1
|
Structure–activity relationship studies on Pd176252 derivatives leading to discovery of novel GRP receptor antagonist with potent anticancer activity. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02793-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
2
|
Valipour M, Naderi N, Heidarli E, Shaki F, Motafeghi F, Talebpour Amiri F, Emami S, Irannejad H. Design, synthesis and biological evaluation of naphthalene-derived (arylalkyl)azoles containing heterocyclic linkers as new anticonvulsants: A comprehensive in silico, in vitro, and in vivo study. Eur J Pharm Sci 2021; 166:105974. [PMID: 34390829 DOI: 10.1016/j.ejps.2021.105974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
In continuation of our research to find strong and safe anticonvulsant agents, a number of (arylalkyl)azoles (AAAs) containing naphthylthiazole and naphthyloxazole scaffolds were designed and synthesized. The in vivo anticonvulsant evaluations in BALB/c mice revealed that some of them had significant anticonvulsant activity in both maximal electroshock (MES) and pentylenetetrazole (PTZ) models of epilepsy. The best profile of activity was observed with compounds containing imidazole and triazole rings (C1, C6, G1, and G6). In particular, imidazolylmethyl-thiazole C1 with median effective dose (ED50)= 7.9 mg/kg in the MES test, ED50= 27.9 mg/kg in PTZ test, and without any sign of neurotoxicity (in the rotarod test, 100 mg/kg) was the most promising compound. The patch-clamp recording was performed to study the mechanism of action of the representative compound C1 on hippocampal dentate gyrus (DG) cells. The results did not confirm any modulatory effect of C1 on the voltage-gated ion channels (VGICs) or GABAA agonism, but suggested a significant reduction of excitatory postsynaptic currents (EPSCs) frequency on hippocampal DG neurons. Sub-acute toxicity studies revealed that administration of the most active compounds (C1, C6, G1, and G6) at 100 mg/kg bw/day for two weeks did not result in any mortality or significant toxicity as evaluated by assessment of biochemical markers such as lipid peroxidation, intracellular glutathione, total antioxidant capacity, histopathological changes, and mitochondrial functions. Other pharmacological aspects of compounds including mechanistic and ADME properties were investigated computationally and/or experimentally. Molecular docking on the NMDA and AMPA targets suggested that the introduction of the heterocyclic ring in the middle of AAAs significantly affects the affinity of the compounds. The obtained results totally demonstrated that the prototype compound C1 can be considered as a new lead for the development of anticonvulsant agents.
Collapse
Affiliation(s)
- Mehdi Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nima Naderi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neuroscience Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Elmira Heidarli
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Motafeghi
- Department of Toxicology and Pharmacology, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fereshteh Talebpour Amiri
- Department of Anatomy, Faculty of Medicine, Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran; Pharmaceutical Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|