1
|
Ravindar L, Hasbullah SA, Rakesh KP, Raheem S, Ismail N, Ling LY, Hassan NI. Pyridine and Pyrimidine hybrids as privileged scaffolds in antimalarial drug discovery: A recent development. Bioorg Med Chem Lett 2024; 114:129992. [PMID: 39426430 DOI: 10.1016/j.bmcl.2024.129992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Malaria continues to pose a significant threat to global health, which is exacerbated by the emergence of drug-resistant strains, necessitating the urgent development of new therapeutic options. Due to their substantial bioactivity in treating malaria, pyridine and pyrimidine have become the focal point of drug research. Hybrids of pyridine and pyrimidine offer a novel and promising avenue for developing effective antimalarial agents. The ability of these hybrids to overcome drug resistance is tinted, offering a potential solution to this critical obstacle in the treatment of malaria. By targeting multiple pathways, these hybrid compounds reduce the likelihood of resistance development, providing a promising strategy for combating drug-resistant strains of malaria. The review focuses on the most recent developments in 2018 in the structural optimization of pyridine and pyrimidine hybrid compounds, highlighting modifications that have been shown to improve antimalarial activity. Structure-activity studies have elucidated the essential characteristics required for potency, selectivity, and pharmacokinetics. Molecular docking and virtual screening expedite the identification of novel compounds with enhanced activity profiles. This analysis could aid in developing the most effective pyridine and pyrimidine hybrids as antimalarial agents.
Collapse
Affiliation(s)
- Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - K P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Saki Raheem
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W6 UW London, United Kingdom
| | - Norzila Ismail
- Department of Pharmacology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Lau Yee Ling
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Nurul Izzaty Hassan
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Al-Wahaibi LH, Elbastawesy MAI, Abodya NE, Youssif BGM, Bräse S, Shabaan SN, Sayed GH, Anwer KE. New Pyrazole/Pyrimidine-Based Scaffolds as Inhibitors of Heat Shock Protein 90 Endowed with Apoptotic Anti-Breast Cancer Activity. Pharmaceuticals (Basel) 2024; 17:1284. [PMID: 39458925 PMCID: PMC11510237 DOI: 10.3390/ph17101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Supported by a comparative study between conventional, grinding, and microwave techniques, a mild and versatile method based on the [1 + 3] cycloaddition of 2-((3-nitrophenyl)diazenyl)malononitrile to tether pyrazole and pyrimidine derivatives in good yields was used. Methods: The newly synthesized compounds were analyzed with IR, 13C NMR, 1H NMR, mass, and elemental analysis methods. The products show interesting precursors for their antiproliferative anti-breast cancer activity. Results: Pyrimidine-containing scaffold compounds 9 and 10 were the most active, achieving IC50 = 26.07 and 4.72 µM against the breast cancer MCF-7 cell line, and 10.64 and 7.64 µM against breast cancer MDA-MB231-tested cell lines, respectively. Also, compounds 9 and 10 showed a remarkable inhibitory activity against the Hsp90 protein with IC50 values of 2.44 and 7.30 µM, respectively, in comparison to the reference novobiocin (IC50 = 1.14 µM). Moreover, there were possible apoptosis and cell cycle arrest in the G1 phase for both tested compounds (supported by CD1, caspase-3,8, BAX, and Bcl-2 studies). Also, the binding interactions of compound 9 were confirmed through molecular docking, and simulation studies displayed a complete overlay into the Hsp90 protein pocket. Conclusions: Compounds 9 and 10 may have apoptotic antiproliferative action as Hsp90 inhibitors.
Collapse
Affiliation(s)
- Lamya H. Al-Wahaibi
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohammed A. I. Elbastawesy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt;
| | - Nader E. Abodya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Bahaa G. M. Youssif
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Stefan Bräse
- Institute of Biological and Chemical Systems, IBCS-FMS, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Sara N. Shabaan
- Department of Chemistry, Faculty of Science (Girls), Al-Azhar University, Nasr City, Cairo 11754, Egypt;
| | - Galal H. Sayed
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| | - Kurls E. Anwer
- Heterocyclic Synthesis Lab., Chemistry Department, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt; (G.H.S.); (K.E.A.)
| |
Collapse
|
3
|
Kamau SW, Ngugi MP, Mwitari PG, Njeru SN. Network pharmacology, molecular docking and experimental approaches of the anti-proliferative effects of Rhamnus prinoides ethyl-acetate extract in cervical cancer cells. Heliyon 2024; 10:e37324. [PMID: 39290290 PMCID: PMC11407055 DOI: 10.1016/j.heliyon.2024.e37324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024] Open
Abstract
Background Cervical cancer, one of the lethal cancers among women, is a challenging disease to treat. The current therapies often come with severe side effects and the risk of resistance development. Traditional herbal medicine, with its potential to offer effective and less toxic options, is a promising avenue. This study was undertaken to investigate the potential of Rhamnus prinoides (R. prinoides) root bark extracts in selectively inhibiting the proliferation of cervical cancer cells, using the HeLa cell line as an in vitro model. Methods R. prinoides plant extracts were first screened at a fixed concentration of 200 μg/ml to determine the active extract. The selective anti-proliferative activity of the active extract was evaluated in a concentration dilution assay using the (3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide) MTT assay on cancerous (HeLa) cells and non-cancerous (Vero) cells to determine the half-maximal inhibitory (IC50) and half-cytotoxic concentrations (CC50), respectively. Functional assays on cell morphology (by microscopy), cell migration (wound healing assay) and cell cycle (by flow cytometry) were also conducted. The active extract was analyzed using Gas Chromatography/Mass Spectrometry (GC/MS) to determine any compounds it contained. Following identification of possible gene targets by network pharmacology, the genes were validated by molecular docking and Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR). Results The ethyl acetate extract of R. prinoides (EARP), the most active extract, selectively inhibited the growth of cervical cancer cells, their migration and induced cell cycle arrest at the S phase. In silico analysis revealed that squalene, 3,3a,6,6-tetramethyl-4,5,5a,7,8,9-hexahydro-1H-cyclopenta[i]indene and Olean-12-en-3.beta.-ol, acetate showed acceptable drug-like characteristics and may be partly attributed to the bioactivity demonstrated and the deregulation of the mRNA expression of AKT1, NF-κB, p53, Bax, Bcl-2, and Er-b-B2. Conclusion This study, for the first time, demonstrates the anti-proliferation effects of EARP and forms a firm foundation for further drug development studies.
Collapse
Affiliation(s)
- Sally Wambui Kamau
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Kenya
| | - Mathew Piero Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Kenya
| | - Peter Githaiga Mwitari
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| | - Sospeter Ngoci Njeru
- Center for Traditional Medicine and Drug Research, Kenya Medical Research Institute, Kenya
| |
Collapse
|
4
|
Xu Y, Liang X, Hyun CG. Discovery of Indole-Thiourea Derivatives as Tyrosinase Inhibitors: Synthesis, Biological Evaluation, Kinetic Studies, and In Silico Analysis. Int J Mol Sci 2024; 25:9636. [PMID: 39273583 PMCID: PMC11394742 DOI: 10.3390/ijms25179636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Tyrosinase, a key enzyme in melanin synthesis, represents a crucial therapeutic target for hyperpigmentation disorders due to excessive melanin production. This study aimed to design and evaluate a series of indole-thiourea derivatives by conjugating thiosemicarbazones with strong tyrosinase inhibitory activity to indole. Among these derivatives, compound 4b demonstrated tyrosinase inhibitory activity with an IC50 of 5.9 ± 2.47 μM, outperforming kojic acid (IC50 = 16.4 ± 3.53 μM). Kinetic studies using Lineweaver-Burk plots confirmed competitive inhibition by compound 4b. Its favorable ADMET and drug-likeness properties make compound 4b a promising therapeutic candidate with a reduced risk of toxicity. Molecular docking revealed that the compounds bind strongly to mushroom tyrosinase (mTYR) and human tyrosinase-related protein 1 (TYRP1), with compound 4b showing superior binding energies of -7.0 kcal/mol (mTYR) and -6.5 kcal/mol (TYRP1), surpassing both kojic acid and tropolone. Molecular dynamics simulations demonstrated the stability of the mTYR-4b complex with low RMSD and RMSF and consistent Rg and SASA values. Persistent strong hydrogen bonds with mTYR, along with favorable Gibbs free energy and MM/PBSA calculations (-19.37 kcal/mol), further support stable protein-ligand interactions. Overall, compound 4b demonstrated strong tyrosinase inhibition and favorable pharmacokinetics, highlighting its potential for treating pigmentary disorders.
Collapse
Affiliation(s)
- Yang Xu
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Xuhui Liang
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang-Gu Hyun
- Jeju Inside Agency and Cosmetic Science Center, Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Republic of Korea
- Department of Beauty and Cosmetology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
5
|
Bhatnagar A, Pemawat G. Anticancer and Antibacterial Activeness of Fused Pyrimidines: Newfangled Updates. Bioorg Chem 2024; 153:107780. [PMID: 39260159 DOI: 10.1016/j.bioorg.2024.107780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Pyrimidine-based heterocyclic compounds are garnering substantial interest due to their essential role as a class of natural and synthetic molecules. These compounds show a diverse array of biologically relevant activities, making them highly prospective candidates for clinical translation as therapeutic agents in combating various diseases. Pyrimidine derivatives and their fused analogues, such as thienopyrimidines, pyrazolopyrimidines, pyridopyrimidines, and pyrimidopyrimidines, hold immense possibility in both anticancer and antibacterial research. These compounds exhibit notable efficacy by targeting protein kinases, which are crucial enzymes regulating fundamental cellular processes like metabolism, migration, division, and growth. Through enzyme inhibition, these derivatives disrupt key cellular signaling pathways, thereby affecting critical cellular functions and viability. The advantage lies in the ubiquity of the pyrimidine structure across various natural compounds, enabling interactions with enzymes, genetic material, and cellular components pivotal for chemical and biological processes. This interaction plays a central role in modulating vital biological activities, making pyrimidine-containing compounds indispensable in drug discovery. In the realm of anticancer therapy, these compounds strategically target key proteins like EGFR, important for aberrant cell growth. Fused pyrimidine motifs, exemplified by various drugs, are designed to inhibit EGFR, thereby impeding tumor progression. Moreover, these compounds influence potent antibacterial activity, interfering with microbial growth through mechanisms ranging from DNA replication inhibition to other vital cellular functions. This dual activity, targeting both cancer cells and microbial pathogens, underscores the versatility and potential of pyrimidine derivatives in medical applications. This review provides insights into the structural characteristics, synthesis methods, and significant medicinal applications of fused pyrimidine derivatives, highlighting their double role in combating cancer and bacterial infections.
Collapse
Affiliation(s)
- Ayushi Bhatnagar
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University, Udaipur, Rajasthan, India 313001.
| |
Collapse
|
6
|
Gopireddy SR, Panwar V, Sarkar A, Jain M, Tejaswini KB, Chandrasekhar KB, Kumar D. Synthesis, Evaluation and Docking Studies of Disubstituted N-Heterocyclic Derivatives as Anticancer Agents. Chem Biodivers 2024:e202401010. [PMID: 39175307 DOI: 10.1002/cbdv.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Cancer is a chronic disease reported with alarming rates of mortalities every year. Herein, we reported the synthesis of nitrogen based novel heterocyclic disubstituted derivatives and evaluated them against L929 and A549 cell lines using MTT assay. Among all, 6a2 and 6c1 were significantly active against L929 with IC50 value of 2.61±9.58 and 2.64±8.97 μg/mL respectively. Compounds 6a2 and 6c1 were also active against A549 with IC50 value of 2.36±9.20 and 2.43±6.28 μg/mL respectively and were found to be more potent than the standard drug Doxorubicin. A molecular docking study of the active compounds was also done against EGFR, conferring good binding affinity and binding interactions. Further biological investigations may provide valuable insights towards exploring the therapeutic potential of the active compounds in future.
Collapse
Affiliation(s)
- Sreenivasulu Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh, 515002, India
| | - Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., 173 229, India
| | - Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | | | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., 173 229, India
| |
Collapse
|
7
|
Vanga MK, Bhukya R, Thumma V, Tamalapakula V, Boddu LS, Manga V. Antioxidant and Antimicrobial Activities of 4H-Chromene Based Indole-Pyrimidine Hybrids: Synthesis and Molecular Docking Studies. Chem Biodivers 2024:e202401583. [PMID: 39133616 DOI: 10.1002/cbdv.202401583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 10/11/2024]
Abstract
A series of 4H-Chromene Based Indole-Pyrimidine Hybrids synthesized using simple and efficient multicomponent reaction. The title molecules were evaluated for their invitro antioxidant and antimicrobial activities. Compounds 8 g containing bromo substituted naphthalene displayed potent antioxidant activity with IC50 value of 1.09±0.34 μM and 1.10±0.36 μM. Compound 10 a, a 4-methylphenyl derivative presented potent activity with antioxidant activity with IC50 value of 1.29±0.35 μM and 1.43±0.38 μM. Subsequently, compounds 8 a, 8 b, 8 d and 10 g had shown prominent percentage of inhibition and derived effective IC50 values in comparison to reference drug Ascorbic Acid. The invitro antimicrobial activity carried out against two gram positive and two gram-negative bacteria, and two fungal strains using Ampicillin and Itraconazole as refence drugs. Compound 10 f exhibited exceptional efficacy against all types of bacterial and fungal strains compared to Ampicillin and Itraconazole, compounds 8 e and 8 g showed activity against bacterial strains whereas compound 10 g exhibited the most effective zone of inhibition against fungal strains. The molecular docking study against crystal structure of NADPH oxidase obtained supporting docking scores and showed notable binding interactions such as H-bond and hydrophobic.
Collapse
Affiliation(s)
- Murali Krishna Vanga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Rambabu Bhukya
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
| | - Vishnu Thumma
- Department of Sciences and Humanities, Matrusri Engineering College, Hyderabad, 500059, Telangana, India
| | - Vani Tamalapakula
- University College of Technology, Osmania University, Hyderabad, Telangana, 500007, India
| | - Lakshmi Satya Boddu
- Department of Pharmaceutics, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, Telangana, 502313, India
| | - Vijjulatha Manga
- Department of Chemistry, Osmania University, Hyderabad, 500007, Telangana, India
- Telangana Mahila Viswavidyalayam, Hyderabad, Hyderabad, Telangana, 500095, India
| |
Collapse
|
8
|
Ghoneim MM, Abdelgawad MA, Elkanzi NAA, Parambi DGT, Alsalahat I, Farouk A, Bakr RB. A literature review on pharmacological aspects, docking studies, and synthetic approaches of quinazoline and quinazolinone derivatives. Arch Pharm (Weinheim) 2024; 357:e2400057. [PMID: 38775630 DOI: 10.1002/ardp.202400057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 08/06/2024]
Abstract
Quinazoline and quinazolinone derivatives piqued medicinal chemistry interest in developing novel drug candidates owing to their pharmacological potential. They are important chemicals for the synthesis of a variety of physiologically significant and pharmacologically useful molecules. Quinazoline and quinazolinone derivatives have anticancer, anti-inflammatory, antidiabetic, anticonvulsant, antiviral, and antimicrobial potential. The increased understanding of quinazoline and quinazolinone derivatives in biological activities provides opportunities for new medicinal products. The present review focuses on novel advances in the synthesis of these important scaffolds and other medicinal aspects involving drug design, structure-activity relationship, and action mechanisms of quinazoline and quinazolinone derivatives to help in the development of new quinazoline and quinazolinone derivatives.
Collapse
Affiliation(s)
- Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Nadia A A Elkanzi
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | | | - Izzeddin Alsalahat
- UK Dementia Research Institute Cardiff, School of Medicine, Cardiff University, Cardiff, UK
| | - Amr Farouk
- Flavour and Aroma Chemistry Department, National Research Centre, Cairo, Dokki, Egypt
| | - Rania B Bakr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
9
|
Xu Z, Wang L, Hu H. Current scenario of fused pyrimidines with in vivo anticancer therapeutic potential. Arch Pharm (Weinheim) 2024; 357:e2400202. [PMID: 38752780 DOI: 10.1002/ardp.202400202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/06/2024]
Abstract
Cancer, characterized by uncontrolled cell growth and metastasis, is responsible for nearly one in six deaths and represents a severe threat to public health worldwide. Chemotherapy can substantially improve the quality of life and survival of patients with cancer, but anticancer chemotherapeutics are associated with a range of adverse effects. Moreover, almost all currently available anticancer chemotherapeutics could develop drug resistance over a period of time of application in cancer patients and ultimately lead to cancer relapse and death in 90% of patients, creating an urgent need to develop new anticancer agents. Fused pyrimidines trait the inextricable part of DNA and RNA and are vital in numerous biological processes. Fused pyrimidines can act on various biological cancer targets and have the potential to address drug resistance. In addition, more than 20 fused pyrimidines have already been approved for clinical treatment of different cancers and occupy a prominent place in the current therapeutic arsenal, revealing that fused pyrimidines are privileged scaffolds for the development of novel anticancer chemotherapeutics. The purpose of this review is to summarize the current scenario of fused pyrimidines with in vivo anticancer therapeutic potential along with their acute toxicity, metabolic profiles as well as pharmacokinetic properties, toxicity and mechanisms of action developed from 2020 to the present to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute, Huanghuai University, Zhumadian, Henan, People's Republic of China
| | - Li Wang
- Zhumadian Agriculture International Cooperation and Exchange Center, Zhumadian, Henan, People's Republic of China
| | - Hongyan Hu
- Zhumadian Aquatic Technology Promotion Station, Zhumadian, Henan, People's Republic of China
| |
Collapse
|
10
|
Binjawhar DN, Katouah HA, Alshaye NA, Alharthi J, Alsharif G, Elsaid FG, Fayad E, Abu Almaaty AH. Synthesis and biological research of new imidazolone-sulphonamide-pyrimidine hybrids as potential EGFR-TK inhibitors and apoptosis-inducing agents. RSC Adv 2024; 14:20120-20129. [PMID: 38915323 PMCID: PMC11194663 DOI: 10.1039/d4ra03157a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/09/2024] [Indexed: 06/26/2024] Open
Abstract
Development of new effective EGFR-targeted antitumor agents is needed because of their clinical significance. A new series of imidazolone-sulphonamide-pyrimidine hybrids was designed and synthesized as modified analogs of some reported EGFR inhibitors. The cytotoxic activity of all the synthesized hybrids was investigated against the breast MCF-7 cancerous cell line using doxorubicin (Dox) as a positive control. 4-(Furan-2-ylmethylene)imidazolone-sulphonamide-pyrimidine 6b had the best potent activity against MCF-7 cells with IC50 result of 1.05 μM, which was better than Dox (IC50 = 1.91 μM). In addition, mechanistic studies revealed the ability of compounds 5g, 5h and 6b to inhibit EGFR kinase. Cell cycle analysis revealed that compound 6b can halt MCF-7 cells at the G1 phase with a concomitant decrease in cellular percentage at the S and G2/M phases. This compound produced a noticeable rise in the proportion of apoptotic cells with regard to the untreated control. Furthermore, the effects of hybrid 6b on the expression levels of pro-apoptotic Bax and pro-survival Bcl2 were assessed. The results showed that this compound upregulated the level of Bax expression as well as declined the expression value of Bcl-2 with regard to the untreated control.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, College of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Najla A Alshaye
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University P.O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Jawaher Alharthi
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ghadi Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud Bin Abdulaziz University for Health Sciences P.O.Box 9515 Jeddah 21423 Saudi Arabia
- Department of Biomedical Research, King Abdullah International Medical Research Center 21423 Jeddah Saudi Arabia
| | - Fahmy G Elsaid
- Department of Biology, College of Science, King Khalid University PO Box 960 Abha Asir 61421 Saudi Arabia
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Ali H Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University Port Said 42526 Egypt
| |
Collapse
|
11
|
Bakr RB, El Azab IH, Elkanzi NAA. Construction and Docking Studies of Novel Pyrimido[4,5-b]quinolines as Antimicrobial Agents. Chem Biodivers 2024; 21:e202400200. [PMID: 38570192 DOI: 10.1002/cbdv.202400200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/05/2024]
Abstract
In order to develop novel antimicrobial agents, we prepared quinoline bearing pyrimidine analogues 2-7, 8 a-d and 9 a-d and their structures were elucidated by spectroscopic techniques. Furthermore, our second aim was to predict the interactions between the active compounds and enzymes (DNA gyrase and DHFR). In this work, fourteen pyrimido[4,5-b]quinoline derivatives were prepared and assessed for their antimicrobial potential by estimating zone of inhibition. All the screened candidates displayed antibacterial potential with zone of inhibition range of 9-24 mm compared with ampicillin (20-25 mm) as a reference drug. Moreover, the target derivatives 2 (ZI=16), 9 c (ZI=17 mm) and 9 d (ZI=16 mm) recorded higher antifungal activity against C. albicans to that exhibited by the antifungal drug amphotericin B (ZI=15 mm). Finally, the most potent pyrimidoquinoline compounds (2, 3, 8 c, 8 d, 9 c and 9 d) were docked inside DHFR and DNA gyrase active sites and they recorded excellent fitting within the active regions of DNA gyrase and DHFR. These outcomes revealed us that compounds (2, 3, 8 c, 8 d, 9 c and 9 d) could be lead compounds to discover novel antibacterial candidates.
Collapse
Affiliation(s)
- Rania B Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Islam H El Azab
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box: 11099, 21944, Taif, Saudi Arabia
| | - Nadia A A Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
- Chemistry Department, Faculty of Science, Aswan University, P.O. Box: 81528, Aswan, Egypt
| |
Collapse
|
12
|
Wang T, Gao Y, Wu F, Luo L, Ma J, Hu Y. Coumarin-furo[2,3- d]pyrimidone hybrid molecules targeting human liver cancer cells: synthesis, anticancer effect, EGFR inhibition and molecular docking studies. RSC Med Chem 2024; 15:1565-1577. [PMID: 38784474 PMCID: PMC11110736 DOI: 10.1039/d3md00668a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 03/16/2024] [Indexed: 05/25/2024] Open
Abstract
The design, synthesis and investigation of antitumor activities of some coumarin-furo[2,3-d]pyrimidone hybrid molecules are reported. In vitro, HepG2 cells were used to investigate the cytotoxicity of 6a-n and 10a-n. The results demonstrated that coupling a furopyrimidone scaffold with coumarin through a hydrazide linker can effectively improve their synergistic anticancer activity. The coumarin-furo[2,3-d]pyrimidone combination 10a exhibited significant inhibitory activity against HepG2 cells with IC50 = 7.72 ± 1.56 μM, which is better than those of gefitinib and sorafenib. It is worth mentioning that the coumarin-furo[2,3-d]pyrimidone combination 10a showed excellent inhibition of the EGFR enzymatic activity with IC50 = 1.53 μM and 90% inhibition at 10 μM concentration. In silico investigation predicts the possibility of direct binding between the new coumarin-furo[2,3-d]pyrimidone hybrid molecules and the EGFR. The results suggest that coumarin-furo[2,3-d]pyrimidone hybrid molecules are potential antitumor agents targeting human liver cancer cells.
Collapse
Affiliation(s)
- Tianshuai Wang
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yumeng Gao
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Fengxu Wu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Lun Luo
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Junkai Ma
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| | - Yanggen Hu
- School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
- Hubei Key Lab of Wudang Local Chinese Medicine Research, School of Pharmacy, Hubei University of Medicine Shiyan 442000 Hubei China
| |
Collapse
|
13
|
Zhang P, Shi C, Dong T, Song J, Du G. The anticancer therapeutic potential of pyrimidine-sulfonamide hybrids. Future Med Chem 2024; 16:905-924. [PMID: 38624011 PMCID: PMC11249161 DOI: 10.4155/fmc-2024-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/27/2024] [Indexed: 04/17/2024] Open
Abstract
Cancer as a devastating malignancy, seriously threatens human life and health, but most chemotherapeutics have long been criticized for unsatisfactory therapeutic efficacy due to drug resistance and severe off-target toxicity. Pyrimidines, including fused pyrimidines, are privileged scaffolds for various biological cancer targets and are the most important class of metalloenzyme carbonic anhydrase inhibitors. Pyrimidine-sulfonamide hybrids can act on different targets in cancer cells simultaneously and possess potent activity against various cancers, revealing that hybridization of pyrimidine with sulfonamide is a promising approach to generate novel effective anticancer candidates. This review aims to summarize the recent progress of pyrimidine-sulfonamide hybrids with anticancer potential, covering papers published from 2020 to present, to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Peng Zhang
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Congcong Shi
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Tongbao Dong
- Zibo Vocational Institute College of Medical Technology, Zibo, Shandong Province, 255000, PR China
| | - Juntao Song
- Hematology & Oncology Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| | - Gang Du
- Emergency Intensive Care Medicine Department, Zibo 148 Hospital, China RongTong Medical Healthcare Group Co. Ltd, Zibo, Shandong Province, 255000, PR China
| |
Collapse
|
14
|
Dhiwar PS, Purawarga Matada GS, Pal R, Singh E, Ghara A, Maji L, Sengupta S, Andhale G. An assessment of EGFR and HER2 inhibitors with structure activity relationship of fused pyrimidine derivatives for breast cancer: a brief review. J Biomol Struct Dyn 2024; 42:1564-1581. [PMID: 37158086 DOI: 10.1080/07391102.2023.2204351] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/30/2023] [Indexed: 05/10/2023]
Abstract
Epidermal growth factor receptor (EGFR) and its subtype human epidermal growth factor receptor 2 (HER2) gets activated when its endogenous ligand(s) bind to its ATP binding site of target receptors. In breast cancer (BC), EGFR and HER2 are two proteins are overexpressed which leads to overexpression of cells proliferation and decreases cell death/apoptosis. Pyrimidine is one of the most widely studied heterocyclic scaffolds for EGFR as well as HER2 inhibition. We gather some remarkable results for fused-pyrimidine derivatives on various cancerous cell lines (in-vitro) and animal (in-vivo) evaluation to highlight their potency. The heterocyclic (five, six-membered, etc.) moieties which are coupled with pyrimidine moiety are potent against EGFR and HER2 inhibitions. Hence structure-activity relationship (SAR) plays important role in study of heterocyclic moiety along pyrimidine and effects of substituents, groups for increase or decrease in the cancerous activity and toxicity. By thoughtful of fused pyrimidines SAR study, it facilitates in receiving excellent overview of the compounds by concerning of efficacy and potential summary for future EGFR inhibitors. Furthermore, we studied the in-silico interactions of synthesized compounds to evaluate binding affinity towards the key amino acids..Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prasad Sanjay Dhiwar
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | | | - Rohit Pal
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ekta Singh
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Abhishek Ghara
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Lalmohan Maji
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Sindhuja Sengupta
- Intergrated drug discovery center, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, India
| | - Ganesh Andhale
- Department of Pharmaceutical Chemistry, Alard College of Pharmacy, Pune, India
| |
Collapse
|
15
|
Dai H, Zhang S, Zheng X, Luo Z, Chen H, Yao X. Advances in β-Diketocyclisation of Curcumin Derivatives and their Antitumor Activity. Chem Biodivers 2024; 21:e202301556. [PMID: 38095134 DOI: 10.1002/cbdv.202301556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/10/2023] [Indexed: 01/16/2024]
Abstract
Curcumin, derived from the popular spice turmeric, is a pharmacologically active polyphenol. Curcumin's therapeutic activity has been extensively studied in recent decades, with reports implicating curcumin in many biological activities, particularly, its significant anticancer activity. However, its potential as an oral administration product is hampered by poor bioavailability, which is associated with a variety of factors, including low water solubility, poor intestinal permeability, instability, and degradation at alkaline pH. To improve its bioavailability, modifying β-diketone curcumin with heterocycles, such as pyrazole, isoxazole and triazole is a powerful strategy. Derivatives are synthesized while maintaining the basic skeleton of curcumin. The β-diketone cyclized curcumin derivatives are regulators of multiple molecular targets, which play vital roles in a variety of cellular pathways. In some literatures, structurally modified curcumin derivatives have been compared with curcumin, and the former has enhanced biological activity, improved water solubility and stability. Therefore, the scope of this review is to report the most recently synthesized heterocyclic derivatives and to classify them according to their chemical structures. Several of the most important and effective compounds are reviewed by introducing different active groups into the β-diketone position to achieve better therapeutic efficacy and bioavailability.
Collapse
Affiliation(s)
- Hailong Dai
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Si Zhang
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Xing Zheng
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Third ZhongyiShan Road, Changsha, Hunan, 410004, China
| | - Zhongqin Luo
- Shaoyang Hospital of TCM, No. 631, Dongda Road, Shaoyang, Hunan, 422000, China
| | - Hongfei Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hengyang Medicinal School, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
16
|
Pan Y, Hou H, Zhou B, Gao J, Gao F. Hydroxamic acid hybrids: Histone deacetylase inhibitors with anticancer therapeutic potency. Eur J Med Chem 2023; 262:115879. [PMID: 37875056 DOI: 10.1016/j.ejmech.2023.115879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Histone deacetylases (HDACs), a class of enzymes responsible for the removal of acetyl functional groups from the lysine residues in the amino-terminal tails of core histones, play a critical role in the modulation of chromatin architecture and the regulation of gene expression. Dysregulation of HDAC expression has been closely associated with the development of various cancers. Histone deacetylase inhibitors (HDACis) could regulate diverse cellular pathways, cause cell cycle arrest, and promote programmed cell death, making them promising avenues for cancer therapy with potent efficacy and favorable toxicity profiles. Hybrid molecules incorporating two or more pharmacophores in one single molecule, have the potential to simultaneously inhibit two distinct cancer targets, potentially overcome drug resistance and minimize drug-drug interactions. Notably, hydroxamic acid hybrids, exemplified by fimepinostat and tinostamustine as potential HDACis, could exert the anticancer effects through induction of apoptosis, differentiation, and growth arrest in cancer cells, representing useful scaffolds for the discovery of novel HDACis. The purpose of this review is to summarize the current scenario of hydroxamic acid hybrids as HDACis with anticancer therapeutic potential developed since 2020 to facilitate further rational exploitation of more effective candidates.
Collapse
Affiliation(s)
- Yuan Pan
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Haodong Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Bo Zhou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingyue Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
17
|
Alkubaisi BO, Aljobowry R, Ali SM, Sultan S, Zaraei SO, Ravi A, Al-Tel TH, El-Gamal MI. The latest perspectives of small molecules FMS kinase inhibitors. Eur J Med Chem 2023; 261:115796. [PMID: 37708796 DOI: 10.1016/j.ejmech.2023.115796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023]
Abstract
FMS kinase is a type III tyrosine kinase receptor that plays a central role in the pathophysiology and management of several diseases, including a range of cancer types, inflammatory disorders, neurodegenerative disorders, and bone disorders among others. In this review, the pathophysiological pathways of FMS kinase in different diseases and the recent developments of its monoclonal antibodies and inhibitors during the last five years are discussed. The biological and biochemical features of these inhibitors, including binding interactions, structure-activity relationships (SAR), selectivity, and potencies are discussed. The focus of this article is on the compounds that are promising leads and undergoing advanced clinical investigations, as well as on those that received FDA approval. In this article, we attempt to classify the reviewed FMS inhibitors according to their core chemical structure including pyridine, pyrrolopyridine, pyrazolopyridine, quinoline, and pyrimidine derivatives.
Collapse
Affiliation(s)
- Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Raya Aljobowry
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Salma M Ali
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Sara Sultan
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
18
|
Aljohani AKB, El Zaloa WAZ, Alswah M, Seleem MA, Elsebaei MM, Bayoumi AH, El-Morsy AM, Almaghrabi M, Awaji AA, Hammad A, Alsulaimany M, Ahmed HEA. Development of Novel Class of Phenylpyrazolo[3,4- d]pyrimidine-Based Analogs with Potent Anticancer Activity and Multitarget Enzyme Inhibition Supported by Docking Studies. Int J Mol Sci 2023; 24:15026. [PMID: 37834474 PMCID: PMC10573254 DOI: 10.3390/ijms241915026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Phenylpyrazolo[3,4-d]pyrimidine is considered a milestone scaffold known to possess various biological activities such as antiparasitic, antifungal, antimicrobial, and antiproliferative activities. In addition, the urgent need for selective and potent novel anticancer agents represents a major route in the drug discovery process. Herein, new aryl analogs were synthesized and evaluated for their anticancer effects on a panel of cancer cell lines: MCF-7, HCT116, and HePG-2. Some of these compounds showed potent cytotoxicity, with variable degrees of potency and cell line selectivity in antiproliferative assays with low resistance. As the analogs carry the pyrazolopyrimidine scaffold, which looks structurally very similar to tyrosine and receptor kinase inhibitors, the potent compounds were evaluated for their inhibitory effects on three essential cancer targets: EGFRWT, EGFRT790M, VGFR2, and Top-II. The data obtained revealed that most of these compounds were potent, with variable degrees of target selectivity and dual EGFR/VGFR2 inhibitors at the IC50 value range, i.e., 0.3-24 µM. Among these, compound 5i was the most potent non-selective dual EGFR/VGFR2 inhibitor, with inhibitory concentrations of 0.3 and 7.60 µM, respectively. When 5i was tested in an MCF-7 model, it effectively inhibited tumor growth, strongly induced cancer cell apoptosis, inhibited cell migration, and suppressed cell cycle progression leading to DNA fragmentation. Molecular docking studies were performed to explore the binding mode and mechanism of such compounds on protein targets and mapped with reference ligands. The results of our studies indicate that the newly discovered phenylpyrazolo[3,4-d]pyrimidine-based multitarget inhibitors have significant potential for anticancer treatment.
Collapse
Affiliation(s)
- Ahmed K. B. Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Waheed Ali Zaki El Zaloa
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed Alswah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed A. Seleem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Mohamed M. Elsebaei
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ashraf H. Bayoumi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Ahmed M. El-Morsy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
- Pharmaceutical Chemistry Department, College of Pharmacy, The Islamic University, Najaf 54001, Iraq
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Aeshah A. Awaji
- Department of Biology, Faculty of Science, University College of Taymaa, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ali Hammad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, College of Pharmacy, Taibah University, Al-Madinah Al-Munawarah 41477, Saudi Arabia; (A.K.B.A.); (M.A.); (M.A.)
| | - Hany E. A. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt (M.A.S.); (M.M.E.); (A.H.B.); (A.M.E.-M.); (A.H.)
| |
Collapse
|
19
|
Badran MM, Abbas SH, Fujita M, Abdel-Aziz M. Harnessing pyrimidine as a building block for histone deacetylase inhibitors. Arch Pharm (Weinheim) 2023; 356:e2300208. [PMID: 37462396 DOI: 10.1002/ardp.202300208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/08/2023] [Accepted: 06/20/2023] [Indexed: 10/06/2023]
Abstract
Histone deacetylase (HDAC) inhibitors are well-established multifaceted bioactive agents against tumors and neurodegenerative disorders. Pyrimidine and its fused and substituted derivatives were employed as a surface recognition moiety of HDAC inhibitors. De facto, the literature was loaded with different success stories of pyrimidine-based HDAC inhibitors that garnered much interest. Provoked by our continuous interest in HDAC inhibitors, we summarized and elaborated on the successful harnessing of the pyrimidine scaffold in this regard. Furthermore, we dissect our perspective that may guide medicinal chemists for an effective future design of more active chemotherapeutic agents with potential clinical applications.
Collapse
Affiliation(s)
- Mostafa M Badran
- Department of Medicinal Chemistry, Faculty of Pharmacy, South Valley University, Qena, Egypt
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Samar H Abbas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Mohamed Abdel-Aziz
- Department of Medicinal Chemistry, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
20
|
Gaber AA, Sharaky M, Elmaaty AA, Hammouda MM, Mourad AA, Elkhawaga SY, Mokhtar MM, Abouzied AS, Mourad MA, Al-Karmalawy AA. Design and synthesis of novel pyrazolopyrimidine candidates as promising EGFR-T790M inhibitors and apoptosis inducers. Future Med Chem 2023; 15:1773-1790. [PMID: 37882053 DOI: 10.4155/fmc-2023-0156] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Aim: Our objective was to design and synthesize a new range of pyrazolopyrimidines while maintaining the key pharmacophoric features of EGFR tyrosine kinase inhibitors. Materials & methods: Percentage inhibition in 14 human cancer cell lines and IC50 values were recorded. Compounds 6c, 7e and 7f were examined against both wild and mutant (T790M) EGFR subtypes. Apoptosis markers, cell cycle arrest, apoptosis assay and molecular docking were performed. Results: Compounds 6c, 7e and 7f demonstrated superior inhibitory potentials against wild and mutant (T790M) EGFR subtypes. A molecular docking study showed that compounds 6c and 7e had the best fit. Conclusion: The designed candidates demonstrated superior inhibitory potential as promising EGFR-T790M inhibitors that agrees with the proposed rationale.
Collapse
Affiliation(s)
- Ahmed A Gaber
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Marwa Sharaky
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Mohamed M Hammouda
- Department of Chemistry, College of Science & Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Ae Mourad
- Pharmacology & Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Samy Y Elkhawaga
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, 11231, Egypt
| | - Amr S Abouzied
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail, 81442, Saudi Arabia
- Department of Pharmaceutical Chemistry, National Organization for Drug Control & Research, Giza, 12553, Egypt
| | - Mai Ae Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, 42511, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza, 12566, Egypt
| |
Collapse
|
21
|
Patil SB. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon 2023; 9:e16773. [PMID: 37346348 PMCID: PMC10279829 DOI: 10.1016/j.heliyon.2023.e16773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Pyrimidine derivatives attract researchers due to their versatile scaffold & their medicinal significance. Pyrimidine associated analogs are majorly contributed to the field of medicinal chemistry. In this review article, the recent new structural design and development of active agent studies and biological approaches are highlighted. In addition, the biological potency and the structure-activity relationship of pyrimidines such as antimicrobial, anticancer, anti-inflammatory, analgesic, anti-diabetic, anti-HIV, anthelmintic, CNS depressants, and cardiac agents are discussed. Finally, this review article may attract the researchers for new structural design and development of novel active pyrimidine scaffolds with more active and less harmful.
Collapse
|
22
|
Eskandrani R, Al-Rasheed LS, Ansari SA, Bakheit AH, Almehizia AA, Almutairi M, Alkahtani HM. Targeting Transcriptional CDKs 7, 8, and 9 with Anilinopyrimidine Derivatives as Anticancer Agents: Design, Synthesis, Biological Evaluation and In Silico Studies. Molecules 2023; 28:molecules28114271. [PMID: 37298748 DOI: 10.3390/molecules28114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are promising targets in chemotherapy. In this study, we report a series of 2-anilinopyrimidine derivatives with CDK inhibitory activity. Twenty-one compounds were synthesized and their CDK inhibitory and cytotoxic activities were evaluated. The representative compounds demonstrate potent antiproliferative activities toward different solid cancer cell lines and provide a promising strategy for the treatment of malignant tumors. Compound 5f was the most potent CDK7 inhibitor (IC50 = 0.479 µM), compound 5d was the most potent CDK8 inhibitor (IC50 = 0.716 µM), and compound 5b was the most potent CDK9 inhibitor (IC50 = 0.059 µM). All the compounds satisfied the Lipinski's rule of five (molecular weight < 500 Da, number of hydrogen bond acceptors <10, and octanol-water partition coefficient and hydrogen bond donor values below 5). Compound 5j is a good candidate for lead optimization because it has a non-hydrogen atom (N) of 23, an acceptable ligand efficiency value of 0.38673, and an acceptable ligand lipophilic efficiency value of 5.5526. The synthesized anilinopyrimidine derivatives have potential as anticancer agents.
Collapse
Affiliation(s)
- Razan Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Lamees S Al-Rasheed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ahmed H Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdulrahman A Almehizia
- Drug Exploration and Development (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha Almutairi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
23
|
Hamdy NA, El Sayed MT, Hussein HAR, Mounier MM, Anwar MM. Synthesis of novel heterocyclic compounds bearing tetralin moiety of potential anticancer activity targeting the intrinsic apoptotic pathway. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2172348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Nehal A. Hamdy
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mardia T. El Sayed
- Applied Organic Chemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hoda A. R. Hussein
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Marwa M. Mounier
- Department of Pharmacognosy, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Manal M. Anwar
- Therapeutical Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
24
|
Jaragh-Alhadad L, Behbehani H, Karnik S. Cancer targeted drug delivery using active low-density lipoprotein nanoparticles encapsulated pyrimidines heterocyclic anticancer agents as microtubule inhibitors. Drug Deliv 2022; 29:2759-2772. [PMID: 36029014 PMCID: PMC9427048 DOI: 10.1080/10717544.2022.2117435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recently, nanomedicine had the potential to increase the delivery of active compounds to specific cell sites. Nano-LDL particles are recognized as an excellent active nano-platform for cancer-targeted delivery. Loading of therapeutic agents into nano-LDL particles achieved by surface loading, core loading, and apolipoprotein-B100 interaction. Therefore, loading nano-LDL particles’ core with pyrimidine heterocyclic anticancer agents will increase cancer cytotoxic activity targeting tubulin protein. First, by mimicking the native LDL particle's metabolic pathway, and second the agent’s chemical functional groups like the native amino acids cytosine and thymine structures will not be recognized as a foreign entity from the cell’s immune system. Nano-LDL particles will internalize through LDL-receptors endocytosis and transport the anticancer agent into the middle of the cancer cell, reducing its side effects on other healthy cells. Generally, the data revealed that pyrimidine heterocyclic anticancer agents’ size is at the nano level. Agents’ morphological examination showed nanofibers, thin sheets, clusters, and rod-like structures. LDL particles’ size became bigger after loading with pyrimidine heterocyclic anticancer agents and ranged between 121.6 and 1045 nm. Then, particles were tested for their cytotoxicity against breast (MDA468) and prostate (DU145) cancer cell lines as surrogate models with dose-response study 10, 5, 1 µM. The IC50 values of the agents against DU145 and MDA468 possessed cell growth inhibition even at the 1 µM concentration ranges of 3.88 ± 1.05 µM and 3.39 ± 0.97 µM, respectively. In sum, nano-LDL particles proved their efficiency as active drug delivery vehicles to target tubulin in cancer cells.
Collapse
Affiliation(s)
- Laila Jaragh-Alhadad
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait.,Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Haider Behbehani
- Department of Chemistry, Faculty of Science, Kuwait University, Safat, Kuwait
| | - Sadashiva Karnik
- Cardiovascular and Metabolic Sciences Department, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.,Cleveland Clinic Learner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
25
|
Komkov AV, Sukhanova AА, Menchikov LG, Zavarzin IV. о-Aminopyrimidine Aldehydes and Ketones: Synthesis and use as Precursors to Fused Pyrimidines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
26
|
Leškovskis K, Mishnev A, Novosjolova I, Turks M. Structural Study of Azide-Tetrazole Equilibrium in Pyrido[2,3-d]pyrimidines. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
27
|
Zaki I, Masoud RE, Hamoud MM, Ali OAA, Abualnaja M, Fayad E, Almaaty AHA, Elnaghia LK. Design, synthesis and cytotoxicity screening of new synthesized pyrimidine-5-carbonitrile derivatives showing marked apoptotic effect. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Yadav TT, Moin Shaikh G, Kumar MS, Chintamaneni M, YC M. A Review on Fused Pyrimidine Systems as EGFR Inhibitors and Their Structure–Activity Relationship. Front Chem 2022; 10:861288. [PMID: 35769445 PMCID: PMC9234326 DOI: 10.3389/fchem.2022.861288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/28/2022] [Indexed: 01/05/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) belongs to the family of tyrosine kinase that is activated when a specific ligand binds to it. The EGFR plays a vital role in the cellular proliferation process, differentiation, and apoptosis. In the case of cancer, EGFR undergoes uncontrolled auto-phosphorylation that results in increased cellular proliferation and decreased apoptosis, causing cancer promotion. From the literature, it shows that pyrimidine is one of the most commonly studied heterocycles for its antiproliferative activity against EGFR inhibition. The authors have collated some interesting results in the heterocycle-fused pyrimidines that have been studied using different cell lines (sensitive and mutational) and in animal models to determine their activity and potency. It is quite clear that the fused systems are highly effective in inhibiting EGFR activity in cancer cells. Therefore, the structure–activity relationship (SAR) comes into play in determining the nature of the heterocycle and the substituents that are responsible for the increased activity and toxicity. Understanding the SAR of heterocycle-fused pyrimidines will help in getting a better overview of the molecules concerning their activity and potency profile as future EGFR inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Mayur YC
- *Correspondence: Mayur YC, mayur
| |
Collapse
|
29
|
Yang W, Xuan B, Li X, Si H, Chen A. Therapeutic potential of 1,2,3-triazole hybrids for leukemia treatment. Arch Pharm (Weinheim) 2022; 355:e2200106. [PMID: 35532286 DOI: 10.1002/ardp.202200106] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/24/2022]
Abstract
Leukemia, a hematological malignancy originating from the bone marrow, is the principal cancer of childhood. In recent decades, improved remission rates and survival of patients with leukemia have been achieved due to significant breakthroughs in the treatment. However, chemoresistance and relapse are common, creating an urgent need for the search for novel pharmaceutical interventions. 1,2,3-Triazole is one of the most fascinating pharmacophores in the discovery of new drugs, and several 1,2,3-triazole derivatives have already been used in clinics or are under clinical evaluation for the treatment of cancers. In particular, 1,2,3-triazole hybrids could suppress tumor proliferation, invasion, and metastasis by inhibiting enzymes, proteins, and receptors in cancer cells, revealing their potential as putative antileukemic agents. This review covers the recent advances regarding the 1,2,3-triazole hybrids with potential antileukemic activity, focusing on the chemical structures, structure-activity relationship, and mechanisms of action, covering articles published from January 2017 to January 2022.
Collapse
Affiliation(s)
- Wenchao Yang
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Bixia Xuan
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Xiaofang Li
- Department of Pharmacy, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Haiyan Si
- Department of Gastroenterology, Traditional Chinese Medical Hospital of Zhuji, Zhuji, Zhejiang, China
| | - Aiping Chen
- Emergency Department, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, China
| |
Collapse
|
30
|
Discovery of Nitro-azolo[1,5-a]pyrimidines with Anti-Inflammatory and Protective Activity against LPS-Induced Acute Lung Injury. Pharmaceuticals (Basel) 2022; 15:ph15050537. [PMID: 35631365 PMCID: PMC9146423 DOI: 10.3390/ph15050537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/08/2023] Open
Abstract
Acute lung injury remains a challenging clinical condition, necessitating the development of novel, safe and efficient treatments. The prevention of macrophage M1-polarization is a viable venue to tackle excessive inflammation. We performed a phenotypic screening campaign to identify azolopyrimidine compounds that effectively inhibit LPS-induced NO synthesis and interleukin 6 (IL-6) secretion. We identified lead compound 9g that inhibits IL-6 secretion with IC50 of 3.72 µM without apparent cytotoxicity and with minimal suppression of macrophage phagocytosis in contrast to dexamethasone. In a mouse model of LPS-induced acute lung injury, 30 mg/kg i.p. 9g ameliorated anxiety-like behavior, inhibited IL-6 release, and limited neutrophil infiltration and pulmonary edema. A histological study confirmed the protective activity of 9g. Treatment with compound 9g prevented the migration of CD68+ macrophages and the incidence of hemorrhage. Hence, we have identified a promising pharmacological approach for the treatment of acute lung injury that may hold promise for the development of novel drugs against cytokine-mediated complications of bacterial and viral infections.
Collapse
|
31
|
Xinyi W, Shiqi X, Shishuo C, Yumin S, Jun W. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr Top Med Chem 2022; 22:1406-1425. [DOI: 10.2174/1568026622666220415225334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Breast cancer is one of the most prevalent malignant diseases and one of the main mortality causes among women across the world. Despite advances in chemotherapy, drug resistance remains major clinical concerns, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-Triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation, and induce the cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers including breast cancer. This review summarizes the latest progresses related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for further rational design of more effective candidates.
Collapse
Affiliation(s)
- Wu Xinyi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xia Shiqi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Shishuo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shi Yumin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wang Jun
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
32
|
Ojha B, Laxman K, Rawat N, Ravikanth M. Synthesis of Expanded Crowned Macrocycles Containing Two Pyrrolo[1,2‐ a]indole Units. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Belarani Ojha
- Indian Institute of Technology Bombay Department of Chemistry IIT Bombay 400076 Mumbai INDIA
| | - Kandala Laxman
- Gandhi Institute of Technology and Management's College of Management Studies: GITAM Institute of Management Department of Chemistry 502329 Hyderabad INDIA
| | - Nisha Rawat
- Indian Institute of Technology Bombay Department of Chemistry Powai 400076 Mumbai INDIA
| | | |
Collapse
|
33
|
Islam MR, Fahmy H. Thiazolopyrimidine Scaffold as a Promising Nucleus for Developing Anticancer Drugs: a Review in Last Decade. Anticancer Agents Med Chem 2022; 22:2942-2955. [PMID: 35410622 DOI: 10.2174/1871520622666220411110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/27/2021] [Accepted: 02/03/2022] [Indexed: 11/22/2022]
Abstract
The thiazolopyrimidine nucleus is a bioisostericanalog of purine and an important class of N-containing heterocycles. Thiazolopyrimidine scaffolds are considered a promising class of bioactive compounds that encompass diverse biological activities such as antibacterial, antiviral, antifungal, anticancer, corticotrophin-releasing factor antagonists, anti-inflammatory, antituberculosis, and glutamic receptors antagonists. Despite the importance of thiazolopyrimidines from a pharmacological viewpoint, there is hardly a comprehensive review on this important heterocyclic nucleus. Throughout the years, those scaffolds have been studied extensively for its anticancer properties and several compounds were designed, synthesized, and evaluated for their anticancer effects with activity in the µM to nM range. However, there are hardly any reviews covering the anticancer effects of thiazolopyrimidines. In this review, an effort was made to compile literatures covering the anticancer activity of thiazolopyrimidines reported in the last decade (2010-2020). Nearly thirty articles were reviewed and compounds which IC50 < 50 µM against at least 50% of the used cell lines were listed in this review. The best ten compounds (10a, 14b, 17g, 18,25e, 25k, 34e, 41i, 49a, & 49c) show the best anticancer activity against the corresponding cell lines during the last 10 years are highlighted. By highlighting the most active compounds, this review article sheds light on the structural features associated with the strongest anticancer effects to provide guidance to future research aiming to develop anticancer molecules.
Collapse
Affiliation(s)
- Md Rabiul Islam
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Hesham Fahmy
- Department of Pharmaceutical Science, College of Pharmacy & Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
34
|
Feng LS, Su WQ, Cheng JB, Xiao T, Li HZ, Chen DA, Zhang ZL. Benzimidazole hybrids as anticancer drugs: An updated review on anticancer properties, structure-activity relationship, and mechanisms of action (2019-2021). Arch Pharm (Weinheim) 2022; 355:e2200051. [PMID: 35385159 DOI: 10.1002/ardp.202200051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/09/2022]
Abstract
Cancer, characterized by a deregulation of the cell cycle which mainly results in a progressive loss of cellular differentiation and uncontrolled cellular growth, remains a prominent cause of death across the world. Almost all currently available anticancer agents used in clinical practice have developed multidrug resistance, creating an urgent need to develop novel chemotherapeutics. Benzimidazole derivatives could exert anticancer properties through diverse mechanisms, inclusive of the disruption of microtubule polymerization, the induction of apoptosis, cell cycle (G2/M) arrest, antiangiogenesis, and blockage of glucose transport. Moreover, several benzimidazole-based agents have already been approved for the treatment of cancers. Hence, benzimidazole derivatives are useful scaffolds for the development of novel anticancer agents. In particular, benzimidazole hybrids could exert dual or multiple antiproliferative activities and had the potential to overcome drug resistance, demonstrating the potential of benzimidazole hybrids as potential prototypes for clinical deployment in the control and eradication of cancers. The purpose of the present review article is to provide a comprehensive landscape of benzimidazole hybrids as potential anticancer agents, and the structure-activity relationship as well as mechanisms of action are also discussed to facilitate the further rational design of more effective candidates, covering articles published from 2019 to 2021.
Collapse
Affiliation(s)
- Lian-Shun Feng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Wen-Qi Su
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Jin-Bo Cheng
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Tao Xiao
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - Hong-Ze Li
- WuXi AppTec Co., Ltd., Chengdu, People's Republic of China
| | - De-An Chen
- WuXi AppTec Co., Ltd., Wuhan, People's Republic of China
| | - Zhi-Liu Zhang
- WuXi AppTec Co., Ltd., Shanghai, People's Republic of China
| |
Collapse
|
35
|
Thiochromene candidates: design, synthesis, antimicrobial potential and in silico docking study. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [DOI: 10.1007/s13738-021-02391-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Bagheri S, Rahban M, Bostanian F, Esmaeilzadeh F, Bagherabadi A, Zolghadri S, Stanek A. Targeting Protein Kinases and Epigenetic Control as Combinatorial Therapy Options for Advanced Prostate Cancer Treatment. Pharmaceutics 2022; 14:515. [PMID: 35335890 PMCID: PMC8949110 DOI: 10.3390/pharmaceutics14030515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC), the fifth leading cause of cancer-related mortality worldwide, is known as metastatic bone cancer when it spreads to the bone. Although there is still no effective treatment for advanced/metastatic PC, awareness of the molecular events that contribute to PC progression has opened up opportunities and raised hopes for the development of new treatment strategies. Androgen deprivation and androgen-receptor-targeting therapies are two gold standard treatments for metastatic PC. However, acquired resistance to these treatments is a crucial challenge. Due to the role of protein kinases (PKs) in the growth, proliferation, and metastases of prostatic tumors, combinatorial therapy by PK inhibitors may help pave the way for metastatic PC treatment. Additionally, PC is known to have epigenetic involvement. Thus, understanding epigenetic pathways can help adopt another combinatorial treatment strategy. In this study, we reviewed the PKs that promote PC to advanced stages. We also summarized some PK inhibitors that may be used to treat advanced PC and we discussed the importance of epigenetic control in this cancer. We hope the information presented in this article will contribute to finding an effective treatment for the management of advanced PC.
Collapse
Affiliation(s)
- Soghra Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Bostanian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran; (M.R.); (F.B.)
| | - Fatemeh Esmaeilzadeh
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Arash Bagherabadi
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, Ardabil 5619911367, Iran;
| | - Samaneh Zolghadri
- Department of Biology, Jahrom Branch, Islamic Azad University, Jahrom 7414785318, Iran;
| | - Agata Stanek
- Department of Internal Medicine, Angiology and Physical Medicine, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Batorego 15 St, 41-902 Bytom, Poland
| |
Collapse
|
37
|
Abdelgawad MA, Elkanzi NA, Nayl A, Musa A, Hadal Alotaibi N, Arafa W, Gomha SM, Bakr RB. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103781] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
38
|
Bakr RB, Elkanzi NA. Novel 1,2-thiazine-pyridine hybrid: Design, synthesis, antioxidant activity and molecular docking study. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220106112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background & objectives:
1,2-thiazine and pyridine heterocycles drew much attention due to their biological activities including antioxidant activity. Based upon fragment based drug design, novel pyrido[1,2]thiazines 9a-c, thiazolidinopyrido[1,2]thiazines 10a-c and azetidinopyrido[1,2]thiazines 11a-c were designed and prepared.
Methods:
These novel derivatives 9a-c, 10a-c and 11a-c were subjected to screening for their antioxidant activity via various assays as DPPH radical scavenging potential, reducing power assay and metal chelating potential.
Results:
All the assayed derivatives exhibited excellent antioxidant potential and the tested compounds 9a, 9b, 10a, 10b, 11a and 11b exhibited higher DPPH scavenging potential (EC50 = 32.7, 53, 36.1, 60, 40.6 and 67 µM, respectively) than ascorbic acid (EC50 = 86.58 µM). While targets 9a, 10a and 11a (RP50 = 52.19, 59.16 and 52.25 µM, respectively) exhibited better reducing power than the ascorbic acid (RP50 = 84.66 µM). Computational analysis had been utilized to prophesy the bioactivity and molecular properties of the target compounds.
Conclusion:
To predict the binding manner of the novel derivatives as antioxidants, in-silico docking study had been performed to all the newly prepared compounds inside superoxide dismutase (SOD) and catalase (CAT) active site. The most active antioxidant candidate 9a (EC50 = 32.7 µM, RP50 = 52.19 µM) displayed excellent binding with Lys134 amino acid residing at Cu-Zn loop of SOD with binding energy score = -7.54 Kcal/mol thereby increase SOD activity and decrease reactive oxygen species.
Collapse
Affiliation(s)
- Rania B. Bakr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Nadia A.A. Elkanzi
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Saudi Arabia
| |
Collapse
|
39
|
Sun S, Huang J, Yuan C, Wang G, Guo D, Wang J. Switchable assembly of substituted pyrimidines and 2 H-imidazoles via Cu( i)-catalysed ring expansion of 2 methoxyl-2 H-azirines. Org Chem Front 2022. [DOI: 10.1039/d2qo00341d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The unprecedented switchable synthesis of substituted pyrimidines and 2H-imidazoles via the Cu(i)-catalyzed ring expansion of 2-methoxyl-2H-azirines is described.
Collapse
Affiliation(s)
- Shaofa Sun
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jie Huang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Yuan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Gangqiang Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
- School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan, 430074, China
| | - Donghui Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian Wang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
40
|
Marotta G, Basagni F, Rosini M, Minarini A. Role of Fyn Kinase Inhibitors in Switching Neuroinflammatory Pathways. Curr Med Chem 2021; 29:4738-4755. [PMID: 34939537 DOI: 10.2174/0929867329666211221153719] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022]
Abstract
Fyn kinase is a member of the Src non-receptor tyrosine kinase family. Fyn is involved in multiple signaling pathways extending from cell proliferation and differentiation to cell adhesion and cell motility, and it has been found to be overexpressed in various types of cancers. In the central nervous system, Fyn exerts several different functions such as axon-glial signal transduction, oligodendrocyte maturation and myelination, and it is implicated in neuroinflammatory processes. Based on these premises, Fyn emerges as an attractive target in cancer and neurodegenerative disease therapy, particularly Alzheimer disease (AD), based on its activation by Aβ via cellular prion protein and its interaction with tau protein. However, Fyn is also a challenging target since the Fyn inhibitors discovered so far, due to the relevant homology of Fyn with other kinases, suffer from off-target effects. This review covers the efforts performed in the last decade to identify and optimize small molecules that effectively inhibit Fyn, both in enzymatic and in cell assays, including drug repositioning practices, as an opportunity of therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Giambattista Marotta
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Filippo Basagni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Michela Rosini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| | - Anna Minarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126-Bologna. Italy
| |
Collapse
|
41
|
Zhang MM, Zhan ZZ, Wang M, Wang HS, Huang GS. Direct Synthesis of 2,4,6‐Trisubstituted Pyrimidines
via
Base‐Mediated One‐Pot Multicomponent Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Meng Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
42
|
Onysko M, Svalyavin O, Slivka M, Slivka M, Baumer V, Lendel V. Highly efficient synthesis and
NMR
features of novel fused pyrimidothiazinium trihalogenides. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Mikhajlo Onysko
- Department of Organic Chemistry, Faculty of Chemistry Uzhhorod National University Uzhhorod Ukraine
| | | | - Marina Slivka
- Department of Organic Chemistry, Faculty of Chemistry Uzhhorod National University Uzhhorod Ukraine
| | - Mikhailo Slivka
- Department of Organic Chemistry, Faculty of Chemistry Uzhhorod National University Uzhhorod Ukraine
| | - Vjacheslav Baumer
- State Scientific Institution “Institute for Single Crystals” NAS of Ukraine Kharkiv Ukraine
| | - Vasil Lendel
- Department of Organic Chemistry, Faculty of Chemistry Uzhhorod National University Uzhhorod Ukraine
| |
Collapse
|
43
|
Ojha B, Laxman K, Ravikanth M. Crowned Macrocycles Containing Two Pyrrolo[1,2-a] Indoles Created By Intramolecular Fusion. Chem Asian J 2021; 16:3221-3229. [PMID: 34405967 DOI: 10.1002/asia.202100799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/17/2021] [Indexed: 11/07/2022]
Abstract
Heterocyclic fused-ring systems are of utmost importance because of their presence in many natural products with biological activity. Pyrroloindoles are tricyclic heterocycles that are present in various bioactive and medicinally valuable compounds. Herein, we report the synthesis of phenylene-bridged bis-pyrrolo[1,2-a]indole crowned macrocycles 1-3 in which the pyrrolo[1,2-a]indole moieties were formed via intramolecular fusion. The macrocycles were thoroughly characterized by 1D and 2D NMR, HRMS and X-ray crystallographic studies. The X-ray structure revealed that the two pyrrolo[1,2-a]indole moieties were parallel to each other, and one pyrrolo[1,2-a]indole unit was deviated by an angle of 9.54° while the other pyrrolo[1,2-a]indole unit was deviated by an angle of 12.0° from the mean plane defined by 28 core atoms. The macrocycles 1-3 absorb in the visible region and readily undergo oxidations because of their electron rich nature. The macrocycles 1-3 upon treatment with trifluoroacetic acid (TFA) generates the corresponding cation radicals 1-3.+ which were stable in the open air for a week. The cation radicals 1-3.+ absorb strongly in the NIR region and the experimental observations on crowned macrocycles 1-3 were corroborated by DFT and TD-DFT studies.
Collapse
Affiliation(s)
- Belarani Ojha
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Kandala Laxman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mangalampalli Ravikanth
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
44
|
Tandon N, Luxami V, Kant D, Tandon R, Paul K. Current progress, challenges and future prospects of indazoles as protein kinase inhibitors for the treatment of cancer. RSC Adv 2021; 11:25228-25257. [PMID: 35478899 PMCID: PMC9037120 DOI: 10.1039/d1ra03979b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/29/2021] [Indexed: 01/19/2023] Open
Abstract
The indazole core is an interesting pharmacophore due to its applications in medicinal chemistry. In the past few years, this moiety has been used for the synthesis of kinase inhibitors. Many researchers have demonstrated the use of indazole derivatives as specific kinase inhibitors, including tyrosine kinase and serine/threonine kinases. A number of anticancer drugs with an indazole core are commercially available, e.g. axitinib, linifanib, niraparib, and pazopanib. Indazole derivatives are applied for the targeted treatment of lung, breast, colon, and prostate cancers. In this review, we compile the current development of indazole derivatives as kinase inhibitors and their application as anticancer agents in the past five years.
Collapse
Affiliation(s)
- Nitin Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| | - Divya Kant
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Runjhun Tandon
- School of Chemical Engineering and Physical Sciences, Lovely Professional University Phagwara-144411 India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala-147004 India
| |
Collapse
|
45
|
Othman IMM, Alamshany ZM, Tashkandi NY, Gad-Elkareem MAM, Anwar MM, Nossier ES. New pyrimidine and pyrazole-based compounds as potential EGFR inhibitors: Synthesis, anticancer, antimicrobial evaluation and computational studies. Bioorg Chem 2021; 114:105078. [PMID: 34161878 DOI: 10.1016/j.bioorg.2021.105078] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/11/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
This study was focused on the synthesis of new pyrimidines 4a,b, 5a,b and pyrazoles 6a, b as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). The new compounds were assessed as cytotoxic candidates against human breast cancer cells (MCF-7) and hepatocellular carcinoma cells (HepG-2). All the new compounds appeared as more potent cytotoxic agents than erlotinib, while only compound 4a exhibited more potency than 5-flourouracil and 4b analogue was equipotent to it. Accordingly, the kinase suppression effect of 4a and 4b was further evaluated against EGFRWT, EGFRL858R and EGFRT790M. Both pyrimidine analogues 4a and 4b displayed outstanding inhibitory activity against EGFRWT and its two mutated isoforms EGFRL858R and EGFRT790M in comparing to erlotinib and osimertinib as reference drugs. Additionally, all the new analogues were subjected to antimicrobial assay. Interestingly, both 4a and 4b represented the most promising activity of wide spectrum antimicrobial effect against the examined microbes in comparison to gentamycin and ketoconazole as standard drugs. Moreover, docking results proved the good binding interactions of the compounds 4a and 4b with EGFRWT and EGFRT790M which were in accordance with the results of the in vitro enzyme assay. Additional in silico ADMET studies were performed for the new derivatives which represented their good oral absorption, good drug-likeness properties and low toxicity risks in human.
Collapse
Affiliation(s)
- Ismail M M Othman
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Zahra M Alamshany
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | - Nada Y Tashkandi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21551, P.O. Box 42805, Saudi Arabia
| | | | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|