1
|
Mahambo E, Uwamariya C, Miah M, Clementino LDC, Alvarez LCS, Di Santo Meztler GP, Trybala E, Said J, Wieske LHE, Ward JS, Rissanen K, Munissi JJE, Costa FTM, Sunnerhagen P, Bergström T, Nyandoro SS, Erdelyi M. Crotofolane Diterpenoids and Other Constituents Isolated from Croton kilwae. JOURNAL OF NATURAL PRODUCTS 2023; 86:380-389. [PMID: 36749598 PMCID: PMC9972476 DOI: 10.1021/acs.jnatprod.2c01007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Indexed: 06/18/2023]
Abstract
Six new crotofolane diterpenoids (1-6) and 13 known compounds (7-19) were isolated from the MeOH-CH2Cl2 (1:1, v/v) extracts of the leaves and stem bark of Croton kilwae. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and mass spectrometric data. The structure of crotokilwaepoxide A (1) was confirmed by single-crystal X-ray diffraction, allowing for the determination of its absolute configuration. The crude extracts and the isolated compounds were investigated for antiviral activity against respiratory syncytial virus (RSV) and human rhinovirus type-2 (HRV-2) in HEp-2 and HeLa cells, respectively, for antibacterial activity against the Gram-positive Bacillus subtilis and the Gram-negative Escherichia coli, and for antimalarial activity against the Plasmodium falciparum Dd2 strain. ent-3β,19-Dihydroxykaur-16-ene (7) and ayanin (16) displayed anti-RSV activities with IC50 values of 10.2 and 6.1 μM, respectively, while exhibiting only modest cytotoxic effects on HEp-2 cells that resulted in selectivity indices of 4.9 and 16.4. Compounds 2 and 5 exhibited modest anti-HRV-2 activity (IC50 of 44.6 μM for both compounds), while compound 16 inhibited HRV-2 with an IC50 value of 1.8 μM. Compounds 1-3 showed promising antiplasmodial activities (80-100% inhibition) at a 50 μM concentration.
Collapse
Affiliation(s)
- Emanuel
T. Mahambo
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Colores Uwamariya
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Masum Miah
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Leandro da Costa Clementino
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Luis Carlos Salazar Alvarez
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Gabriela Paula Di Santo Meztler
- Department
of Chemistry and Molecular Biology and Centre for Antibiotic Resistance
Research (CARe), University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Edward Trybala
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Joanna Said
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Lianne H. E. Wieske
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Jas S. Ward
- Department
of Chemistry, University of Jyvaskyla, Survontie 9B, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department
of Chemistry, University of Jyvaskyla, Survontie 9B, 40014 Jyväskylä, Finland
| | - Joan J. E. Munissi
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Fabio T. M. Costa
- Laboratory
of Tropical Diseases - Prof. Dr. Luiz Jacinto da Silva, Department
of Genetics, Evolution, Microbiology and Immunology, Institute of
Biology (IB), University of Campinas - UNICAMP, Campinas, 13083-970 SP, Brazil
| | - Per Sunnerhagen
- Department
of Chemistry and Molecular Biology and Centre for Antibiotic Resistance
Research (CARe), University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Tomas Bergström
- Department
of Infectious Diseases/Virology, Institute of Biomedicine, Sahlgrenska
Academy, University of Gothenburg, S-413 46 Gothenburg, Sweden
| | - Stephen S. Nyandoro
- Chemistry
Department, College of Natural and Applied Sciences, University of Dar es Salaam, P.O. Box 35061, Dar es Salaam, Tanzania
| | - Mate Erdelyi
- Department
of Chemistry − BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
2
|
Zahoor H, Watchaputi K, Hata J, Pabuprapap W, Suksamrarn A, Chua LS, Soontorngun N. Model yeast as a versatile tool to examine the antioxidant and anti-ageing potential of flavonoids, extracted from medicinal plants. Front Pharmacol 2022; 13:980066. [PMID: 36120300 PMCID: PMC9479101 DOI: 10.3389/fphar.2022.980066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
The demand for the production of herbal extracts for cosmetics, food, and health supplements, known as plant-based medicine, is rising globally. Incorporating herbal extracts could help to create higher value products due to the functional properties of bioactive compounds. Because the phytochemical composition could vary depending on the processing methods, a simple bioassay of herbal bioactive compounds is an important screening method for the purposes of functional characterization and quality assurance. As a simplified eukaryotic model, yeast serves as a versatile tool to examine functional property of bioactive compounds and to gain better understanding of fundamental cellular processes, because they share similarities with the processes in humans. In fact, aging is a well-conserved phenomenon between yeast and humans, making yeast a powerful genetic tool to examine functional properties of key compounds obtained from plant extracts. This study aimed to apply a well-established model yeast, Saccharomyces cerevisiae, to examine the antioxidant and anti-aging potential of flavonoids, extracted from medicinal plants, and to gain insight into yeast cell adaptation to oxidative stress. Some natural quercetin analogs, including morin, kaempferol, aromadendrin, and steppogenin, protected yeast cells against oxidative stress induced by acetic acid, as shown by decreased cell sensitivity. There was also a reduction in intracellular reactive oxygen species following acetic acid treatment. Using the chronological aging assay, quercetin, morin, and steppogenin could extend the lifespan of wild-type S. cerevisiae by 15%–25%. Consistent with the fact that oxidative stress is a key factor to aging, acetic acid resistance was associated with increased gene expression of TOR1, which encodes a key growth signaling kinase, and MSN2 and MSN4, which encode stress-responsive transcription factors. The addition of the antioxidant morin could counteract this increased expression, suggesting a possible modulatory role in cell signaling and the stress response of yeast. Therefore, yeast represents a versatile model organism and rapid screening tool to discover potentially rejuvenescent molecules with anti-aging and anti-oxidant potential from natural resources and to advance knowledge in the molecular study of stress and aging.
Collapse
Affiliation(s)
- Hira Zahoor
- Gene Technology Laboratory, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Kwanrutai Watchaputi
- Gene Technology Laboratory, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Janejira Hata
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Sciences, Ramkhamhaeng University, Bangkok, Thailand
| | - Wachirachai Pabuprapap
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Sciences, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Sciences, Ramkhamhaeng University, Bangkok, Thailand
| | - Lee Suan Chua
- Metabolites Profiling Laboratory, Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
| | - Nitnipa Soontorngun
- Gene Technology Laboratory, Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
- *Correspondence: Nitnipa Soontorngun,
| |
Collapse
|
3
|
Ximenez GR, Bianchin M, Carmona JMP, de Oliveira SM, Ferrarese-Filho O, Pastorini LH. Reduction of Weed Growth under the Influence of Extracts and Metabolites Isolated from Miconia spp. Molecules 2022; 27:5356. [PMID: 36080124 PMCID: PMC9458153 DOI: 10.3390/molecules27175356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
Weeds pose a problem, infesting areas and imposing competition and harvesting difficulties in agricultural systems. Studies that provide the use of alternative methods for weed control, in order to minimize negative impacts on the environment, have intensified. Native flora represents a source of unexplored metabolites with multiple applications, such as bioherbicides. Therefore, we aimed to carry out a preliminary phytochemical analysis of crude extracts and fractions of Miconia auricoma and M. ligustroides and to evaluate these and the isolated metabolites phytotoxicity on the growth of the target species. The growth bioassays were conducted with Petri dishes with lettuce, morning glory, and sourgrass seeds incubated in germination chambers. Phytochemical analysis revealed the presence of flavonoids, isolated myricetin, and a mixture of quercetin and myricetin. The results showed that seedling growth was affected in a dose-dependent manner, with the root most affected and the seedlings of the lettuce, morning glory, and sourgrass as the most sensitive species, respectively. Chloroform fractions and myricetin were the most inhibitory bioassays evaluated. The seedlings showed structural changes, such as yellowing, nonexpanded cotyledons, and less branched roots. These results indicate the phytotoxic potential of Miconia allelochemicals, since there was the appearance of abnormal seedlings and growth reduction.
Collapse
Affiliation(s)
- Gabriel Rezende Ximenez
- Programa de Pós-Graduação em Biologia Comparada, Centro de Ciências Biológicas, Departamento de Biologia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Mirelli Bianchin
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - João Marcos Parolo Carmona
- Graduação em Biotecnologia, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Silvana Maria de Oliveira
- Programa de Pós-Graduação em Química, Centro de Ciências Exatas, Departamento de Química, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Osvaldo Ferrarese-Filho
- Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Biológicas, Departamento de Biologia Celular e Genética, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| | - Lindamir Hernandez Pastorini
- Programa de Pós-Graduação em Biologia Comparada, Centro de Ciências Biológicas, Departamento de Biologia, Universidade Estadual de Maringá, Avenida Colombo 5790, Maringá 87020-900, Brazil
| |
Collapse
|
4
|
Alizadeh SR, Ebrahimzadeh MA. O-substituted quercetin derivatives: Structural classification, drug design, development, and biological activities, a review. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Mukherjee M, Rahaman M, Ray SK, Shukla PC, Dolai TK, Chakravorty N. Revisiting fetal hemoglobin inducers in beta-hemoglobinopathies: a review of natural products, conventional and combinatorial therapies. Mol Biol Rep 2021; 49:2359-2373. [PMID: 34822068 DOI: 10.1007/s11033-021-06977-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022]
Abstract
Beta-hemoglobinopathies exhibit a heterogeneous clinical picture with varying degrees of clinical severity. Pertaining to the limited treatment options available, where blood transfusion still remains the commonest mode of treatment, pharmacological induction of fetal hemoglobin (HbF) has been a lucrative therapeutic intervention. Till now more than 70 different HbF inducers have been identified. The practical usage of many pharmacological drugs has been limited due to safety concerns. Natural compounds, like Resveratrol, Ripamycin and Bergaptene, with limited cytotoxicity and high efficacy have started capturing the attention of researchers. In this review, we have summarized pharmacological drugs and bioactive compounds isolated from natural sources that have been shown to increase HbF significantly. It primarily discusses recently identified synthetic and natural compounds, their mechanism of action, and their suitable screening platforms, including high throughput drug screening technology and biosensors. It also delves into the topic of combinatorial therapy and drug repurposing for HbF induction. Overall, we aim to provide insights into where we stand in HbF induction strategies for treating β-hemoglobinopathies.
Collapse
Affiliation(s)
- Mandrita Mukherjee
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Motiur Rahaman
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Suman Kumar Ray
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Praphulla Chandra Shukla
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India
| | - Tuphan Kanti Dolai
- Department of Hematology, Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, 700014, India
| | - Nishant Chakravorty
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
6
|
Sun L, Lu B, Liu Y, Wang Q, Li G, Zhao L, Zhao C. Synthesis, characterization and antioxidant activity of quercetin derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1942059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lei Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Bo Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yandan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Longxuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
7
|
Hashemi Z, Ebrahimzadeh MA. Hemoglobin F (HbF) inducers; History, Structure and Efficacies. Mini Rev Med Chem 2021; 22:52-68. [PMID: 34036918 DOI: 10.2174/1389557521666210521221615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/03/2020] [Accepted: 03/15/2021] [Indexed: 11/22/2022]
Abstract
Inherited beta-thalassemia is a major disease caused by irregular production of hemoglobin through reducing beta-globin chains. It has been observed that increasing fetal hemoglobin (HbF) production improves symptoms in the patients. Therefore, an increase in the level of HbF has been an operative approach for treating patients with beta-thalassemia. This review represents compounds with biological activities and pharmacological properties that can promote the HBF level and therefore used in the β-thalassemia patients' therapy. Various natural products with different mechanisms of action can be helpful in this medication cure. Clinical trials were efficient in improving the signs of patients. Association of in vivo, and in vitro studies of HbF induction and γ-globin mRNA growth displays that in vitro experiments could be an indicator of the in vivo response. The current study shows that; (a) HbF inducers can be grouped in several classes based on their chemical structures and mechanism of actions; b) According to several clinical trials, well-known drugs such as hydroxyurea and decitabine are useful HbF inducers; (c) The cellular biosensor K562 carrying genes under the control of the human γ-globin and β-globin gene promoters were applied during the researches; d) New natural products and lead compounds were found based on various studies as HbF inducers.
Collapse
Affiliation(s)
- Zahra Hashemi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Ali Ebrahimzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
8
|
Trienone analogs of curcuminoids induce fetal hemoglobin synthesis via demethylation at Gγ-globin gene promoter. Sci Rep 2021; 11:8552. [PMID: 33879818 PMCID: PMC8058333 DOI: 10.1038/s41598-021-87738-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/30/2021] [Indexed: 11/28/2022] Open
Abstract
The reactivation of γ-globin chain synthesis to combine with excess free α-globin chains and form fetal hemoglobin (HbF) is an important alternative treatment for β-thalassemia. We had reported HbF induction property of natural curcuminoids, curcumin (Cur), demethoxycurcumin (DMC) and bis-demethoxycurcumin (BDMC), in erythroid progenitors. Herein, the HbF induction property of trienone analogs of the three curcuminoids in erythroleukemic K562 cell lines and primary human erythroid progenitor cells from β-thalassemia/HbE patients was examined. All three trienone analogs could induce HbF synthesis. The most potent HbF inducer in K562 cells was trienone analog of BDMC (T-BDMC) with 2.4 ± 0.2 fold increase. In addition, DNA methylation at CpG − 53, − 50 and + 6 of Gγ-globin gene promoter in K562 cells treated with the compounds including T-BDMC (9.3 ± 1.7%, 7.3 ± 1.7% and 5.3 ± 0.5%, respectively) was significantly lower than those obtained from the control cells (30.7 ± 3.8%, 25.0 ± 2.9% and 7.7 ± 0.9%, respectively P < 0.05). The trienone compounds also significantly induced HbF synthesis in β-thalassemia/HbE erythroid progenitor cells with significantly reduction in DNA methylation at CpG + 6 of Gγ-globin gene promoter. These results suggested that the curcuminoids and their three trienone analogs induced HbF synthesis by decreased DNA methylation at Gγ-globin promoter region, without effect on Aγ-globin promoter region.
Collapse
|
9
|
Nchiozem-Ngnitedem VA, Omosa LK, Bedane KG, Derese S, Spiteller M. Inhibition of Proinflammatory Cytokine Release by Flavones and Flavanones from the Leaves of Dracaena steudneri Engl. PLANTA MEDICA 2021; 87:209-217. [PMID: 33285592 DOI: 10.1055/a-1306-1368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The leaves of Dracaena steudneri yielded 6 new flavonoids-3,5,7-trihydroxy-6-methyl-3',4'-methylenedioxyflavone (1: ), 5,7-dihydroxy-3-methoxy-6-methyl-3',4'-methylenedioxyflavone (2: ), 3,5,7-trihydroxy-6-methoxy-3',4'-methylenedioxyflavone (3: ), (2S,3S)-3,7-dihydroxy-6-methoxy-3',4'-methylenedioxyflavanone (4: ), 4',5,7-trihydroxy-3,3',8-trimethoxy-6-methylflavone (5: ), (2R) 7-hydroxy-2',8-dimethoxyflavanone (6: )-together with 13 known congeners. Their structures were established using spectroscopic and spectrometric methods including NMR, CD, and HRMSn measurements. The compounds were evaluated for their anti-inflammatory potential through measurement of the levels of cytokines IL-1β, IL-2, GM-CSF, and TNF-α in the supernatant of human peripheral blood mononuclear cells stimulated by lipopolysaccharide. Flavones derivatives 1: -4: with a C-3'/4' methylenedioxy substituent led to a substantial increase in the production of IL-1β and GM-CSF out of 4 pro-inflammatory cytokines relative to LPS control. Quercetin derivatives 5, 11,: and 13: with a hydroxyl group at C-4' inhibited the production of IL-2, GM-CSF, and TNF-α. The presence of a C-2/C-3 double bond in 14: was pivotal to the significantly stronger (0.4 to 27.5% of LPS control) inhibitory effect compared to its dihydro derivative 8: (36.2 to 262.7% of LPS control) against all tested cytokines. It is important to note that the inhibitory activity of 14: was substantially higher than that of the standard drug used, ibuprofen.
Collapse
Affiliation(s)
- Vaderament-A Nchiozem-Ngnitedem
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Dortmund, Germany
| | | | | | - Solomon Derese
- Department of Chemistry, University of Nairobi, Nairobi, Kenya
| | - Michael Spiteller
- Institute of Environmental Research (INFU), Department of Chemistry and Chemical Biology, Chair of Environmental Chemistry and Analytical Chemistry, TU Dortmund, Dortmund, Germany
| |
Collapse
|