NO2, 4-MeO derivatives against PC-3, SKOV-3, HeLa, and MCF-7/ADR cell lines.Compounds 4a-c were tested for P-gp inhibition and demonstrated significant vigour against MCF-7/ADR cells with IC50 = 5.0-10.7 μM. The Rho123 accumulation assay showed that compounds 4a-c adequately inhibited P-gp function, as predicted. Furthermore, 4a or 4b administration resulted in MCF-7/ADR cell accumulation in the S phase, while compound 4c induced apoptosis by causing cell cycle arrest at G2/M. The molecular docking was applied to understand the likely modes of action and guide us in the rational design of more potent analogs. The investigate derivatives showed their good binding potential for p-gp active site with excellent docking scores and interactions. Finally, the majority of investigated derivatives 4a-c derivatives showed high oral bioavailability, but they did not cross the blood-brain barrier. These results suggest that they have favorable pharmacokinetic properties. Therefore, these compounds could serve as leads for designing more potent and stable drugs in the future.
Collapse
Affiliation(s)
- Ashraf H F Abd El-Wahab
- Chemistry Department, Faculty of Science, Jazan University, B.O. Box 2097, Jazan, 45142, Kingdom of Saudi Arabia
| | - Rita M A Borik
- Chemistry Department, Faculty of Science, Jazan University, B.O. Box 2097, Jazan, 45142, Kingdom of Saudi Arabia
| | - Al-Anood M Al-Dies
- Chemistry Department, Umm Al-Qura University, Al-Qunfudah University College, 21912, Al-Qunfudah, Saudi Arabia
| | - Ahmed M Fouda
- Chemistry Department, Faculty of Science, King Khalid University, 61413, Abha, Saudi Arabia
| | - Hany M Mohamed
- Chemistry Department, Faculty of Science, Jazan University, B.O. Box 2097, Jazan, 45142, Kingdom of Saudi Arabia
| | - Raafat A El-Eisawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
- Chemistry Department, Faculty of Science, Al-Baha University, 65528, Al-Baha, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Mohammed A A El-Nassag
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed M Abd Elhady
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed A Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
- Chemistry Department, Faculty of Science, Al-Baha University, 65528, Al-Bahah, Saudi Arabia.
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt.
| |
Collapse
|
3
|
Xalxo A, Jyoti Goswami U, Sarkar S, Kandasamy T, Mehta K, Ghosh SS, Bharatam PV, Khan AT. Synthesis of 3-sulfenylindole derivatives from 4-hydroxy-2H-chromene-2-thione and indole using oxidative cross-dehydrogenative coupling reaction and anti-proliferative activity study of some of their sulfone derivatives. Bioorg Chem 2023; 141:106900. [PMID: 37813073 DOI: 10.1016/j.bioorg.2023.106900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/11/2023]
Abstract
The synthesis of hitherto unreported 3-sulfenylindole derivatives is achieved from 4-hydroxy-2H-chromene-2-thione (1) and indole (2) by employing an oxidative cross-dehydrogenative coupling reaction using a combination of 10 mol% of molecular iodine and 1 equivalent of TBHP in DMSO at room temperature. Then, the 3-sulfenylindole derivatives 3a, 3b, 3d, 3f, 3 h, and 3 k were converted into their corresponding sulfone derivatives because of lead likeness properties. Subsequently, a target prediction and docking study of six sulfone derivatives (5a-f) was performed, and four sulfones, namely 5a, 5d, 5e, and 5f, were selected for further in-vitro studies. The four sulfones mentioned above exhibited prominent anti-proliferative activity on breast cancer (MCF7) cell lines. In addition, this reaction was exergonic through quantum chemical analysis of the mechanistic steps. The salient features of this reaction are mild reaction conditions, good yields, and broad substrate scope.
Collapse
Affiliation(s)
- Anjela Xalxo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Ujjwal Jyoti Goswami
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Shilpi Sarkar
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Thirukumaran Kandasamy
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
| | - Kriti Mehta
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab
| | - Siddhartha S Ghosh
- Department of Bioscience and Engineering, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Prasad V Bharatam
- National Institute of Pharmaceutical Education and Research, S. A. S. Nagar, Mohali, 160062, Punjab.
| | - Abu T Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
4
|
Pecoraro C, Terrana F, Panzeca G, Parrino B, Cascioferro S, Diana P, Giovannetti E, Carbone D. Nortopsentins as Leads from Marine Organisms for Anticancer and Anti-Inflammatory Agent Development. Molecules 2023; 28:6450. [PMID: 37764226 PMCID: PMC10537790 DOI: 10.3390/molecules28186450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The marine environment is an excellent source of molecules that have a wide structural diversity and a variety of biological activities. Many marine natural products (MNPs) have been established as leads for anticancer drug discovery. Most of these compounds are alkaloids, including several chemical subclasses. In this review, we focus on the bis-indolyl alkaloid Nortopsentins and their derivatives with antiproliferative properties. Nortopsentins A-C were found to exhibit in vitro cytotoxicity against the P388 murine leukaemia cell line. Their structural manipulation provided a wide range of derivatives with significant anti-tumour activity against human cell lines derived from different cancer types (bladder, colon, gastric, CNS, liver, lung, breast, melanoma, ovarian, pancreatic, prostate, pleural mesothelioma, renal, sarcoma, and uterus). In vivo assays on animal models also proved that Nortopsentins and related bis-indolyl compounds have potent anti-inflammatory activity. These remarks set the foundation for future investigations into the development of new Nortopsentin derivatives as new anticancer and anti-inflammatory agents.
Collapse
Affiliation(s)
- Camilla Pecoraro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Francesca Terrana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Giovanna Panzeca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Barbara Parrino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Stella Cascioferro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Patrizia Diana
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Via Ferruccio Giovannini 13, 56017 San Giuliano Terme, PI, Italy
| | - Daniela Carbone
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123 Palermo, PA, Italy; (C.P.); (F.T.); (G.P.); (B.P.); (S.C.); (D.C.)
| |
Collapse
|
5
|
|
6
|
Albalawi FF, El-Nassag MAA, El-Eisawy RA, Mohamed MBI, Fouda AM, Afifi TH, Elhenawy AA, Mora A, El-Agrody AM, El-Mawgoud HKA. Synthesis of 9-Hydroxy-1 H-Benzo[ f]chromene Derivatives with Effective Cytotoxic Activity on MCF7/ADR, P-Glycoprotein Inhibitors, Cell Cycle Arrest and Apoptosis Effects. Int J Mol Sci 2022; 24:ijms24010049. [PMID: 36613493 PMCID: PMC9820082 DOI: 10.3390/ijms24010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
β-Enaminonitriles bearing 9-hydroxy-1H-benzo[f]chromene moiety was synthesized. The targeted compounds were evaluated for their anti-proliferative activity against three human tumor cell lines, PC-3, SKOV-3 and HeLa, and the active cytotoxic compounds were further evaluated against cancer cells, MCF-7/ADR, and two normal cell lines, HFL-1 and WI-38. Few compounds were assigned to be the most potent derivatives against PC-3, SKOV-3 and HeLa cell lines in comparison with Vinblastine and Doxorubicin. Several compounds possessed a relatively good potency against MCF-7/ADR cells as compared with Doxorubicin and were tested as a P-gp inhibitor. Moreover, the halogenated substituents, 2,4-F2, 2,3-Cl2, 2,5-Cl2 and 3,4-Cl2; have good potency against P-gp-mediated MDR in MCF-7/ADR as compared with Doxorubicin. Meanwhile, Rho123 accumulation assays revealed that few compounds effectively inhibited P-pg and efflux function. In addition, certain derivatives induced apoptosis and an accumulation of the treated MCF-7/ADR cells in the G1, S and G1/S phases.
Collapse
Affiliation(s)
- Fawzia F. Albalawi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
- Correspondence: (F.F.A.); (A.M.E.-A.)
| | | | - Raafat A. El-Eisawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Chemistry Department, Faculty of Science and Art, Al-Baha University, Al-Baha 65582, Saudi Arabia
| | | | - Ahmed M. Fouda
- Chemistry Department, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tarek H. Afifi
- Chemistry Department, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Ahmed A. Elhenawy
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Chemistry Department, Faculty of Science and Art, Albaha University, Albahah 65731, Saudi Arabia
| | - Ahmed Mora
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
- Correspondence: (F.F.A.); (A.M.E.-A.)
| | - Heba K. A. El-Mawgoud
- Chemistry Department, Faculty of Women for Arts, Science, and Education, Ain Shams University, Cairo 11757, Egypt
| |
Collapse
|
7
|
Yanda L, Ndendoung Tatsimo SJ, Tamokou JDD, Matsuete GT, Leutcha PB, Fotsing Fongang SY, Lannang AM, Choudhary MI, Sewald N. Prosojuliflavone and other constituents from Prosopis juliflora Swartz D.C (Fabaceae) and their chemotaxonomic importance. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
The Crystal Structure of 3-Amino-1-(4-Chlorophenyl)-9-Methoxy-1H-Benzo[f]Chromene-2-Carbonitrile: Antimicrobial Activity and Docking Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12070982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound 3-amino-1-(4-chlorophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile (4), was synthesized via the reaction of 7-methoxynaphthalen-2-ol (1), 4-chlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized pyran derivative 4 was asserted through spectral data and X-ray diffraction. The molecular structure of compound 4 was established unambiguously through the single crystal X-ray measurements and crystallized in the Triclinic, P-1, a = 8.7171 (4) Å, b = 10.9509 (5) Å, c = 19.5853 (9) Å, α = 78.249 (2)°, β = 89.000 (2)°, γ = 70.054 (2)°, V = 1717.88 (14) Å3, Z = 4. The target molecule has been screened for antibacterial and antifungal functionality. Compound 4 exhibited favorable antimicrobial activities that resembled the reference antimicrobial agents with an IZ range of 16–26 mm. In addition, MIC, MBC, and MFC were assessed and screened for molecule 4, revealing bactericidal and fungicidal effects. Lastly, a molecular docking analysis was addressed and conducted for this desired molecule.
Collapse
|
9
|
The Crystal Structure of 2-Amino-4-(2,3-Dichlorophenyl)-6-Methoxy-4H-Benzo[h]chromene-3-Carbonitrile: Antitumor and Tyrosine Kinase Receptor Inhibition Mechanism Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12050737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The target compound, 2-amino-4-(2,3-dichlorophenyl)-6-methoxy-4H-benzo[h]chromene -3-carbonitrile (4), was synthesized via the reaction of 4-methoxynaphthalen-1-ol (1), 2,3-dichlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized β-enaminonitrile derivative (4) was characterized by spectral data and X-ray diffraction. The in vitro anti-proliferative profile was conducted against five cancer cell lines and was assessed for compound 4, which revealed strong and selective cytotoxic potency. This derivative showed promising inhibition efficacy against the EGFR and VEGFR-2 kinases in comparison to Sorafenib as a reference inhibitor. Lastly, the docking analysis into the EGFR and VEGFR-2 active sites was performed to clarify our biological findings.
Collapse
|
10
|
Patra P, Kar GK. The synthesis, biological evaluation and fluorescence study of chromeno[4,3- b]pyridin/quinolin-one derivatives, the backbone of natural product polyneomarline C scaffolds: a brief review. NEW J CHEM 2021. [DOI: 10.1039/d0nj04761a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review presents the synthesis, biological and fluorescence study of chromeno[4,3-b]pyridin/quinolin-ones via classical reactions including metal-catalyzed and green reaction protocols.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Chemistry
- Jhargram Raj College
- Jhargram 721507
- India
| | | |
Collapse
|
11
|
Patra P. 4-Chloro-3-formylcoumarin as a multifaceted building block for the development of various bio-active substituted and fused coumarin heterocycles: a brief review. NEW J CHEM 2021. [DOI: 10.1039/d1nj02755g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This review presents the diverse synthesis of 3,4-substituted coumarins and 5-, 6- and 7-membered ring fused coumarins using 4-chloro-3-formylcoumarin as the precursor via classical reactions including metal-catalyzed and green reaction protocols.
Collapse
Affiliation(s)
- Prasanta Patra
- Department of Chemistry
- Jhargram Raj College
- Jhargram 721507
- India
| |
Collapse
|
12
|
Eliwa EM, Frese M, Halawa AH, Soltan MM, Ponomareva LV, Thorson JS, Shaaban KA, Shaaban M, El-Agrody AM, Sewald N. Metal-free domino amination-Knoevenagel condensation approach to access new coumarins as potent nanomolar inhibitors of VEGFR-2 and EGFR. GREEN CHEMISTRY LETTERS AND REVIEWS 2021; 14:578-599. [PMID: 35821884 PMCID: PMC9273165 DOI: 10.1080/17518253.2021.1981462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A metal-free, atom-economy and simple work-up domino amination-Knoevenagel condensation approach to construct new coumarin analogous (4a-f and 8a-e) was described. Further, new formyl (5a,d-f) and nitro (9a,d-f) coumarin derivatives were synthesized via C-N coupling reaction of various cyclic secondary amines and 4-chloro-3-(formyl-/nitro)coumarins (1a,c), respectively. The confirmed compounds were screened for their in vitro anti-proliferative activity against KB-3-1, A549 and PC3 human cancer cell lines using resazurin cellular-based assay. Among them, coumarin derivatives 4e and 8e displayed the best anti-cervical cancer potency (KB-3-1) with IC50 values of 15.5 ± 3.54 and 21 ± 4.24 μM, respectively. Also, 4e showed the most promising cytotoxicity toward A549 with IC50 value of 12.94 ± 1.51 μM. As well, 9d presented a more significant impact of potency against PC3 with IC50 7.31 ± 0.48 μM. Moreover, 8d manifested selectivity against PC3 (IC50 = 20.16 ± 0.07 μM), while 8e was selective toward KB-3-1 cell line (IC50 = 21 ± 4.24 μM). Matching with docking profile, the enzymatic assay divulged that 8e is a dual potent single-digit nanomolar inhibitor of VEGFR-2 and EGFR with IC50 values of 24.67 nM and 31.6 nM that were almost equipotent to sorafenib (31.08 nM) and erlotinib (26.79 nM), respectively.
Collapse
Affiliation(s)
- Essam M. Eliwa
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Marcel Frese
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Ahmed H. Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Maha M. Soltan
- Biology Unit, Central Laboratory for Pharmaceutical and Drug Industries Research Division, Chemistry of Medicinal Plants Department, Pharmaceutical and Drug Industries Research Division, National Research Centre Cairo, Egypt
| | - Larissa V. Ponomareva
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Jon S. Thorson
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Khaled A. Shaaban
- Center for Pharmaceutical Research and Innovation, University of Kentucky, Lexington, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, USA
| | - Mohamed Shaaban
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki-Cairo, Egypt
| | - Ahmed M. El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
13
|
Alizadeh A, Farajpour B, Amir Ashjaee Asalemi K, Taghipour S. Diastereoselective Synthesis of Coumarin‐Based Fused Heterocycles via Intramolecular Diels‐Alder and 1,3‐Dipolar Cycloaddition Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.202002747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Abdolali Alizadeh
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| | - Behnaz Farajpour
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| | | | - Sajad Taghipour
- Department of ChemistryTarbiat Modares University P.O. Box 14115–175 Tehran Iran
| |
Collapse
|
14
|
Halawa AH, Elgammal WE, Hassan SM, Hassan AH, Nassar HS, Ebrahim HY, Mehany ABM, El-Agrody AM. Synthesis, anticancer evaluation and molecular docking studies of new heterocycles linked to sulfonamide moiety as novel human topoisomerase types I and II poisons. Bioorg Chem 2020; 98:103725. [PMID: 32199303 DOI: 10.1016/j.bioorg.2020.103725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/16/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
A series of heterocyclic compounds with a sulfonamide moiety were synthesized from reaction of enaminone 4 with active methylene compounds, glycine derivatives, 1,4-benzoquinone, hydroxylamine hydrochloride, hydrazonyl halides and dimethylacetylenedicarboxylate. The newly synthesized sulfonamide derivatives were characterized by FT-IR, 1H NMR, 13C NMR, mass spectroscopy, elemental analysis and alternative synthetic routes. The reactions products were evaluated for their antiproliferative activity against a panel of three different human cancerous cell lines, MCF-7 (breast), HepG-2 (liver) and HCT-116 (colon) and the results were deployed to derive the structure-activity relationships (SAR). Various test compounds were potent antiproliferative to cancerous cells; reaching very low micromolar levels, as in case of 21 which showed IC50 value of 6.2 μM against HepG-2 cell. In addition, treatment of cancerous cells with the synthesized compounds induced cell apoptosis and G2/M phase arrest evidenced by flow cytometric analysis. Furthermore, the activity of the synthesized compounds against TOP I and II were documented by DNA relaxation assays. Data revealed that compound 24 significantly interfered with TOP I- and II-mediated DNA relaxation, nicking and decatenation, with IC50 values 27.8 and 33.6 μM, respectively. Moreover, the molecular docking studies supported the results from enzymatic assays, where compound 24 was intercalated between nucleotides flanking the DNA cleavage site via pi-pi stacking and hydrophobic interactions. In conclusion, aromatic heterocycles linked to sulfonamides are excellent molecular frameworks amenable for optimization as dual TOP I and II poisons to control various human malignancies.
Collapse
Affiliation(s)
- Ahmed H Halawa
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Walid E Elgammal
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Saber M Hassan
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| | - Ahmed H Hassan
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt; Chemistry Department, Faculty of Science, Jazan University, Jazan 45142, Saudi Arabia
| | - Hesham S Nassar
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt; Chemistry Department, Faculty of Science and Art, Al-Baha University, Al-Baha, 1988, Saudi Arabia
| | - Hassan Y Ebrahim
- Pharmacognosy Department, Faculty of Pharmacy, Helwan University, Cairo 11795, Egypt.
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11284, Egypt
| | - Ahmed M El-Agrody
- Chemistry Department, Faculty of Science, Al-Azhar University, 11284 Nasr City, Cairo, Egypt
| |
Collapse
|
15
|
Halawa AH, Eliwa EM, Hassan AA, Nassar HS, El-Eisawy R, Ismail M, Frese M, Shaaban M, El-Agrody AM, Bedair AH, Sewald N. Synthesis, in vitro cytotoxicity activity against the human cervix carcinoma cell line and in silico computational predictions of new 4-arylamino-3-nitrocoumarin analogues. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Modi M, Jain M. Green approach for the synthesis of 3‐methyl‐1‐phenyl‐4‐((2‐phenyl‐1H‐indol 3‐yl)methylene)‐1H‐pyrazole‐5(4H)‐ones and their DNA Cleavage, antioxidant, and antimicrobial activities. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Madhuri Modi
- Center of advance studies, Department of chemistryUniversity of Rajasthan Jaipur India
| | - Meenakshi Jain
- Center of advance studies, Department of chemistryUniversity of Rajasthan Jaipur India
| |
Collapse
|
17
|
Design, synthesis, molecular docking and biological screening of N-ethyl-N-methylbenzenesulfonamide derivatives as effective antimicrobial and antiproliferative agents. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Fugolin AP, Dobson A, Mbiya W, Navarro O, Ferracane JL, Pfeifer CS. Use of (meth)acrylamides as alternative monomers in dental adhesive systems. Dent Mater 2019; 35:686-696. [PMID: 30826074 PMCID: PMC6462417 DOI: 10.1016/j.dental.2019.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 01/31/2019] [Accepted: 02/07/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES Methacrylamides are proposed as components for dental adhesive systems with enhanced resistance to hydrolytic and enzymatic degradation. The specific objective of this study was to evaluate the polymerization kinetics, water sorption and solubility, pH-derived degradation and microtensile bond strength of various monofunctional acrylamides and meth(acrylamides) when copolymerized with dimethacrylates. METHODS Base monomers were added at 60 wt%, and included either BisGMA or UDMA. Monofunctional monomers were added at 40 wt%, including one (meth)acrylate as the control, two secondary methacrylamides and two tertiary acrylamides. DMPA (0.2 wt%) and DPI-PF6 (0.4 wt%)/BHT (0.1 wt%) were added as initiators/inhibitor. Polymerization kinetics wwere followed with near-IR spectroscopy in real time. Water sorption (WS) and solubility (SL) were measured following ISO 4049. Monomer degradation at different pH levels was assessed with 1H NMR. Microtensile bond strength (MTBS) was assessed in caries-free human third molars 48 h and 3 weeks after restorations were placed using solvated BisGMA-based adhesives (40 vol% ethanol). Data were analyzed with one-way ANOVA/Tukey's test (α = 0.05). RESULTS As expected, rate of polymerization and final degree of conversion (DC) were higher for the acryl versions of each monomer, and decreased with increasing steric hindrance around the vinyl group for each molecule. In general, UDMA copolymerizations were more rapid and extensive than for BisGMA, but this was dependent upon the specific monofunctional monomer added. WS/SL were in general higher for the (meth)acrylamides compared to the (meth)acrylates, except for the tertiary acrylamide, which showed the lowest values. One of the secondary methacrylamides was significantly more stable than the methacrylate control, but the alpha substitutions decreased stability to degradation in acid pH. MTBS in general was higher for the (meth)acrylates. While for all materials the MTBS values at 3 weeks decreased in relation to the 24 h results, the tertiary acrylamide showed no reduction in bond strength. SIGNIFICANCE This study highlights the importance of considering steric and electronic factors when designing monomers for applications where rapid polymerizations are needed, especially when co-polymerizations with other base monomers are required to balance mechanical properties, as is the case with dental adhesives. The results of this investigation will be used to design fully formulated adhesives to be tested in clinically-relevant conditions.
Collapse
Affiliation(s)
- Ana P Fugolin
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Adam Dobson
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Wilbes Mbiya
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Oscar Navarro
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Jack L Ferracane
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA
| | - Carmem S Pfeifer
- Department of Restorative Dentistry, Division of Biomaterials and Biomechanics, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|