1
|
Yu H, Xing Z, Jia K, Li S, Xu Y, Zhao P, Zhu X. Inquiry lipaseoring the mechanism of pancreatic lipase inhibition by isovitexin based on multispectral method and enzyme inhibition assay. LUMINESCENCE 2024; 39:e4765. [PMID: 38769927 DOI: 10.1002/bio.4765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/26/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024]
Abstract
Isovitexin is a main natural flavonoid component in various plants. Currently, the inhibitory effect of isovitexin on pancreatic lipase (PL) and its mechanism have not been elucidated yet. In the present study, we investigated the inhibitory effect of isovitexin on PL, as well as its interaction mechanism, using enzyme inhibition methods, spectroscopic analysis, and molecular simulations. Results showed that isovitexin possessed significant PL inhibitory activity, with IC50 values of 0.26 ± 0.02 mM. The interaction between isovitexin and PL was dominated by static quenching, and mainly through hydrogen bonding and hydrophobic interaction forces. Analysis of fluorescence spectroscopy confirmed that isovitexin binding altered the conformation of the PL. Circular dichroism (CD) spectrum indicated that isovitexin altered the secondary structure of PL by decreasing the α-helix content and increasing the β-fold content. Molecular simulations further characterize the conformational changes produced by the interaction between isovitexin with PL. The performed study may provide a new insight into the inhibitory mechanism of isovitexin as a novel PL inhibitor.
Collapse
Affiliation(s)
- Hui Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhongfu Xing
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kaijie Jia
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sai Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yankun Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Pan Zhao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiaojing Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Li Z, Dong Y, Zhang Y, Zheng M, Jiang Z, Zhu Y, Deng S, Li Q, Ni H. Lactobacillus-fermentation enhances nutritional value and improves the inhibition on pancreatic lipase and oral pathogens of edible red seaweed Bangia fusco-purpurea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Chen J, Wu X, Zhou Y, He J. Camellia nitidissima Chi leaf as pancreatic lipase inhibitors: Inhibition potentials and mechanism. J Food Biochem 2021; 45:e13837. [PMID: 34231229 DOI: 10.1111/jfbc.13837] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 01/12/2023]
Abstract
In this study, Camellia nitidissima Chi leaf extract was investigated for its compounds and pancreatic lipase inhibitory potentials. The interaction was determined using ultraviolet (UV) spectroscopy, circular dichroism (CD), fluorescence spectroscopy (FS), and molecular docking to understand the inhibiton, kinetic, and conformation of extraction-pancreatic lipase complex. C. nitidissima Chi leaf extraction inhibited the pancreatic lipase activity in a dose-dependent manner at the concentration of 1-12 mg/ml. The Lineweaver-Burk plots indicated that the inhibition on pancreatic lipase by extraction was noncompetitive. In addition, the decrease in α-helix contents, increase in β-sheet and β-turn, and decrease in fluorescence intensity after extraction treatment indicated that the conformation of pancreatic lipase was changed. This work revealed that C. nitidissima Chi leaf extraction played a significant role in inhibiting pancreatic lipase activity and brought out a solution of delay fat accumulation. PRACTICAL APPLICATIONS: This study reports the components in the extract of C. nitidissima Chi leaf and its inhibitory effect and mechanism of pancreatic lipase. C. nitidissima Chi leaf is a good source of bioactive components, including multiflorin B, kaempferol-3-O-rutinoside, vicenin-2, apigenin-6-C-pentosyl-8-C-hexosyl, vitexin, kaempferol, and other ingredients. It can inhibit pancreatic lipase and be used to control obesity and treat hyperlipidemia. This study also revealed the structure changes of C. nitidissima Chi leaf extract on pancreatic lipase, and further revealed the inhibitory mechanism of C. nitidissima Chi leaf extract on lipase, which provides a theoretical basis for C. nitidissima Chi leaf as a lipase inhibitor.
Collapse
Affiliation(s)
- Jiahui Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuehui Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yue Zhou
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junhua He
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
4
|
Lin J, Tang M, Meti MD, Liu Y, Han Q, Xu X, Zheng Y, He Z, Hu Z, Xu H. Exploring the binding mechanism of Ginsenoside Rd to Bovine Serum Albumin: Experimental studies and computational simulations. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1915154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Jialiang Lin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Min Tang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Manjunath D. Meti
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yong Liu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Qingguo Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yuan Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zhendan He
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hong Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
5
|
Liu TT, Liu XT, Chen QX, Shi Y. Lipase Inhibitors for Obesity: A Review. Biomed Pharmacother 2020; 128:110314. [PMID: 32485574 DOI: 10.1016/j.biopha.2020.110314] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023] Open
Abstract
With the rapid increase in the population of obese individuals, obesity has become a global problem. Many kinds of chronic metabolic diseases easily caused by obesity have received increasing attention from researchers. People are also striving to find various safe and effective treatment methods as well as anti-obesity medicines. Pancreatic lipase (PL) inhibitors have received substantial attention from researchers in recent years, and PL inhibitors from natural products have attracted much attention due to their structural diversity, low toxicity and wide range of sources. They have been used in the intestinal tract, blood, and the central nervous system with no side effects, and these advantages could lead to a new generation of diet pills or health care products with great development potential. This article is mainly aimed at discussing the research of obesity drug treatment with PL inhibitors and offers a brief review of related properties and the use of PL inhibitors in the field of weight loss.
Collapse
Affiliation(s)
- Tian-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Xiao-Tian Liu
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Qing-Xi Chen
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yan Shi
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Ying M, Meti MD, Xu H, Wang Y, Lin J, Wu Z, Han Q, Xu X, He Z, Hong W, Hu Z. Binding mechanism of lipase to Ligupurpuroside B extracted from Ku-Ding tea as studied by multi-spectroscopic and molecular docking methods. Int J Biol Macromol 2018; 120:1345-1352. [DOI: 10.1016/j.ijbiomac.2018.09.086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/28/2018] [Accepted: 09/14/2018] [Indexed: 10/28/2022]
|
7
|
Lin J, Xu Y, Wang Y, Huang S, Li J, Meti MD, Xu X, Hu Z, Liu J, He Z, Xu H. Dissection of binding of trypsin to its natural inhibitor Gensenoside-Rg1 using spectroscopic methods and molecular modeling. J Biomol Struct Dyn 2018; 37:4070-4079. [DOI: 10.1080/07391102.2018.1539411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jialiang Lin
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, China
| | - Yuhan Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Songyang Huang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Junwei Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Manjunath D. Meti
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xu Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Zhangli Hu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Johnson Liu
- School Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Zhendan He
- School of Medicine, Shenzhen University, Shenzhen, China
| | - Hong Xu
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
- Key Laboratory of RF Circuits and Systems of Ministry of Education, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
8
|
Meti MD, Lin J, Wang Y, Wu Z, Xu H, Xu X, Han Q, Ying M, Hu Z, He Z. Trypsin inhibition by Ligupurpuroside B as studied using spectroscopic, CD, and molecular docking techniques. J Biomol Struct Dyn 2018; 37:3379-3387. [PMID: 30213239 DOI: 10.1080/07391102.2018.1515115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
It is well known that Ligupurpuroside B is a water-soluble polyphenolic compound and used to brew bitter tea with antioxidant activities. It acted as a stimulant to the central nervous system and a diuretic (increase the excretion of urine), was used to treat painful throat and high blood pressure, and also exerted weight-loss function. In this regard, a detailed investigation on the mechanism of interaction between Ligupurpuroside B and trypsin could be of great interest to know the pharmacokinetic behavior of Ligupurpuroside B and for the design of new analogues with effective pharmacological properties. Ligupurpuroside B successfully quenched the intrinsic fluorescence of trypsin via static quenching mechanism. The binding constants (Ka) at three temperatures (288, 298, and 308 K) were 1.7841 × 104, 1.6251 × 104 and 1.5483 × 104 L mol-1, respectively. Binding constants revealed the stronger binding interaction between Ligupurpuroside B and trypsin. The number of binding sites approximated to one, indicating a single class of binding for Ligupurpuroside B in trypsin. The enzyme activity result suggested that Ligupurpuroside B can inhibit trypsin activity. Thermodynamic results revealed that both hydrogen bonds and hydrophobic interactions play main roles in stabilization of Ligupurpuroside B-trypsin complex. Circular dichroism (CD) results showed that the conformation of trypsin changed after bound to ligupurpuroside B. Molecular docking indicated that Ligupurpuroside B can enter the hydrophobic cavity of trypsin and was located near Trp215 and Tyr228 of trypsin. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manjunath D Meti
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Jialiang Lin
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Yuhan Wang
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Zhibing Wu
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Hong Xu
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Xu Xu
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Qingguo Han
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Ming Ying
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Zhangli Hu
- a Shenzhen Key Laboratory of Marine Bioresources and Ecology/Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography , Shenzhen University , Shenzhen , China.,b Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering , Shenzhen University , Shenzhen , China
| | - Zhendan He
- c School of Medicine , Shenzhen University , Shenzhen , China
| |
Collapse
|