1
|
Kumaraswamy B, Hemalatha K, Pal R, Matada GSP, Hosamani KR, Aayishamma I, Aishwarya NVSS. An insight into sustainable and green chemistry approaches for the synthesis of quinoline derivatives as anticancer agents. Eur J Med Chem 2024; 275:116561. [PMID: 38870832 DOI: 10.1016/j.ejmech.2024.116561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/12/2024] [Accepted: 05/31/2024] [Indexed: 06/15/2024]
Abstract
Quinolones, a key class of heterocyclics, are gaining popularity among organic and medicinal chemists due to their promising properties. Quinoline, with its broad spectrum of action, plays a primordial role in chemotherapy for cancer. Drugs include lenvatinib and its structural derivatives carbozantinib and bosutinib, and tipifarnib are the popular anticancer agents. Owing to the importance of quinoline, there are several classical methods for the synthesis such as, such as Gould-Jacobs, Conrad-Limpach, Camps cyclization, Skraup, Doebnervon Miller, Combes, Friedlander, Pfitzinger, and Niementowski synthesis. These methods are well-commended for developing an infinite variety of quinoline analogues. However, these procedures are associated with several drawbacks such as long reaction times, use of hazardous chemicals or stoichiometric proportions, difficulty of working up conditions, high temperatures, organic solvents, and the presence of numerous steps, all of which have an impact on the environment and the economy. As a result, researchers are working hard to develop green quinoline compounds in the hopes of making groundbreaking discoveries in the realm of cancer. In this review, we have highlighted significant research on quinoline-based compounds and their structure-activity relationship (SAR). Furthermore, because of the significant economic and environmental health and safety (EHS) concerns, more research is being dedicated to the green synthesis of quinolone derivatives. The current review offers recent advances in quinoline derivatives as anticancer agents for green synthesis using microwave, ultrasound, and one-pot synthesis. We believe that our findings will provide useful insight and inspire more green research on this framework to produce powerful and selective quinoline derivatives.
Collapse
Affiliation(s)
- B Kumaraswamy
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - K Hemalatha
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India.
| | - Ketan R Hosamani
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | - I Aayishamma
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, 560107, Karnataka, India
| | | |
Collapse
|
2
|
Li J, Zhao B, Zhang X, Dai Y, Yang N, Bao Z, Chen Y, Liu Y, Wu X. Establishment and functional characterization of immortalized rabbit dermal papilla cell lines. Anim Biotechnol 2023; 34:4050-4059. [PMID: 37652434 DOI: 10.1080/10495398.2023.2252861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Hair follicle (HF) undergo periodic growth and development in mammals, which regulated by dermal papilla cells (DPCs) are reported to play an important role in HF morphogenesis and development. However, primary DPCs have low proliferative activity, age quickly, and fresh cell isolation is both time-consuming and laborious. In this study, we introduced the SV40 large T antigen (SV40T) into dissociated early passage rabbit vibrissae DPCs with lentiviral vectors and established seven immortalized DPC lines (R-1, R-2, R-3, R-4, R-5, R-6 and R-7). These cell lines displayed early passage morphology and high alkaline phosphatase activity. RT-PCR and immunofluorescence staining showed that all the immortalized cell lines expressed the DPC markers (α-SMA, IGF1, ALPL, FGF2, BMP2 and TGFβ2), but α-SMA was only expressed well in R-3, R-4, and R-7. Furthermore, it was found that R-7 was the only line to survive beyond 50 passages. Compared to melanoma cells, R-7 did not undergo malignant transformation. Karyotyping and cell growth viability analysis illustrated that the R-7 cell line preserved the basic characteristics of primary DPCs. The R-7 DPCs established have potential application for future hair research. The study provides the theoretical basis in the cell research of HF growth and development.
Collapse
Affiliation(s)
- Jiali Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Bohao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiyu Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yingying Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Naisu Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiyuan Bao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yan Liu
- Animal Husbandry and Veterinary Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xinsheng Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
3
|
Farajollahi A, Noroozi Pesyan N, Poursattar Marjani A, Alamgholiloo H. Development of CuMn xO y (x = 2, and y = 4)-GO heterostructure for the synthesis of pyranoquinoline derivatives. Sci Rep 2023; 13:10112. [PMID: 37344493 DOI: 10.1038/s41598-023-36529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
The pyranoquinoline derivatives are synthetically important due to their biological properties. In this research, these derivatives were produced through an environmentally friendly method. This method includes the use of CuMnxOy (x = 2, and y = 4)-GO as a nanocatalyst, which is easy to produce, has excellent performance, cost-effectiveness, and recyclability among its features, and also the use of water as a green solvent. Pyranoquinolines through the one-pot, the multi-component reaction between different derivatives of aryl glyoxal, ethyl cyanoacetate, and 4-hydroxyquinoline-2(1H)-one were synthesized using nanocatalyst, K2CO3, and H2O. Also, the structure of the CuMnxOy-GO nanocatalyst was evaluated and confirmed via different analyses. The distinguishing features of this work compared to previous works are easy workup, recyclability of nanocatalyst, facile synthesis process, and provide high yields of products.
Collapse
Affiliation(s)
- Ayda Farajollahi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| | - Nader Noroozi Pesyan
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| | | | - Hassan Alamgholiloo
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
4
|
The Crystal Structure of 3-Amino-1-(4-Chlorophenyl)-9-Methoxy-1H-Benzo[f]Chromene-2-Carbonitrile: Antimicrobial Activity and Docking Studies. CRYSTALS 2022. [DOI: 10.3390/cryst12070982] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compound 3-amino-1-(4-chlorophenyl)-9-methoxy-1H-benzo[f]chromene-2-carbonitrile (4), was synthesized via the reaction of 7-methoxynaphthalen-2-ol (1), 4-chlorobenzaldehyde (2), and malononitrile (3) in an ethanolic piperidine solution under microwave irradiation. The synthesized pyran derivative 4 was asserted through spectral data and X-ray diffraction. The molecular structure of compound 4 was established unambiguously through the single crystal X-ray measurements and crystallized in the Triclinic, P-1, a = 8.7171 (4) Å, b = 10.9509 (5) Å, c = 19.5853 (9) Å, α = 78.249 (2)°, β = 89.000 (2)°, γ = 70.054 (2)°, V = 1717.88 (14) Å3, Z = 4. The target molecule has been screened for antibacterial and antifungal functionality. Compound 4 exhibited favorable antimicrobial activities that resembled the reference antimicrobial agents with an IZ range of 16–26 mm. In addition, MIC, MBC, and MFC were assessed and screened for molecule 4, revealing bactericidal and fungicidal effects. Lastly, a molecular docking analysis was addressed and conducted for this desired molecule.
Collapse
|
5
|
Bardasov IN, Alekseeva AY, Ershov OV, Mar’yasov MA. Antiproliferative Activity of 3-Cyanocoumarins and 2-Aminochromeno[2,3-b ]Pyridine-3-Carbonitriles, Derivatives of 2-Amino-4H-Chromene-3-Carbonitrile. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Development of 2'-aminospiro [pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives as non-ATP competitive Src kinase inhibitors that suppress breast cancer cell migration and proliferation. Bioorg Chem 2021; 116:105344. [PMID: 34598088 DOI: 10.1016/j.bioorg.2021.105344] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/03/2023]
Abstract
Src kinase activity controls diverse cellular functions, including cell growth, migration, adhesion, and survival. It is de-regulated in several cancers, including breast cancer, where it is highly expressed and phosphorylated. Thus, targeting Src by a small molecule is a feasible strategy for managing different breast cancer types. Several Src kinase inhibitors are available, including the FDA-approved drug (dasatinib). However, they are primarily ATP-competitive inhibitors that have been reported to lack specificity towards Src. We have a long-time interest in discovering protein kinase inhibitors that are non-competitive for ATP. In this project, three groups of 2'-aminospiro[pyrano[3,2-c]quinoline]-3'-carbonitrile derivatives were designed and synthesized, hypothesizing that small molecules with a spiro scaffold appended to a pyrano[3,2-c]quinoline analog could act as non-ATP competitive Src kinase inhibitors. 3b, 3c, and 3d inhibited Src kinase activity with IC50s of 4.9, 5.9, and 0.9 μM, respectively. At the same time, they did not impact the MDM2/p53 interaction in HEK293 cells, which has been reported to be affected by some spirocyclic compounds. 25 µM of 3b, 3c, or 3d did not inhibit the kinase activity of ERK2, JNK1, or p38-alpha in an in-vitro kinase assay. Steady-state kinetic studies for the effect of 3d on the ability of recombinant Src to phosphorylate its substrate (Srctide) revealed a non-ATP competitive inhibition mechanism. 1.6 µM of 3d was enough to diminish Src, Fak, and paxillin phosphorylation in the breast cancer cell lines MDA-MB-231 and MCF7. In the NCI screening, 3d induced broad tumor cytotoxicity for the NCI-60 cell lines, including all the breast cancer cell lines. The potency of 3b, 3c, and 3d to inhibit migration, proliferation, and colony formation of MDA-MB-231 and proliferation of MCF7 cells correlates with their potency to suppress Src kinase activity in the same cell line. Noticeably, the cell growth suppression and apoptosis induction in the tested cell lines can be attributed to the ability of the new derivatives to suppress the ERK and Akt survival pathways downstream of Src.
Collapse
|
7
|
Bhartiya P, Mumtaz S, Lim JS, Kaushik N, Lamichhane P, Nguyen LN, Jang JH, Yoon SH, Choi JJ, Kaushik NK, Choi EH. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci Rep 2021; 11:8475. [PMID: 33875781 PMCID: PMC8055702 DOI: 10.1038/s41598-021-88078-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 04/07/2021] [Indexed: 02/02/2023] Open
Abstract
Microwave (MW) radiation is increasingly being used for several biological applications. Many investigations have focused on understanding the potential influences of pulsed MW irradiation on biological solutions. The current study aimed to investigate the effects of 3.5 GHz pulsed MW radiation-irradiated liquid solutions on the survival of human cancer and normal cells. Different physiological solutions such as phosphate buffer saline, deionized water, and Dulbecco's modified Eagle medium (DMEM) for cell culture growth were irradiated with pulsed MW radiation (45 shots with the energy of 1 mJ/shot). We then evaluated physiological effects such as cell viability, metabolic activity, mitochondrial membrane potential, cell cycle, and cell death in cells treated with MW-irradiated biological solutions. As MW irradiation with power density ~ 12 kW/cm2 mainly induces reactive nitrogen oxygen species in deionized water, it altered the cell cycle, membrane potential, and cell death rates in U373MG cells due to its high electric field ~ 11 kV/cm in water. Interestingly, MW-irradiated cell culture medium and phosphate-buffered saline did not alter the cellular viability and metabolic energy of cancer and normal cells without affecting the expression of genes responsible for cell death. Taken together, MW-irradiated water can alter cellular physiology noticeably, whereas irradiated media and buffered saline solutions induce negligible or irrelevant changes that do not affect cellular health.
Collapse
Affiliation(s)
- Pradeep Bhartiya
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sohail Mumtaz
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jun Sup Lim
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Neha Kaushik
- College of Engineering, Department of Biotechnology, University of Suwon, Hwaseong, 18323, Korea
| | - Pradeep Lamichhane
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Linh Nhat Nguyen
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jung Hyun Jang
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Sang Ho Yoon
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Jin Joo Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| | - Eun Ha Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Plasma Bio Display, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897, Korea.
| |
Collapse
|
8
|
Gupta R, Luxami V, Paul K. Insights of 8-hydroxyquinolines: A novel target in medicinal chemistry. Bioorg Chem 2021; 108:104633. [PMID: 33513476 DOI: 10.1016/j.bioorg.2021.104633] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
8-Hydroxyquinoline (8-HQ) is a significant heterocyclic scaffold in organic and analytical chemistry because of the properties of chromophore and is used to detect various metal ions and anions. But from the last 2 decades, this moiety has been drawn great attention of medicinal chemists due to its significant biological activities. Synthetic modification of 8-hydroxyquinoline is under exploration on large scale to develop more potent target-based broad spectrum drug molecules for the treatment of several life-threatening diseases such as anti-cancer, HIV, neurodegenerative disorders, etc. Metal chelation properties of 8-hydroxyquinoline and its derivatives also make these potent drug candidates for the treatment of various diseases. This review comprises 8-hydroxyquinoline derivatives reported in the literature in last five years (2016-2020) and we anticipate that it will assist medicinal chemists in the synthesis of novel and pharmacologically potent agents for various therapeutic targets, mainly anti-proliferative, anti-microbial, anti-fungal and anti-viral as well as for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Rohini Gupta
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147 004, India.
| |
Collapse
|