1
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Ismail N, Ling LY, Hassan NI. Pyridine and Pyrimidine hybrids as privileged scaffolds in antimalarial drug discovery: A recent development. Bioorg Med Chem Lett 2024; 114:129992. [PMID: 39426430 DOI: 10.1016/j.bmcl.2024.129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Malaria continues to pose a significant threat to global health, which is exacerbated by the emergence of drug-resistant strains, necessitating the urgent development of new therapeutic options. Due to their substantial bioactivity in treating malaria, pyridine and pyrimidine have become the focal point of drug research. Hybrids of pyridine and pyrimidine offer a novel and promising avenue for developing effective antimalarial agents. The ability of these hybrids to overcome drug resistance is tinted, offering a potential solution to this critical obstacle in the treatment of malaria. By targeting multiple pathways, these hybrid compounds reduce the likelihood of resistance development, providing a promising strategy for combating drug-resistant strains of malaria. The review focuses on the most recent developments in 2018 in the structural optimization of pyridine and pyrimidine hybrid compounds, highlighting modifications that have been shown to improve antimalarial activity. Structure-activity studies have elucidated the essential characteristics required for potency, selectivity, and pharmacokinetics. Molecular docking and virtual screening expedite the identification of novel compounds with enhanced activity profiles. This analysis could aid in developing the most effective pyridine and pyrimidine hybrids as antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W6 UW London, United Kingdom
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Ravindar L, Hasbullah SA, Rakesh KP, Hassan NI. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. Eur J Pharm Sci 2023; 183:106365. [PMID: 36563914 DOI: 10.1016/j.ejps.2022.106365] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/28/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Malaria poses a severe public health risk and a significant economic burden in disease-endemic countries. One of the most severe issues in malaria control is the development of drug resistance in malaria parasites. The standard treatment for malaria is artemisinin-combination therapy (ACT). Nevertheless, the Plasmodium parasite's extensive resistance to prior drugs and reduced ACT efficiency necessitates novel drug discovery. The progress in discovering novel, affordable, and effective antimalarial agents is significant in combating drug resistance, and the hybrid drug concept can be used to covalently link two or more active pharmacophores that may act on multiple targets. Pyrazole and pyrazoline derivatives are considered pharmacologically necessary active heterocyclic scaffolds that possess almost all types of pharmacological activities. This review summarized recent progress in antimalarial activities of synthesized pyrazole and pyrazoline derivatives. The studies published since 2000 are included in this systematic review. This review is anticipated to be beneficial for future study and new ideas in searching for rational development strategies for more effective pyrazole and pyrazoline derivatives as antimalarial drugs.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600 Selangor, Malaysia.
| |
Collapse
|
3
|
An insight on medicinal attributes of pyrimidine scaffold: An updated review. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
Dorababu A. Pyrazolopyrimidines as attractive pharmacophores in efficient drug design: A recent update. Arch Pharm (Weinheim) 2022; 355:e2200154. [PMID: 35698212 DOI: 10.1002/ardp.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022]
Abstract
Among the menacing diseases, cancer needs the most attention as millions of people are affected by it worldwide. Genetic and environmental factors play a pivotal role in causing cancer. Although a wide range of underlying mechanisms of cancer has been discovered, efficient treatments have not been discovered to date. Additionally, diseases caused by microbes such as viruses, bacteria, protozoa, and so forth, persistently result in several deaths. Also, inflammation is a major factor that leads to several health issues. For decades, drug design has become a major part of drug discovery and development for curing various diseases. Among the large number of pharmacological agents that have been synthesized, only very few have emerged as efficient drug molecules. Most of them are heterocyclic compounds, which are promising candidates for the design of efficient drug molecules. Furthermore, fused heterocycles showed comparatively stronger pharmacological activities than monocyclic heterocycles. The literature reveals that pyrazolopyrimidines have outstanding biological activity. Hence, here, the diverse pharmacological activities shown by pyrazolopyrimidine derivatives reported in the last 5 years are collated and reviewed systematically. This review is classified into various sections focusing on anticancer, antimicrobial, anti-inflammatory, and enzyme inhibitors. Structure-activity relationships are discussed in brief, which will help researchers design potent pharmacological agents.
Collapse
Affiliation(s)
- Atukuri Dorababu
- SRMPP Government First Grade College, Huvinahadagali, Karnataka, India
| |
Collapse
|
5
|
C. S. Pinheiro L, M. Feitosa L, O. Gandi M, F. Silveira F, Boechat N. The Development of Novel Compounds Against Malaria: Quinolines, Triazolpyridines, Pyrazolopyridines and Pyrazolopyrimidines. Molecules 2019; 24:molecules24224095. [PMID: 31766184 PMCID: PMC6891514 DOI: 10.3390/molecules24224095] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/06/2019] [Accepted: 11/11/2019] [Indexed: 01/09/2023] Open
Abstract
Based on medicinal chemistry tools, new compounds for malaria treatment were designed. The scaffolds of the drugs used to treat malaria, such as chloroquine, primaquine, amodiaquine, mefloquine and sulfadoxine, were used as inspiration. We demonstrated the importance of quinoline and non-quinoline derivatives in vitro with activity against the W2 chloroquine-resistant (CQR) Plasmodium falciparum clone strain and in vivo against Plasmodium berghei-infected mouse model. Among the quinoline derivatives, new hybrids between chloroquine and sulfadoxine were designed, which gave rise to an important prototype that was more active than both chloroquine and sulfadoxine. Hybrids between chloroquine-atorvastatin and primaquine-atorvastatin were also synthesized and shown to be more potent than the parent drugs alone. Additionally, among the quinoline derivatives, new mefloquine derivatives were synthesized. Among the non-quinoline derivatives, we obtained excellent results with the triazolopyrimidine nucleus, which gave us prototype I that inspired the synthesis of new heterocycles. The pyrazolopyrimidine derivatives stood out as non-quinoline derivatives that are potent inhibitors of the P. falciparum dihydroorotate dehydrogenase (PfDHODH) enzyme. We also examined the pyrazolopyridine and pyrazolopyrimidine nuclei.
Collapse
Affiliation(s)
- Luiz C. S. Pinheiro
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
| | - Lívia M. Feitosa
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Marilia O. Gandi
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Flávia F. Silveira
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
| | - Nubia Boechat
- Departamento de Síntese de Fármacos, Instituto de Tecnologia em Fármacos, Farmanguinhos-FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro 21041-250, Brazil (L.M.F.); (M.O.G.); (F.F.S.)
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, PPGFQM, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Programa de Pós-Graduação em Química, PGQu Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Brazil
- Correspondence: ; Tel.: +55-21-3977-2464
| |
Collapse
|
6
|
|
7
|
Feitosa LM, da Silva ER, Hoelz LVB, Souza DL, Come JAASS, Cardoso-Santos C, Batista MM, Soeiro MDNC, Boechat N, Pinheiro LCS. New pyrazolopyrimidine derivatives as Leishmania amazonensis arginase inhibitors. Bioorg Med Chem 2019; 27:3061-3069. [PMID: 31176565 DOI: 10.1016/j.bmc.2019.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/10/2019] [Accepted: 05/16/2019] [Indexed: 11/26/2022]
Abstract
Arginase performs the first enzymatic step in polyamine biosynthesis in Leishmania and represents a promising target for drug development. Polyamines in Leishmania are involved in trypanothione synthesis, which neutralize the oxidative burst of reactive oxygen species (ROS) and nitric oxide (NO) that are produced by host macrophages to kill the parasite. In an attempt to synthesize arginase inhibitors, six 1-phenyl-1H-pyrazolo[3,4-d]pyrimidine derivatives with different substituents at the 4-position of the phenyl group were synthesized. All compounds were initially tested at 100 µM concentration against Leishmania amazonensis ARG (LaARG), showing inhibitory activity ranging from 36 to 74%. Two compounds, 1 (R=H) and 6 (R=CF3), showed arginase inhibition >70% and IC50 values of 12 µM and 47 µM, respectively. Thus, the kinetics of LaARG inhibition were analyzed for compounds 1 and 6 and revealed that these compounds inhibit the enzyme by an uncompetitive mechanism, showing Kis values, and dissociation constants for ternary complex enzyme-substrate-inhibitor, of 8.5 ± 0.9 µM and 29 ± 5 µM, respectively. Additionally, the molecular docking studies proposed that these two uncompetitive inhibitors interact with different LaARG binding sites, where compound 1 forms more H-bond interactions with the enzyme than compound 6. These compounds showed low activity against L. amazonensis free amastigotes obtained from mice lesions when assayed with as much as 30 µM. The maximum growth inhibition reached was between 20 and 30% after 48 h of incubation. These results suggest that this system can be promising for the design of potential antileishmanial compounds.
Collapse
Affiliation(s)
- Livia M Feitosa
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil; Programa de Pos-graduacao em Quimica, PGQu Instituto de Quimica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Edson R da Silva
- Departamento de Medicina Veterinaria, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de Sao Paulo, Pirassununga, SP, Brazil.
| | - Lucas V B Hoelz
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Danielle L Souza
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| | - Julio A A S S Come
- Programa de Pos-graduacao em Biociencia Animal, Faculdade de Zootecnia e Engenahria de alimentos, Universidade de São Paulo, Pirassununga, SP, Brazil
| | - Camila Cardoso-Santos
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Marcos M Batista
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Maria de Nazare C Soeiro
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz, IOC - FIOCRUZ, Fundacao Oswaldo Cruz, Avenida Brasil 4365, Rio de Janeiro, RJ, Brazil
| | - Nubia Boechat
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil.
| | - Luiz C S Pinheiro
- Departamento de Sintese de Farmacos, Instituto de Tecnologia em Farmacos, Farmanguinhos - FIOCRUZ, Fundação Oswaldo Cruz, Rua Sizenando Nabuco 100, Manguinhos, Rio de Janeiro, RJ 21041-250, Brazil
| |
Collapse
|