1
|
7-Aminoalkoxy-Quinazolines from Epigenetic Focused Libraries Are Potent and Selective Inhibitors of DNA Methyltransferase 1. Molecules 2022; 27:molecules27092892. [PMID: 35566242 PMCID: PMC9102847 DOI: 10.3390/molecules27092892] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/30/2022] [Indexed: 11/17/2022] Open
Abstract
Inhibitors of epigenetic writers such as DNA methyltransferases (DNMTs) are attractive compounds for epigenetic drug and probe discovery. To advance epigenetic probes and drug discovery, chemical companies are developing focused libraries for epigenetic targets. Based on a knowledge-based approach, herein we report the identification of two quinazoline-based derivatives identified in focused libraries with sub-micromolar inhibition of DNMT1 (30 and 81 nM), more potent than S-adenosylhomocysteine. Also, both compounds had a low micromolar affinity of DNMT3A and did not inhibit DNMT3B. The enzymatic inhibitory activity of DNMT1 and DNMT3A was rationalized with molecular modeling. The quinazolines reported in this work are known to have low cell toxicity and be potent inhibitors of the epigenetic target G9a. Therefore, the quinazoline-based compounds presented are attractive not only as novel potent inhibitors of DNMTs but also as dual and selective epigenetic agents targeting two families of epigenetic writers.
Collapse
|
2
|
Herrera-Vázquez FS, Matadamas-Martínez F, Aguayo-Ortiz R, Dominguez L, Ramírez-Apan T, Yépez-Mulia L, Hernández-Luis F. Design, Synthesis and Evaluation of 2,4-Diaminoquinazoline Derivatives as Potential Tubulin Polymerization Inhibitors. ChemMedChem 2020; 15:1802-1812. [PMID: 32686342 DOI: 10.1002/cmdc.202000185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/04/2020] [Indexed: 11/11/2022]
Abstract
Microtubules are highly dynamic polymers composed of α- and β-tubulin proteins that have been shown to be potential therapeutic targets for the development of anticancer drugs. Currently, a wide variety of chemically diverse agents that bind to β-tubulin have been reported. Nocodazole (NZ) and colchicine (COL) are well-known tubulin-depolymerizing agents that have close binding sites in the β-tubulin. In this study, we designed and synthesized a set of nine 2,4-diaminoquinazoline derivatives that could occupy both NZ and COL binding sites. The synthesized compounds were evaluated for their antiproliferative activities against five cancer cell lines (PC-3, HCT-15, MCF-7, MDA-MB-231, and SK-LU-1), a noncancerous one (COS-7), and peripheral blood mononuclear cells (PBMC). The effect of compounds 4 e and 4 i on tubulin organization and polymerization was analyzed on the SK-LU-1 cell line by indirect immunofluorescence, western blotting, and tubulin polymerization assays. Our results demonstrated that both compounds exert their antiproliferative activity by inhibiting tubulin polymerization. Finally, a possible binding pose of 4 i in the NZ/COL binding site was determined by using molecular docking and molecular dynamics (MD) approaches. To our knowledge, this is the first report of non-N-substituted 2,4-diaminoquinazoline derivatives with the ability to inhibit tubulin polymerization.
Collapse
Affiliation(s)
- Frida S Herrera-Vázquez
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Félix Matadamas-Martínez
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | - Rodrigo Aguayo-Ortiz
- Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Laura Dominguez
- Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Teresa Ramírez-Apan
- Instituto de Química, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| | - Lilián Yépez-Mulia
- Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, 06720, Mexico
| | | |
Collapse
|