1
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
2
|
Blay G, Monleón A, Montesinos-Magraner M, Sanz-Marco A, Vila C. Asymmetric electrophilic functionalization of amino-substituted heteroaromatic compounds: a convenient tool for the enantioselective synthesis of nitrogen heterocycles. Chem Commun (Camb) 2024; 60:12270-12286. [PMID: 39351928 DOI: 10.1039/d4cc03680h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The catalytic asymmetric electrophilic functionalization of the less reactive N-heteroaromatic compounds has been reported using the approach of the introduction of an exocyclic amino substituent. This strategy has allowed enantioselective Friedel-Crafts alkylation in pyrazoles, isoxazoles and isothiazoles, as well as in aminoindoles, aminobenzofurans and aminobenzothiophenes. Several stereoselective methods have been used for the 1,4-addition or 1,2-addition of these heteroaromatic compounds to different electrophiles employing organocatalysts or chiral metal complexes. The activating exocyclic amino substituent has also been used as a nucleophile in tandem reactions, including formal cycloadditions ([3+2] and [3+3]), for the synthesis of highly functionalized chiral nitrogen heterocycles.
Collapse
Affiliation(s)
- Gonzalo Blay
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Alicia Monleón
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Marc Montesinos-Magraner
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Amparo Sanz-Marco
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| | - Carlos Vila
- Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain.
| |
Collapse
|
3
|
Iraji A, Nikfar P, Nazari Montazer M, Karimi M, Edraki N, Saeedi M, Mirfazli SS. Synthesis, biological evaluation and molecular modeling studies of methyl indole-isoxazole carbohydrazide derivatives as multi-target anti-Alzheimer's agents. Sci Rep 2024; 14:21115. [PMID: 39256495 PMCID: PMC11387822 DOI: 10.1038/s41598-024-71729-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects the elderly population globally and there is an urgent demand for developing novel anti-AD agents. In this study, a new series of indole-isoxazole carbohydrazides were designed and synthesized. The structure of all compounds was elucidated using spectroscopic methods including FTIR, 1H NMR, and 13C NMR as well as mass spectrometry and elemental analysis. All derivatives were screened for their acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibitory activity. Out of all synthesized compounds, compound 5d exhibited the highest potency as AChE inhibitor with an IC50 value of 29.46 ± 0.31 µM. It showed significant selectivity towards AChE, with no notable inhibition against BuChE. A kinetic study on AChE for compound 5d indicated a competitive inhibition pattern. Also, 5d exhibited promising BACE1 inhibitory potential with an IC50 value of 2.85 ± 0.09 µM and in vitro metal chelating ability against Fe3+. The molecular dynamic studies of 5d against both AChE and BACE1 were executed to evaluate the behavior of this derivative in the binding site. The results showed that the new compounds deserve further chemical optimization to be considered potential anti-AD agents.
Collapse
Affiliation(s)
- Aida Iraji
- Department of Persian Medicine, School of Medicine, Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Parisa Nikfar
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Nazari Montazer
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Karimi
- Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Seyedeh Sara Mirfazli
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Newar UD, Kumar S, Borah A, Borra S, Manna P, Gokulnath S, Maurya RA. Access to Isoxazoles via Photo-oxygenation of Furan Tethered α-Azidoketones. J Org Chem 2024; 89:12378-12386. [PMID: 39171928 DOI: 10.1021/acs.joc.4c01312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Photocatalyst-free visible light-enabled direct oxygenation of furan-tethered α-azidoketones was studied. The reaction yielded various products depending on the substituents, with isoxazoles forming as the major products. The findings suggest that singlet oxygen was generated during the reaction and reacted with α-azidoketones in a [4 + 2] fashion to yield endoperoxides, which rearranged in multiple ways to generate isoxazoles. Some of the synthesized isoxazoles were evaluated as α-glucosidase inhibitors, and three of them 5bi, 5bj, and 5bl exhibited good activity with IC50 values of 454.57 ± 29.34, 147.84 ± 2.28, and 272.58 ± 42.06 μM, respectively, when compared with the standard drug acarbose (IC50 = 1224.33 ± 126.72 μM).
Collapse
Affiliation(s)
- Uma Devi Newar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| | - Saurabh Kumar
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
| | - Anupriya Borah
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Satheesh Borra
- Advanced Energy Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Prasenjit Manna
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
- Centre for Infectious Diseases, CSIR-North East Institute of Science and Technology, Jorhat, Assam 785006, India
| | - Sabapathi Gokulnath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695016, India
| | - Ram Awatar Maurya
- Applied Organic Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology (NEIST), Jorhat 785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP 201002, India
| |
Collapse
|
5
|
Das S, Datta T, Sk MA, Roy B, Nandi RK. Isoxazole group directed Rh(III)-catalyzed alkynylation using TIPS-EBX. Org Biomol Chem 2024; 22:6922-6927. [PMID: 38978484 DOI: 10.1039/d4ob00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
A highly effective isoxazole directed ortho C-H alkynylation has been developed. Rhodium(III) catalyzed direct di-(and/or mono) alkynylation using a hypervalent iodine reagent (TIPS-EBX) is reported. The reaction proceeds with a wide substrate scope under benign conditions. Preliminary mechanistic studies support this chelation assisted C-H alkynylation.
Collapse
Affiliation(s)
- Sukanya Das
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Tanmoy Datta
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Md Abbasuddin Sk
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| | - Brindaban Roy
- Department of Chemistry, Kalyani University, Block C, Nadia, Kalyani, West Bengal 741235, India
| | - Raj K Nandi
- Department of Chemistry, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
6
|
Zhang M, Zhang Z, Li Y. Mechanisms and Origins of Regio- and Stereoselectivities in NHC-Catalyzed [3 + 3] Annulation of α-Bromoenals and 5-Aminoisoxazoles: A DFT Study. J Org Chem 2024; 89:10748-10759. [PMID: 38996054 DOI: 10.1021/acs.joc.4c00980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Density functional theory (DFT) calculations were conducted to explore the mechanisms and origins of regio- and stereoselectivities underlying the [3 + 3] annulation reaction between α-bromoenals and 5-aminoisoxazoles with N-heterocyclic carbene (NHC) as the catalyst. The reaction occurs in nine steps: (1) nucleophilic addition of NHC to α-bromoenal, (2) Breslow intermediate formation through 1,2-proton transfer, (3) debromination, (4) α,β-unsaturated acyl azolium intermediate formation via 1,3-proton transfer, (5) addition of α,β-unsaturated acyl azolium intermediate to 5-aminoisoxazole, (6) deprotonation, (7) protonation, (8) ring closure, and (9) elimination of NHC. For the fifth step, 1,2-addition suggested in the experiment was not supported by our results. Instead, we found that Michael addition is energetically the most feasible pathway and the stereo-controlling step that preferentially provides the S-configuration product. DFT-computed results and experimental findings agree well. Analysis of distortion/interaction reveals that lower distortion energy leads to stability of the transition state corresponding to the S-configuration product. Global reactivity index analysis indicates that the behavior of the NHC catalyst differs significantly before and after the Breslow intermediate debromination. Before debromination, the nucleophilicity of α-bromoenal is enhanced by addition to NHC. However, after debromination, the α,β-unsaturated acyl azole generates and acts as an electrophilic reagent.
Collapse
Affiliation(s)
- Mingchao Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Zhiqiang Zhang
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Yan Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| |
Collapse
|
7
|
Arzine A, Hadni H, Boujdi K, Chebbac K, Barghady N, Rhazi Y, Chalkha M, Nakkabi A, Chkirate K, Mague JT, Kawsar SMA, Al Houari G, M. Alanazi M, El Yazidi M. Efficient Synthesis, Structural Characterization, Antibacterial Assessment, ADME-Tox Analysis, Molecular Docking and Molecular Dynamics Simulations of New Functionalized Isoxazoles. Molecules 2024; 29:3366. [PMID: 39064944 PMCID: PMC11279828 DOI: 10.3390/molecules29143366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/28/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
This work describes the synthesis, characterization, and in vitro and in silico evaluation of the biological activity of new functionalized isoxazole derivatives. The structures of all new compounds were analyzed by IR and NMR spectroscopy. The structures of 4c and 4f were further confirmed by single crystal X-ray and their compositions unambiguously determined by mass spectrometry (MS). The antibacterial effect of the isoxazoles was assessed in vitro against Escherichia coli, Bacillus subtilis, and Staphylococcusaureus bacterial strains. Isoxazole 4a showed significant activity against E. coli and B. subtilis compared to the reference antibiotic drugs while 4d and 4f also exhibited some antibacterial effects. The molecular docking results indicate that the synthesized compounds exhibit strong interactions with the target proteins. Specifically, 4a displayed a better affinity for E. coli, S. aureus, and B. subtilis in comparison to the reference drugs. The molecular dynamics simulations performed on 4a strongly support the stability of the ligand-receptor complex when interacting with the active sites of proteins from E. coli, S. aureus, and B. subtilis. Lastly, the results of the Absorption, Distribution, Metabolism, Excretion and Toxicity Analysis (ADME-Tox) reveal that the molecules have promising pharmacokinetic properties, suggesting favorable druglike properties and potential therapeutic agents.
Collapse
Affiliation(s)
- Aziz Arzine
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Hanine Hadni
- LIMAS, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco;
- Faculty of Health and Life Sciences, INTI International University, Persiaran Perdana BBN, Putra Nilai, Nilai 71800, Malaysia
| | - Khalid Boujdi
- Faculty of Sciences and Technologies Mohammedia, University Hassan II, B.P. 146, Mohammedia 28800, Morocco;
| | - Khalid Chebbac
- Laboratory of Biotechnology Conservation and Valorisation of Natural Resources, Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdallah University, Fez 30000, Morocco;
| | - Najoua Barghady
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Yassine Rhazi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed Chalkha
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Asmae Nakkabi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
- Laboratory of Materials Engineering for the Environment and Natural Ressources, Faculty of Sciences and Techniques, University of Moulay Ismail of Meknès, B.P 509, Boutalamine, Errachidia 52000, Morocco
| | - Karim Chkirate
- Laboratory of Heterocyclic Organic Chemistry URAC 21, Pharmacochemistry Competence Center, Av. Ibn Battouta, BP 1014, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10010, Morocco;
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA;
| | - Sarkar M. A. Kawsar
- Laboratory of Carbohydrate and Nucleoside Chemistry (LCNC), Department of Chemistry, Faculty of Science, University of Chittagong, Chittagong 4331, Bangladesh;
| | - Ghali Al Houari
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Mohamed El Yazidi
- Engineering Laboratory of Organometallic, Molecular Materials and Environment, Faculty of Sciences Dhar EL Mahraz, Sidi Mohamed Ben Abdellah University, P.O. Box 1796, Atlas, Fez 30000, Morocco; (A.A.); (N.B.); (Y.R.); (A.N.); (G.A.H.); (M.E.Y.)
| |
Collapse
|
8
|
Pattanayak P, Nikhitha S, Halder D, Ghosh B, Chatterjee T. Exploring the impact of trifluoromethyl (-CF 3) functional group on the anti-cancer activity of isoxazole-based molecules: design, synthesis, biological evaluation and molecular docking analysis. RSC Adv 2024; 14:18856-18870. [PMID: 38873543 PMCID: PMC11167338 DOI: 10.1039/d4ra02856b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Herein we report the design and synthesis of a series of fully-substituted 4-(trifluoromethyl)isoxazoles and evaluation of their anti-cancer activities against MCF-7, 4T1 and PC-3 cell lines as a proof of concept study. 4-(Trifluoromethyl)isoxazole is a synthetically challenging class of molecules and very few synthetic methods have been developed so far and all of them suffered from several serious limitations. Recently we developed a novel, metal-free, and general synthetic strategy to access synthetically challenging 4-(trifluoromethyl)isoxazoles starting from readily available chalcones using cheap CF3SO2Na as the source of the -CF3 group and multitasking t BuONO as an oxidant as well as the source of N and O and thus we have overcome the limitations of the previous methods. Based on the structure of an isoxazole-based anti-cancer agent, 3-(3,4-dimethoxyphenyl)-5-(thiophen-2-yl)isoxazole 14, we designed a set of 4-(trifluoromethyl)isoxazoles for synthesis and further anti-cancer evaluation. Among various molecules, 3-(3,4-dimethoxyphenyl)-5-(thiophen-2-yl)-4-(trifluoromethyl)isoxazole 2g (IC50 = 2.63 μM) and 3-(thiophen-2-yl)-5-(4-(thiophen-2-yl)-1H-pyrrol-3-yl)-4-(trifluoromethyl)isoxazole 5 (IC50 = 3.09 μM) exhibited the best anti-cancer activity against the human breast cancer cell-lines (MCF-7), 2g being the lead molecule among all. Interestingly, 2g is found to be almost 8 times more active compared to its non-trifluoromethylated analogue, i.e., 3-(3,4-dimethoxyphenyl)-5-(thiophen-2-yl)isoxazole 14 (IC50 = 19.72 μM) which revealed the importance of a 'CF3' moiety in enhancing the anti-cancer activity of 14. Further studies such as apoptosis induction, cell cycle analysis, and nuclear staining revealed an apoptotic cell death mechanism. The in silico molecular docking, induced fit analysis, and ADME studies further supported the effect of a -CF3 moiety on the enhancement of anti-cancer activity of isoxazole-based anti-cancer molecules. Further exploration of the biodistribution and therapeutic efficacy of lead 2gin vivo holds significant promise, positioning it as a potential candidate for anticancer therapy.
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus Jawahar Nagar Hyderabad 500078 Telangana India
| | - Sripathi Nikhitha
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus Jawahar Nagar Hyderabad 500078 Telangana India
| | - Debojyoti Halder
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus Jawahar Nagar Hyderabad 500078 Telangana India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus Jawahar Nagar Hyderabad 500078 Telangana India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus Jawahar Nagar Hyderabad 500078 Telangana India
| |
Collapse
|
9
|
Tripathi K, Kaushik P, Yadav DK, Kumar R, Misra SR, Godara R, Bashyal BM, Rana VS, Kumar R, Yadav J, Shakil NA. Synthesis, antifungal evaluation, two-dimensional quantitative structure-activity relationship and molecular docking studies of isoxazole derivatives as potential fungicides. PEST MANAGEMENT SCIENCE 2024. [PMID: 38690722 DOI: 10.1002/ps.8152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Sheath blight and bakanae disease, prominent among emerging rice ailments, exert a profound impact on rice productivity, causing severe impediments to crop yield. Excessive use of older fungicides may lead to the development of resistance in the pathogen. Indeed, a pressing and immediate need exists for novel, low-toxicity and highly selective fungicides that can effectively combat resistant fungal strains. RESULTS A series of 20 isoxazole derivatives were synthesized using alkoxy/halo acetophenones and N,N-dimethylformamidedimethylacetal. These compounds were characterized by various spectroscopic techniques, namely 1H nuclear magnetic resonance (NMR), 13C NMR and liquid chromatography-high-resolution mass spectrometry, and were evaluated for their fungicidal activity against Rhizoctonia solani and Fusarium fujikuroi. Compound 5n (5-(2-chlorophenyl) isoxazole) exhibited highest activity (effective dose for 50% inhibition [ED50] = 4.43 μg mL-1) against R. solani, while 5p (5-(2,4-dichloro-2-hydroxylphenyl) isoxazole) exhibited highest activity (ED50 = 6.7 μg mL-1) against F. fujikuroi. Two-dimensional quantitative structural-activity relationship (QSAR) analysis, particularly multiple linear regression (MLR) (Model 1), highlighted chi6chain and DistTopo as the key descriptors influencing fungicidal activity. Molecular docking studies revealed the potential of these isoxazole derivatives as novel fungicides targeting sterol 14α-demethylase enzyme, suggesting their importance as crucial intermediates for the development of novel and effective fungicides. CONCLUSION All test compounds were effective in inhibiting both fungi, according to the QSAR model, with various descriptors, such as structural, molecular shape analysis, electronic and thermodynamic, playing an important role. Molecular docking studies confirmed that these compounds can potentially replace commercially available fungicides and help control fungal pathogens in rice crops effectively. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kailashpati Tripathi
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
- ICAR-National Research Centre on Seed Spices, Ajmer, India
- The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parshant Kaushik
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Rakesh Kumar
- ICAR-Central Inland Fishries Research Institute, Guwahati, India
| | - Sameer Ranjan Misra
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajni Godara
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajesh Kumar
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jagdish Yadav
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Najam Akhtar Shakil
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
10
|
Khan MEI, Cassini TL, Petrini M, Palmieri A. Synthesis of 3,5-disubstituted isoxazoles by domino reductive Nef reaction/cyclization of β-nitroenones. Org Biomol Chem 2024; 22:3299-3303. [PMID: 38577730 DOI: 10.1039/d4ob00232f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
β-Nitroenones can be efficiently converted into 3,5-disubstituted isoxazoles by using tin(II)chloride dihydrate and ethyl acetate as a reducing agent and solvent, respectively. Products are obtained in good yields and several functional groups are tolerated thanks to the mild reaction conditions.
Collapse
Affiliation(s)
| | - Tomas Lighuen Cassini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Marino Petrini
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| | - Alessandro Palmieri
- University of Camerino, ChIP Research Center, Via Madonna delle Carceri, 62032 Camerino, MC, Italy.
| |
Collapse
|
11
|
Galenko EE, Novikov MS, Bunev AS, Khlebnikov AF. Acridine-Isoxazole and Acridine-Azirine Hybrids: Synthesis, Photochemical Transformations in the UV/Visible Radiation Boundary Region, and Anticancer Activity. Molecules 2024; 29:1538. [PMID: 38611817 PMCID: PMC11013717 DOI: 10.3390/molecules29071538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Easy-to-handle N-hydroxyacridinecarbimidoyl chloride hydrochlorides were synthesized as convenient nitrile oxide precursors in the preparation of 3-(acridin-9/2-yl)isoxazole derivatives via 1,3-dipolar cycloaddition with terminal alkynes, 1,1-dichloroethene, and acrylonitrile. Azirines with an acridin-9/2-yl substituent attached directly or via the 1,2,3-triazole linker to the azirine C2 were also synthesized. The three-membered rings of the acridine-azirine hybrids were found to be resistant to irradiation in the UV/visible boundary region, despite their long-wave absorption at 320-420 nm, indicating that the acridine moiety cannot be used as an antenna to transfer light energy to generate nitrile ylides from azirines for photoclick cycloaddition. The acridine-isoxazole hybrids linked at the C9-C3 or C2-C3 atoms under blue light irradiation underwent the addition of such hydrogen donor solvents, such as, toluene, o-xylene, mesitylene, 4-chlorotoluene, THF, 1,4-dioxane, or methyl tert-butyl ether (MTBE), to the acridine system to give the corresponding 9-substituted acridanes in good yields. The synthesized acridine-azirine, acridine-isoxazole, and acridane-isoxazole hybrids exhibited cytotoxicity toward both all tested cancer cell lines (HCT 116, MCF7, and A704) and normal cells (WI-26 VA4).
Collapse
Affiliation(s)
- Ekaterina E. Galenko
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Mikhail S. Novikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| | - Alexander S. Bunev
- Medicinal Chemistry Center, Togliatti State University, Togliatti 445020, Russia;
| | - Alexander F. Khlebnikov
- Institute of Chemistry, St. Petersburg State University, 7/9 Universitetskaya Naberezhnaya, St. Petersburg 199034, Russia; (E.E.G.); (M.S.N.)
| |
Collapse
|
12
|
Taggart EL, Wolff EJ, Yanar P, Blobe JP, Shugrue CR. Development of an oxazole-based cleavable linker for peptides. Bioorg Med Chem 2024; 102:117663. [PMID: 38457910 DOI: 10.1016/j.bmc.2024.117663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/06/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
We report the development of a new oxazole-based cleavable linker to release peptides from attached cargo. Oxazoles are stable to most reaction conditions, yet they can be rapidly cleaved in the presence of single-electron oxidants like cerium ammonium nitrate (CAN). An oxazole linker could be synthesized and attached to peptides through standard solid-phase peptide coupling reactions. Cleavage of these peptide-oxazole conjugates is demonstrated on a broad scope of peptides containing various natural and unnatural amino acids. These results represent the first example of a peptide-based linker that is cleaved through single-electron oxidation. The oxazole is also demonstrated to be a suitable linker for both the release of a peptide from a conjugated small molecule and the orthogonal release of cargo from a peptide containing multiple cleavable linkers. Oxazole linkers could serve as a promising tool for peptide screening platforms such as peptide-encoded libraries.
Collapse
Affiliation(s)
- Elizabeth L Taggart
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Evan J Wolff
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Pamira Yanar
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - John P Blobe
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States
| | - Christopher R Shugrue
- Department of Chemistry, University of Richmond, Gottwald Science Center B-100 138 UR Drive University of Richmond, VA 23173, United States.
| |
Collapse
|
13
|
Singh V, Kumar D, Mishra BK, Tiwari B. Iodobenzene-Catalyzed Synthesis of Fully Functionalized NH-Pyrazoles and Isoxazoles from α,β-Unsaturated Hydrazones and Oximes via 1,2-Aryl Shift. Org Lett 2024; 26:385-389. [PMID: 38150709 DOI: 10.1021/acs.orglett.3c04057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
An iodine(III)-catalyzed general method for the synthesis of fully functionalized NH-pyrazoles and isoxazoles from α,β-unsaturated hydrazones and oximes, respectively, via cyclization/1,2-aryl shift/aromatization/detosylation, has been developed. The reaction progresses through an anti-Baldwin 5-endo-trig cyclization. It gives direct access to an advanced intermediate for the preparation of valdecoxib and parecoxib, drugs used for COX-inhibition. In addition, a method for N-alkynylation of pyrazoles has also been developed in the presence of TIPS-EBX.
Collapse
Affiliation(s)
- Vikram Singh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Deepak Kumar
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bal Krishna Mishra
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow 226014, India
| |
Collapse
|
14
|
Dewaker V, Sharma AR, Debnath U, Park ST, Kim HS. Insights from molecular dynamics simulations of TRPV1 channel modulators in pain. Drug Discov Today 2023; 28:103798. [PMID: 37838068 DOI: 10.1016/j.drudis.2023.103798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/16/2023]
Abstract
TRPV1 is a nonselective cation channel vital for detecting noxious stimuli (heat, acid, capsaicin). Its role in pain makes it a potential drug target for chronic pain management, migraines, and related disorders. This review updates molecular dynamics (MD) simulation studies on the TRPV1 channel, focusing on its gating mechanism, ligand-binding sites, and implications for drug design. The article also explores challenges in developing modulators, SAR optimization, and clinical trial studies. Efforts have been undertaken to concisely present MD simulation findings, with a focus on their relevance to drug discovery.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Ashish R Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si 24252, Gangwon-do, Republic of Korea
| | - Utsab Debnath
- School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand 248007, India
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-si 24252, Gangwon-do, Republic of Korea; Division of Hemato-Oncology, Department of Internal Medicine, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul 07441, Republic of Korea; EIONCELL Inc., Chuncheon 24252, Republic of Korea.
| |
Collapse
|
15
|
Vasilenko DA, Temnyakova NS, Dronov SE, Radchenko EV, Grishin YK, Gabrel’yan AV, Zamoyski VL, Grigoriev VV, Averina EB, Palyulin VA. 5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors. Int J Mol Sci 2023; 24:16135. [PMID: 38003327 PMCID: PMC10671298 DOI: 10.3390/ijms242216135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 10/29/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5'-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10-12-10-6 M) with maximum potentiation of 77% at 10-10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs.
Collapse
Affiliation(s)
- Dmitry A. Vasilenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Nadezhda S. Temnyakova
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Sevastian E. Dronov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Eugene V. Radchenko
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Yuri K. Grishin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Alexey V. Gabrel’yan
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Vladimir L. Zamoyski
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Vladimir V. Grigoriev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Severny proezd 1, 142432 Chernogolovka, Moscow Region, Russia; (A.V.G.); (V.L.Z.)
| | - Elena B. Averina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| | - Vladimir A. Palyulin
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119991 Moscow, Russia; (D.A.V.); (N.S.T.); (S.E.D.); (E.V.R.); (Y.K.G.); (V.V.G.)
| |
Collapse
|
16
|
Alam W, Khan H, Saeed Jan M, Rashid U, Abusharha A, Daglia M. Synthesis, in-vitro inhibition of cyclooxygenases and in silico studies of new isoxazole derivatives. Front Chem 2023; 11:1222047. [PMID: 37744065 PMCID: PMC10511884 DOI: 10.3389/fchem.2023.1222047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Isoxazole belongs to the class of five-membered heterocyclic compounds. The process of developing new drugs has significantly gained attention due to inadequate pharmacokinetic and safety attributes of the available drugs. This study aimed to design a new diverse array of ten novel isoxazole derivatives via Claisen Schmidt condensation reaction. In vitro COX-1/2 anti-inflammatory assay, in silico molecular docking of potent compounds, Molecular docking simulation, and SwissADME pharmacokinetic profile were investigated in this research. The in vitro COX-1 and COX-2 enzyme inhibitory assay showed that almost all the tested compounds exhibited anti-inflammatory effects whereas C6, C5, and C3 were found to be the most potent COX-2 enzyme inhibitors among the tested compounds and are good candidates for selective COX-2 inhibitors. In silico molecular docking studies coupled with molecular dynamic simulation has been done to rationalize the time-evolved mode of interaction of selected inhibitor inside the active pockets of target COX-2. The binding orientations and binding energy results also showed the selectivity of compounds towards COX-2. Physicochemical properties, pharmacokinetic profile, lipophilicity, water solubility, drug metabolism, drug-likeness properties, and medicinal chemistry of the synthesized isoxazole derivatives were assessed. The SwissADME (absorption, distribution, metabolism, and excretion) database was used to assess the physicochemical properties and drug-likeness properties of the synthesized isoxazole derivatives. All the compounds were shown high GI absorption except Compound 7 (C7). Compound 1 (C1) and Compound 2 (C2) were found to cross the blood-brain barrier (BBB). Lipinski's rule of five is not violated by any of the ten synthesized isoxazole derivatives. It was predicted with the SwissADME database that C2, C5, C6, C7, and C8 are potent inhibitors of cytochrome (CYP) subtype CYP-2C19. A subtype of CYP-2C9 was inhibited by C4 and C7. The medicinal chemistry of all the compounds C1-C10 showed no PAIN (Pan assay interference compounds) alerts. The improved gastrointestinal (GI) absorption and BBB permeability of C1 and C2 can provide a future prospective for new researchers in the medicinal field to investigate the compounds for the management of chronic diseases. The synthesized isoxazole compounds showed excellent in vitro COX-1/2 enzymes anti-inflammatory investigations, in silico studies, good physicochemical properties, and improved pharmacokinetic profile which will be further investigated via in vivo anti-inflammatory activities. Moreover, to further support our findings of the computational research and in vitro studies, an in-vivo pharmacokinetic profile is suggested in the future.
Collapse
Affiliation(s)
- Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | | | - Umer Rashid
- Department of Chemistry, COMSATS University Islamabad-Abbottabad Campus, Abbottabad, Pakistan
| | - Ali Abusharha
- Optometry Department, Applied Medical Sciences College, King Saud University, Riyadh, Saudi Arabia
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- International Research Centre for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
17
|
Dai R, Wei X, Li T, Lee J, Gao J, Chen Y, Su G, Zhao Y. Synthesis and Antitumor Activity of Panaxadiol Pyrazole and Isooxazole Derivatives. Chem Biodivers 2023; 20:e202300507. [PMID: 37279052 DOI: 10.1002/cbdv.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/07/2023]
Abstract
In this study, we designed and synthesized 19 nitrogen-containing heterocyclic derivatives of panaxadiol (PD). We first reported the antiproliferative activity of these compounds against four different tumor cells. The results of the MTT assay showed that the PD pyrazole derivative (compound 12b) had the best antitumor activity and could significantly inhibit the proliferation of four tested tumor cells. For A549 cells, the IC50 value was as low as 13.44±1.23 μM. Western blot analysis showed that the PD pyrazole derivative was a bifunctional regulator. On the one hand, it can down-regulate the expression of HIF-1α by acting on PI3 K/AKT signaling pathway in A549 cells. On the other hand, it can induce the decrease of CDKs protein family and E2F1 protein expression levels, thus playing a crucial role in cell cycle arrest. According to the results of molecular docking, we found that multiple hydrogen bonds were formed between the PD pyrazole derivative and two related proteins, and the docking score of the derivative was also significantly higher than that of the crude drug. In summary, the study of the PD pyrazole derivative laid a foundation for the development of ginsenoside as an antitumor agent.
Collapse
Affiliation(s)
- Rongke Dai
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Xinrui Wei
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jungjoon Lee
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
| | - Jiaming Gao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, 133002, P. R. China
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| |
Collapse
|
18
|
Jiaping J, Woldegiorgis AG, Lin X. Chiral spirocyclic phosphoric acid-catalyzed enantioselective synthesis of heterotriarylmethanes bearing an amino acid moiety. RSC Adv 2023; 13:18964-18973. [PMID: 37362600 PMCID: PMC10285616 DOI: 10.1039/d3ra03480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023] Open
Abstract
We present herein an enantioselective protocol for the chiral phosphoric acid-catalyzed addition of 3-arylisoxazol-5-amines to highly reactive 3-methide-3H-pyrroles to provide a diverse range of heterotriarylmethanes bearing an amino acid moiety in good yields (up to 97%) and high enantioselectivities (up to 93% ee) under mild conditions. The chiral spirocyclic phosphoric acid is crucial in converting the initial 1H-pyrrol-3-yl carbinols into reactive 3-methide-3H-pyrroles and obtaining the good enantiocontrol, thereby facilitating the desired enantioselective transformation.
Collapse
Affiliation(s)
- Jin Jiaping
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| | | | - Xufeng Lin
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University Hangzhou 310058 China
| |
Collapse
|
19
|
Levitre G, Keess S, Molander GA. Photoinduced Diastereoselective Aminoalkylation of Cubanes. Org Lett 2023. [PMID: 37216214 DOI: 10.1021/acs.orglett.3c01223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The unique properties of rigid, nonconjugated hydrocarbons provide many opportunities to design molecular building blocks for a variety of applications, but the development of suitable conditions for alkylation of cubanes is quite challenging. Herein, a photoinduced method for aminoalkylation of cubanes is reported. The benign conditions reported allow the incorporation of a wide variety of (hetero)arylimine reaction partners with broad functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Guillaume Levitre
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Sebastian Keess
- Medicinal Chemistry Department, Neuroscience Discovery Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen 67061, Germany
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
20
|
Gupta S, Park SE, Mozaffari S, El-Aarag B, Parang K, Tiwari RK. Design, Synthesis, and Antiproliferative Activity of Benzopyran-4-One-Isoxazole Hybrid Compounds. Molecules 2023; 28:molecules28104220. [PMID: 37241960 DOI: 10.3390/molecules28104220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
The biological significance of benzopyran-4-ones as cytotoxic agents against multi-drug resistant cancer cell lines and isoxazoles as anti-inflammatory agents in cellular assays prompted us to design and synthesize their hybrid compounds and explore their antiproliferative activity against a panel of six cancer cell lines and two normal cell lines. Compounds 5a-d displayed significant antiproliferative activities against all the cancer cell lines tested, and IC50 values were in the range of 5.2-22.2 μM against MDA-MB-231 cancer cells, while they were minimally cytotoxic to the HEK-293 and LLC-PK1 normal cell lines. The IC50 values of 5a-d against normal HEK-293 cells were in the range of 102.4-293.2 μM. Compound 5a was screened for kinase inhibitory activity, proteolytic human serum stability, and apoptotic activity. The compound was found inactive towards different kinases, while it completely degraded after 2 h of incubation with human serum. At 5 μM concentration, it induced apoptosis in MDA-MB-231 by 50.8%. Overall, these findings suggest that new benzopyran-4-one-isoxazole hybrid compounds, particularly 5a-d, are selective anticancer agents, potentially safe for human cells, and could be synthesized at low cost. Additionally, Compound 5a exhibits potential anticancer activity mediated via inhibition of cancer cell proliferation and induction of apoptosis.
Collapse
Affiliation(s)
- Shilpi Gupta
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
- Department of Chemistry, Hindu College, Sonipat 131001, India
| | - Shang Eun Park
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Bishoy El-Aarag
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| | - Rakesh Kumar Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, CA 92618-1908, USA
| |
Collapse
|
21
|
Pattanayak P, Chatterjee T. Synthesis of (4-Trifluoromethyl)isoxazoles through a Tandem Trifluoromethyloximation/Cyclization/Elimination Reaction of α,β-Unsaturated Carbonyls. J Org Chem 2023; 88:5420-5430. [PMID: 36913616 DOI: 10.1021/acs.joc.2c03053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
We disclose a metal-free, cascade regio- and stereoselective trifluormethyloximation, cyclization, and elimination strategy with readily available α,β-unsaturated carbonyl compounds to access a wide variety of pharmaceutically potential heteroaromatics, i.e., 4-(trifluoromethyl)isoxazoles including a trifluoromethyl analogue of an anticancer agent. The transformation requires only a couple of commercially available and cheap reagents i.e., CF3SO2Na as the trifluoromethyl source, and tBuONO as an oxidant as well as a source of N and O. Notably, 5-alkenyl-4-(trifluoromethyl)isoxazoles were further synthetically diversified to a new class of biheteroaryls, i.e., 5-(3-pyrrolyl)-4-(trifluoromethyl)isoxazoles. Mechanistic studies revealed a radical pathway for the reaction.
Collapse
Affiliation(s)
- Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana, India
| |
Collapse
|
22
|
Continuous Flow Photochemical Synthesis of 3-Methyl-4-arylmethylene Isoxazole-5(4H)-ones through Organic Photoredox Catalysis and Investigation of Their Larvicidal Activity. Catalysts 2023. [DOI: 10.3390/catal13030518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Isoxazole-5(4H)-ones are heteropentacycle compounds found in several bioactive molecules with pharmaceutical and agrochemical properties. A well-known multicomponent reaction between β-ketoester, hydroxylamine, and aromatic aldehydes leads to 3-methyl-4-arylmethylene isoxazole-5(4H)-ones, in mild conditions. The initial purpose of this work was to investigate whether the reaction might be induced by light, as described in previous works. Remarkable results were obtained using a high-power lamp, reducing reaction times compared to methodologies that used heating or catalysis. Since there are many examples of successful continuous flow heterocycle synthesis, including photochemical reactions, the study evolved to run the reaction in flow conditions and scale up the synthesis of isoxazolones using a photochemical reactor set-up. Eight different compounds were obtained, and among them, three showed larvicidal activity on immature forms of Aedes aegypti in tests that investigated its growth inhibitory character. Mechanistic investigations indicate that the reactions occur through organic photoredox catalysis.
Collapse
|
23
|
Bąchor U, Junka A, Brożyna M, Mączyński M. The In Vitro Impact of Isoxazole Derivatives on Pathogenic Biofilm and Cytotoxicity of Fibroblast Cell Line. Int J Mol Sci 2023; 24:2997. [PMID: 36769319 PMCID: PMC9917413 DOI: 10.3390/ijms24032997] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The microbial, biofilm-based infections of chronic wounds are one of the major challenges of contemporary medicine. The use of topically administered antiseptic agents is essential to treat wound-infecting microorganisms. Due to observed microbial tolerance/resistance against specific clinically-used antiseptics, the search for new, efficient agents is of pivotal meaning. Therefore, in this work, 15 isoxazole derivatives were scrutinized against leading biofilm wound pathogens Staphylococcus aureus and Pseudomonas aeruginosa, and against Candida albicans fungus. For this purpose, the minimal inhibitory concentration, biofilm reduction in microtitrate plates, modified disk diffusion methods and antibiofilm dressing activity measurement methods were applied. Moreover, the cytotoxicity and cytocompatibility of derivatives was tested toward wound bed-forming cells, referred to as fibroblasts, using normative methods. Obtained results revealed that all isoxazole derivatives displayed antimicrobial activity and low cytotoxic effect, but antimicrobial activity of two derivatives, 2-(cyclohexylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB9) and 2-(benzylamino)-1-(5-nitrothiophen-2-yl)-2-oxoethyl 5-amino-3-methyl-1,2-oxazole-4-carboxylate (PUB10), was noticeably higher compared to the other compounds analyzed, especially PUB9 with regard to Staphylococcus aureus, with a minimal inhibitory concentration more than x1000 lower compared to the remaining derivatives. The PUB9 and PUB10 derivatives were able to reduce more than 90% of biofilm-forming cells, regardless of the species, displaying at the same time none (PUB9) or moderate (PUB10) cytotoxicity against fibroblasts and high (PUB9) or moderate (PUB10) cytocompatibility against these wound cells. Therefore, taking into consideration the clinical demand for new antiseptic agents for non-healing wound treatment, PUB9 seems to be a promising candidate to be further tested in advanced animal models and later, if satisfactory results are obtained, in the clinical setting.
Collapse
Affiliation(s)
- Urszula Bąchor
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Adam Junka
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Malwina Brożyna
- Unique Application Model Laboratory, Department of Pharmaceutical Microbiology and Parasitology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Marcin Mączyński
- Department of Organic Chemistry and Drug Technology, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
24
|
Synthesis, Characterization and Computational Studies of New Naphthoquinones Fused Isoxazoles by the Regiospecific Tandem Sonogashira-Cyclization Reaction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
25
|
Ali MA, Aswathy KA, Munuswamy-Ramanujam G, Jaisankar V. Pyridine and isoxazole substituted 3-formylindole-based chitosan Schiff base polymer: Antimicrobial, antioxidant and in vitro cytotoxicity studies on THP-1 cells. Int J Biol Macromol 2023; 225:1575-1587. [PMID: 36436605 DOI: 10.1016/j.ijbiomac.2022.11.214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
This paper presents the synthesis of two new chitosan Schiff base (CSB) polymers, namely, 2PCT and 4MCT based on pyridin-2-ylmethyl-1H-indole-3-carbaldehyde and 1-(4-methyl-3,5-dimethylisoxazole)-1H-indole-3-carbaldehyde with chitosan (CT). The structural features of CSB polymers were confirmed by Fourier-transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopy and their antimicrobial activity was evaluated against Staphylococcus aureus, Escherichia coli and Candida albicans. The antioxidant studies found that both 2PCT and 4MCT presented significant free radical scavenging activity with IC50 at 169.01 and 372.84 μg/mL, respectively. The cell viability results obtained from in vitro cytotoxicity studies performed using human monocyte leukemia (THP-1) cells were found to be 75.6 ± 0.25 % and 79.1 ± 1.5 % for 2PCT and 4MCT, respectively, at a concentration of 10 mg/mL. Flow cytometry analysis demonstrated the reducing ability of CSB polymers on intracellular reactive oxygen species (ROS) in THP-1 cells. The overall results of antioxidant activity, in vitro biocompatibility and ability to reduce the intracellular ROS production emphasized that the CSB polymers prepared could serve as a potential biomaterial in biomedical applications, such as wound treatment process.
Collapse
Affiliation(s)
- M Ameer Ali
- Department of Chemistry, The New College (Autonomous), Chennai 600014, Tamil Nadu, India; Department of Chemistry, Presidency College (Autonomous), Chennai 600005, Tamil Nadu, India
| | - K A Aswathy
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, Tamil Nadu, India
| | - Ganesh Munuswamy-Ramanujam
- Division of Molecular Biology and Immuno Biology, IIISM, SRM IST, Kattankulathur, 603203, Tamil Nadu, India; Department of Chemistry, Faculty of Science & Humanities, SRM IST, Kattankulathur, 603203, Tamil Nadu, India
| | - V Jaisankar
- Department of Chemistry, Presidency College (Autonomous), Chennai 600005, Tamil Nadu, India.
| |
Collapse
|
26
|
Hashmi SZ, Dwivedi J, Kishore D, Kuznetsov AE. Synthesis, characterization, and DFT study of the s-triazine analogues of medicinal interest incorporated with five- and six-membered bioactive heterocyclic scaffolds. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.134922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
27
|
Urea-catalyzed multicomponent synthesis of 4-arylideneisoxazol-5(4H)-one derivatives under green conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
28
|
Muzalevskiy VM, Sizova ZA, Nechaev MS, Nenajdenko VG. Acid-Switchable Synthesis of Trifluoromethylated Triazoles and Isoxazoles via Reaction of CF 3-Ynones with NaN 3: DFT Study of the Reaction Mechanism. Int J Mol Sci 2022; 23:ijms232314522. [PMID: 36498860 PMCID: PMC9735682 DOI: 10.3390/ijms232314522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022] Open
Abstract
A detailed study of the reaction of CF3-ynones with NaN3 was performed. It was found that the reaction permits the selective synthesis of either 4-trifluoroacetyltriazoles or 5-CF3-isoxazoles. The chemoselectivity of the reaction was switchable via acid catalysis. The reaction of CF3-ynones with NaN3 in EtOH produced high yields of 4-trifluoroacetyltriazoles. In contrast, the formation of 5-CF3-isoxazoles was observed under catalysis by acids. This acid-switchable procedure can be performed at sub-gram scale. The possible reaction mechanism was supported by DFT calculations. The synthetic utility of the prepared 4-trifluoroacetyltriazoles was demonstrated.
Collapse
Affiliation(s)
| | - Zoia A. Sizova
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Mikhail S. Nechaev
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
- A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Valentine G. Nenajdenko
- Department of Chemistry, Lomonosov Moscow State University, 119899 Moscow, Russia
- Correspondence:
| |
Collapse
|
29
|
Mishra DR, Panda BS, Nayak S, Rauta NK, Mohapatra S, Sahoo CR, Padhy RN. One-pot multicomponent synthesis of 4-((2H-chromen-3-yl)/(2-phenyl-2H-chromen-3-yl)methylene)-3-methylisoxazol-5(4H)-ones and evaluation of their antibacterial activity. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Development and validation of an LC-MS/MS method for the assessment of Isoxazole, a bioactive analogue of curcumin in rat plasma: Application to a pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1212:123488. [DOI: 10.1016/j.jchromb.2022.123488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
|
31
|
Shilova AN, Shatokhina NS, Kondrashov EV. Improved Synthesis of 5-(Chloromethyl)isoxazoles from Aldoximes and 2,3-Dichloropropene. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022100268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Tatheer A, Murtaza S, Kausar N, Altaf AA, Kausar S, Ahmed S, Muhammad S, Hussain A. Synthesis, theoretical investigations and biological evaluation of ibuprofen drug hybrids. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02955-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Radwan HA, Ahmad I, Othman IM, Gad-Elkareem MA, Patel H, Aouadi K, Snoussi M, Kadri A. Design, synthesis, in vitro anticancer and antimicrobial evaluation, SAR analysis, molecular docking and dynamic simulation of new pyrazoles, triazoles and pyridazines based isoxazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Petkevich SK, Zvereva TD, Shabunya PS, Zhou H, Nikitina EV, Ershova AА, Zaytsev VP, Khrustalev VN, Romanycheva AА, Shetnev AА, Potkin VI. Preparative synthesis of polysubstituted 4-(5-arylisoxazol-3-yl)-1,4-dihydropyridines and -pyridines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Degrading Characterization of the Newly Isolated Nocardioides sp. N39 for 3-Amino-5-methyl-isoxazole and the Related Genomic Information. Microorganisms 2022; 10:microorganisms10081496. [PMID: 35893554 PMCID: PMC9329766 DOI: 10.3390/microorganisms10081496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023] Open
Abstract
3-amino-5-methyl-isoxazole (3A5MI) is a persistent and harmful intermediate in the degradation of antibiotic sulfamethoxazole. It was accumulated in the environments day by day and has caused great environmental risks due to its refractory characteristic. Microbial degradation is economic and environmentally friendly and a promising method to eliminate this pollutant. In this study, a bacterial strain, Nocardioides sp. N39, was isolated. N39 can grow on 3A5MI as the sole carbon, nitrogen and energy resource. The effect of different factors on 3A5MI degradation by N39 was explored, including initial 3A5MI concentration, temperature, pH value, dissolved oxygen and additional carbon or nitrogen source. The degradation ability of N39 to various 3A5MI analogs was also explored. Nevertheless, the degrading ability of N39 for 3A5MI is not permanent, and long-term storage would lead to the loss of this ability. This may result from the mobile genetic elements in the bacterium according to the genomic comparison of N39 and its degrading ability-lost strain, N40. Despite this, N39 could support a lot of useful information about the degradation of 3A5MI and highlight the importance of studies about the environmental effects and potential degradation mechanism.
Collapse
|
36
|
Maldonado J, Acevedo W, Molinari A, Oliva A, Knox M, San Feliciano A. Synthesis, in vitro evaluation and molecular docking studies of novel naphthoisoxazolequinone carboxamide hybrids as potential antitumor agents. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2095410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Javier Maldonado
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Waldo Acevedo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Aurora Molinari
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Alfonso Oliva
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Marcela Knox
- Facultad de Farmacia, Universidad de Valparaíso, Valparaíso, Chile
| | - Arturo San Feliciano
- Departamento de Ciencias Farmacéuticas-Química Farmacéutica, Facultad de Farmacia, CIETUS, IBSAL, Universidad de Salamanca, Salamanca, Spain
- Programa de Pós-Graduaçao em Ciências Farmacêuticas, Universidade Do Vale Do Itajaí, UNIVALI, Itajaí, SC, Brazil
| |
Collapse
|
37
|
Abdelfattah AM, Mekky AEM, Sanad SMH. Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2095211] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Ahmed E. M. Mekky
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | | |
Collapse
|
38
|
Baeva LA, Biktasheva LF, Fatykhov AA, Galimzyanova NF. Synthesis and Fungicidal Activity of 4-[(Alkylsulfanyl)methyl]-3,5-dimethylisoxazoles. RUSS J APPL CHEM+ 2022. [DOI: 10.1134/s1070427222070151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Bisht S, Kumar L, Kaul G, Akhir A, Saxena D, Chopra S, Karthik R, Goyal N, Batra S. Synthesis and Biological Evaluation of Substituted 3‐Isoxazolethioethers as Antileishmanial and Antibacterial Agents. ChemistrySelect 2022. [DOI: 10.1002/slct.202201664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Shweta Bisht
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Lalan Kumar
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
| | - Grace Kaul
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Abdul Akhir
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Deepanshi Saxena
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sidharth Chopra
- Molecular Microbiology and Immunology Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - R. Karthik
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Neena Goyal
- Biochemistry Division CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| | - Sanjay Batra
- Medicinal and Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension Sitapur Road Lucknow 226031 UP India
- Academy of Scientific and Innovative Research CSIR- Human Resource Development Centre CSIR-HRDC) Campus, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 UP India
| |
Collapse
|
40
|
Hawash M, Jaradat N, Eid AM, Abubaker A, Mufleh O, Al-Hroub Q, Sobuh S. Synthesis of novel isoxazole-carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chem 2022; 16:47. [PMID: 35751124 PMCID: PMC9229817 DOI: 10.1186/s13065-022-00839-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cancer is one of the most dangerous and widespread diseases in the world today and it has risen to the position of the leading cause of death around the globe in the last few decades. Due to the inherent resistance of many types of cancer to conventional radiotherapy and chemotherapy, it is vital to develop innovative anticancer medications. Recently, a strategy based on nanotechnology has been used to improve the effectiveness of both old and new cancer drugs. OBJECTIVES The present study aimed to design and synthesize a series of phenyl-isoxazole-Carboxamide derivatives, evaluate their anticancer properties, and improve the permeability of potent compounds into cancer cells by using a nano-emulgel strategy. METHODS The coupling reaction of aniline derivatives and isoxazole-Carboxylic acid was used to synthesize a series of isoxazole-Carboxamide derivatives. IR, HRMS, 1H-NMR, and 13C-NMR spectroscopy techniques, characterized all the synthesized compounds. The in-vitro cytotoxic evaluation was performed by using the MTS assay against seven cancer cell lines, including hepatocellular carcinoma (Hep3B and HepG2), cervical adenocarcinoma (HeLa), breast carcinoma (MCF-7), melanoma (B16F1), colorectal adenocarcinoma (Caco-2), and colon adenocarcinoma (Colo205), as well as human hepatic stellate (LX-2) in addition to the normal cell line (Hek293T). A nano-emulgel was developed for the most potent compound, using a self-emulsifying technique. RESULTS All synthesized compounds were found to have potent to moderate activities against B16F1, Colo205, and HepG2 cancer cell lines. The results revealed that the 2a compound has broad spectrum activity against B16F1, Colo205, HepG2, and HeLa cancer cell lines with an IC50 range of 7.55-40.85 µM. Moreover, compound 2e was the most active compound against B16F1 with an IC50 of 0.079 µM compared with Dox (IC50 = 0.056 µM). Nanoemulgel was used to increase the potency of the 2e molecule against this cancer cell line, and the IC50 was reduced to 0.039 µM. The antifibrotic activities were investigated against the LX-2 cell line, and it was found that our synthesized molecules showed better antifibrotic activities at 1 µM than 5-FU, and the cell viability values were 67 and 95%, respectively. CONCLUSION This study suggests that a 2e nano-formalized compound is a potential and promising anti-melanoma agent.
Collapse
Affiliation(s)
- Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad M Eid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ahmad Abubaker
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Ola Mufleh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Qusay Al-Hroub
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| | - Shorooq Sobuh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, 00970, Palestine
| |
Collapse
|
41
|
Khrustalev VN, Çelikesir ST, Akkurt M, Kolesnik IA, Potkin VI, Mlowe S. Crystal structure and Hirshfeld surface analysis of N-{[5-(4-methyl-phen-yl)-1,2-oxazol-3-yl]meth-yl}-1-phenyl- N-(prop-2-en-1-yl)methane-sulfonamide. Acta Crystallogr E Crystallogr Commun 2022; 78:603-607. [PMID: 36072140 PMCID: PMC9431795 DOI: 10.1107/s2056989022005035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022]
Abstract
In the title compound, C21H22N2O3S, the 1,2-oxazole ring makes the dihedral angles of 9.16 (16) and 87.91 (17)°, respectively, with the toluene and phenyl rings, while they form a dihedral angle of 84.42 (15)° with each other. The C-S-N-Cpr and C-S-N-Cme (pr = propene, me = 3-methyl-1,2-oxazole) torsion angles are 86.8 (2) and -100.6 (3) °, respectively. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds, generating a three-dimensional network. A Hirshfeld surface analysis was performed to investigate the contributions of the different inter-molecular contacts within the supra-molecular structure. The major inter-actions are H⋯H (53.6%), C⋯H/H⋯C (20.8%) and O⋯H/H⋯O (17.7%).
Collapse
Affiliation(s)
- Victor N. Khrustalev
- Peoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., 117198, Moscow, Russian Federation
- N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation
| | | | - Mehmet Akkurt
- Department of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey
| | - Irina A. Kolesnik
- Laboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganov Str., 220072, Minsk, Belarus
| | - Vladimir I. Potkin
- Laboratory of the Chemistry of Heterocyclic Compounds, Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, 13, Surganov Str., 220072, Minsk, Belarus
| | - Sixberth Mlowe
- University of Dar es Salaam, Dar es Salaam University College of Education, Department of Chemistry, PO Box 2329, Dar es Salaam, Tanzania
| |
Collapse
|
42
|
Farooq S, Ngaini Z. Synthesis of Benzalacetophenone Based Isoxazoline and Isoxazole Derivatives. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220408120350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
The demand for natural product based drugs with less cost and efficient procedures has become a challenge to researchers. Benzalacetophenone is a natural product based species that is modified into numerous heterocyclic compounds including isoxazoline and isoxazole derivatives. The utility of isoxazoline and oxazole derivatives has been increased for the synthesis of the new and effective chemical entities to serve medicinal chemistry in the past few years. Isoxazoline and isoxazole are fascinating classes of heterocyclic compounds, which belong to N- and O-heterocycles, and are widely used as precursors for the development of drugs. This review highlights the recent work for the synthesis of mono and bis isoxazoline and isoxazole derivatives using stable benzalacetophenone and functionalization of isoxazoline and isoxazole, along with the prevailing biological properties.
Collapse
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia
| |
Collapse
|
43
|
Faramarzi Z, Kiyani H. Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
44
|
Kumar P, Kapur M. Ruthenium-catalyzed oxidative coupling of vinylene carbonate with isoxazoles: access to fused anthranils. Chem Commun (Camb) 2022; 58:4476-4479. [PMID: 35297924 DOI: 10.1039/d2cc01048h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ruthenium-catalyzed oxidative coupling of vinylene carbonate with isoxazoles has been developed to achieve the direct C-H formylmethylation of a diverse array of arylisoxazoles utilizing the isoxazole ring as the directing group. A simple manipulation of the established reaction conditions leads to the formation of fused-anthranils. Importantly, the vinylene carbonate functions as both a formylmethyl cation equivalent through a decarboxylation process and an acetylene equivalent. Control experiments were conducted to elucidate a plausible mechanism. This methodology is expected to provide a facile and expeditious approach for the synthesis of formylmethyl isoxazoles and fused-anthranils.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal Bypass Road, Bhopal 462066, MP, India.
| |
Collapse
|
45
|
Kutskaya AM, Serkov SA, Voronin VV, Ledovskaya MS, Polynski MV. Negligible Substituent Effect as Key to Synthetic Versatility: a Computational‐Experimental Study of Vinyl Ethers Addition to Nitrile Oxides. ChemistrySelect 2022. [DOI: 10.1002/slct.202200174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Anastasia M. Kutskaya
- Institute of Chemistry Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
| | - Semyon A. Serkov
- Institute of Chemistry Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
| | - Vladimir V. Voronin
- Institute of Chemistry Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
| | - Maria S. Ledovskaya
- Institute of Chemistry Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
| | - Mikhail V. Polynski
- Institute of Chemistry Saint Petersburg State University Universitetsky Prospect 26 Saint Petersburg 198504 Russia
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
- MSU Faculty of Chemistry Leninskiye Gory 1–3 Moscow 119991 Russia
| |
Collapse
|
46
|
Kolesnik IA, Petkevich SK, Mertsalov DF, Chervyakova LV, Nadirova MA, Tyurin AP, Guan AY, Liu CL, Potkin VI. Synthesis of 5-Arylisoxazole and 4,5-Dichloroisothiazole Amino-Substituted Derivatives and Their Biological Activity. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Elkina NA, Shchegolkov EV, Burgart YV, Agafonova NA, Perminova AN, Gerasimova NA, Makhaeva GF, Rudakova EV, Kovaleva NV, Boltneva NP, Serebryakova OG, Borisevich SS, Evstigneeva NP, Zilberberg NV, Kungurov NV, Saloutin VI. Synthesis and biological evaluation of polyfluoroalkyl-containing 4-arylhydrazinylidene-isoxazoles as antifungal agents with antioxidant activity. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2021.109935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Bruzgulienė J, Račkauskienė G, Bieliauskas A, Milišiūnaitė V, Dagilienė M, Matulevičiūtė G, Martynaitis V, Krikštolaitytė S, Sløk FA, Šačkus A. Regioselective synthesis of methyl 5-( N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates as new amino acid-like building blocks. Beilstein J Org Chem 2022; 18:102-109. [PMID: 35096179 PMCID: PMC8767561 DOI: 10.3762/bjoc.18.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/29/2021] [Indexed: 12/23/2022] Open
Abstract
A convenient and efficient synthesis of novel achiral and chiral heterocyclic amino acid-like building blocks was developed. Regioisomeric methyl 5-(N-Boc-cycloaminyl)-1,2-oxazole-4-carboxylates were prepared by the reaction of β-enamino ketoesters (including azetidine, pyrrolidine or piperidine enamines) with hydroxylamine hydrochloride. Unambiguous structural assignments were based on chiral HPLC analysis, 1H, 13C, and 15N NMR spectroscopy, HRMS, and single-crystal X-ray diffraction data.
Collapse
Affiliation(s)
- Jolita Bruzgulienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Greta Račkauskienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Aurimas Bieliauskas
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vaida Milišiūnaitė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Miglė Dagilienė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Gita Matulevičiūtė
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
| | - Vytas Martynaitis
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Sonata Krikštolaitytė
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| | - Frank A Sløk
- Vipergen ApS, Gammel Kongevej 23A, DK-1610 Copenhagen V, Denmark
| | - Algirdas Šačkus
- Institute of Synthetic Chemistry, Kaunas University of Technology, K. Baršausko g. 59, Kaunas LT-51423, Lithuania
- Department of Organic Chemistry, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania
| |
Collapse
|
49
|
Unveiling the regioselective synthesis of antiviral 5-isoxazol-5-yl-2´-deoxyuridines from the perspective of a molecular electron density theory. JOURNAL OF THE SERBIAN CHEMICAL SOCIETY 2022. [DOI: 10.2298/jsc211014106a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The regioselective synthesis of a potent antiviral sugar nucleoside isoxazole analogue in the [3+2] cycloaddition (32CA) reaction of acetonitrile- -N-oxide (ANO) and acetyl-protected 5-ethynyl-2?-deoxyuridine (EDU) has been studied at the MPWB1K/6-311G(d,p) level within perspective of the molecular electron density theory (MEDT). From an electron localization function (ELF) analysis, ANO is classified as a zwitterionic species devoid of any pseudoradical or carbenoid centre. The ortho regioisomer is energetically preferred over the meta one by the activation enthalpy of 21.7?24.3 kJ mol-1, suggesting complete regioselectivity in agreement with the experiment. The activation enthalpy increases from 53.9 kJ mol-1 in the gas phase to 71.5 kJ mol-1 in water, suggesting more facile reaction in low polar solvents. The minimal global electron density transfer (GEDT) at the TSs suggests non-polar character and the formation of new covalent bonds has not been started at the located TSs, showing non-covalent intermolecular interactions from an atoms-in- -molecules (AIM) study and in the independent gradient model (IGM) isosurfaces. The AIM analysis shows more accumulation of electron density at the C?C interacting region relative to the C?O one, and earlier C?C bond formation is predicted from a bonding evolution theory (BET) study.
Collapse
|
50
|
Chloramine-T (N-chloro-p-toluenesulfonamide sodium salt), a versatile reagent in organic synthesis and analytical chemistry: An up to date review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2021.101416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|