1
|
Shimizu N, Hamada Y, Morozumi R, Yamamoto J, Iwai S, Sugiyama KI, Ide H, Tsuda M. Repair of topoisomerase 1-induced DNA damage by tyrosyl-DNA phosphodiesterase 2 (TDP2) is dependent on its magnesium binding. J Biol Chem 2023; 299:104988. [PMID: 37392847 PMCID: PMC10407441 DOI: 10.1016/j.jbc.2023.104988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
Topoisomerases are enzymes that relax DNA supercoiling during replication and transcription. Camptothecin, a topoisomerase 1 (TOP1) inhibitor, and its analogs trap TOP1 at the 3'-end of DNA as a DNA-bound intermediate, resulting in DNA damage that can kill cells. Drugs with this mechanism of action are widely used to treat cancers. It has previously been shown that tyrosyl-DNA phosphodiesterase 1 (TDP1) repairs TOP1-induced DNA damage generated by camptothecin. In addition, tyrosyl-DNA phosphodiesterase 2 (TDP2) plays critical roles in repairing topoisomerase 2 (TOP2)-induced DNA damage at the 5'-end of DNA and in promoting the repair of TOP1-induced DNA damage in the absence of TDP1. However, the catalytic mechanism by which TDP2 processes TOP1-induced DNA damage has not been elucidated. In this study, we found that a similar catalytic mechanism underlies the repair of TOP1- and TOP2-induced DNA damage by TDP2, with Mg2+-TDP2 binding playing a role in both repair mechanisms. We show chain-terminating nucleoside analogs are incorporated into DNA at the 3'-end and abort DNA replication to kill cells. Furthermore, we found that Mg2+-TDP2 binding also contributes to the repair of incorporated chain-terminating nucleoside analogs. Overall, these findings reveal the role played by Mg2+-TDP2 binding in the repair of both 3'- and 5'-blocking DNA damage.
Collapse
Affiliation(s)
- Naoto Shimizu
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yusaku Hamada
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Ryosuke Morozumi
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Junpei Yamamoto
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Shigenori Iwai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hiroshi Ide
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan.
| | - Masataka Tsuda
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan; Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| |
Collapse
|
2
|
Marek L, Váňa J, Svoboda J, Hanusek J. Eschenmoser coupling reactions starting from primary thioamides. When do they work and when not? Beilstein J Org Chem 2023; 19:808-819. [PMID: 37346496 PMCID: PMC10280059 DOI: 10.3762/bjoc.19.61] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Reactions of thiobenzamide or thioacetamide with 4-bromo-1,1-dimethyl-1,4-dihydroisoquinoline-3(2H)-one, 4-bromoisoquinoline-1,3(2H,4H)-dione and two α-bromo(phenyl)acetamides were examined under various conditions (base, solvent, thiophile, temperature) and structure/medium features that influence product distribution (Eschenmoser coupling reaction, Hantzsch thiazole synthesis and elimination to nitriles) were identified. The key factor that enables the successful Eschenmoser coupling reaction involves the optimum balance in acidity of nitrogen and carbon atoms of the intermediary α-thioiminium salts.
Collapse
Affiliation(s)
- Lukáš Marek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Váňa
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| | - Jiří Hanusek
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ532 10 Pardubice, Czech Republic
| |
Collapse
|
3
|
New Hybrid Compounds Combining Fragments of Usnic Acid and Thioether Are Inhibitors of Human Enzymes TDP1, TDP2 and PARP1. Int J Mol Sci 2021; 22:ijms222111336. [PMID: 34768766 PMCID: PMC8583042 DOI: 10.3390/ijms222111336] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/17/2021] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) catalyzes the cleavage of the phosphodiester bond between the tyrosine residue of topoisomerase 1 (TOP1) and the 3' phosphate of DNA in the single-strand break generated by TOP1. TDP1 promotes the cleavage of the stable DNA-TOP1 complexes with the TOP1 inhibitor topotecan, which is a clinically used anticancer drug. This article reports the synthesis and study of usnic acid thioether and sulfoxide derivatives that efficiently suppress TDP1 activity, with IC50 values in the 1.4-25.2 μM range. The structure of the heterocyclic substituent introduced into the dibenzofuran core affects the TDP1 inhibitory efficiency of the compounds. A five-membered heterocyclic fragment was shown to be most pharmacophoric among the others. Sulfoxide derivatives were less cytotoxic than their thioester analogs. We observed an uncompetitive type of inhibition for the four most effective inhibitors of TDP1. The anticancer effect of TOP1 inhibitors can be enhanced by the simultaneous inhibition of PARP1, TDP1, and TDP2. Some of the compounds inhibited not only TDP1 but also TDP2 and/or PARP1, but at significantly higher concentration ranges than TDP1. Leader compound 10a showed promising synergy on HeLa cells in conjunction with the TOP1 inhibitor topotecan.
Collapse
|
4
|
Cheng C, Zhu Q, Zhang Y. Intermolecular C-H silylation through cascade carbopalladation and vinylic to aryl 1,4-palladium migration. Chem Commun (Camb) 2021; 57:9700-9703. [PMID: 34555133 DOI: 10.1039/d1cc03677g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed remote C-H silylation reaction has been developed through vinylic to aryl 1,4-palladium migration. By using alkyne-tethered aryl iodides as the starting materials and hexamethyldisilane as the silylating reagent, the reaction involves cascade intramolecular carbopalladation, 1,4-palladium migration, and silylation with hexamethyldisilane, and leads to the formation of exocyclic alkene-containing 5-silylisoquinolines as the final products.
Collapse
Affiliation(s)
- Cang Cheng
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Qiongqiong Zhu
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Yanghui Zhang
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|