1
|
Zhang X, Wang H, Jia X, Yan H, Tian N. Photophysical and Photochemical Properties of Heterocyclic Analogs of 1,4-Cyclohexadiene: Experimental and Theoretical Studies. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
2
|
Design, Synthesis, in vitro and in silico Characterization of Plastoquinone Analogs Containing Piperidine Moiety as Antimicrobial Agents. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Yıldırım H, Bayrak N, Yıldız M, Mataracı-Kara E, Korkmaz S, Shilkar D, Jayaprakash V, TuYuN AF. Aminated Quinolinequinones as Privileged Scaffolds for Antibacterial Agents: Synthesis, In Vitro Evaluation, and Putative Mode of Action. ACS OMEGA 2022; 7:41915-41928. [PMID: 36440112 PMCID: PMC9685608 DOI: 10.1021/acsomega.2c03193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Our previous studies have revealed that the aminated 1,4-quinone scaffold can be used for the development of novel antibacterial and/or antifungal agents. In this study, the aminated quinolinequinones (AQQ1-9) were designed, synthesized, and evaluated for their antimicrobial activity against a panel of seven bacterial strains (three Gram-positive and four Gram-negative bacteria) and three fungal strains. The structure-activity relationship (SAR) for the QQs was also summarized. The antibacterial activity results indicated that the two aminated QQs (AQQ6 and AQQ9) were active against Enterococcus faecalis (ATCC 29212) with a MIC value of 78.12 μg/mL. Besides, the two aminated QQs (AQQ8 and AQQ9) were active against Staphylococcus aureus (ATCC 29213) with MIC values of 4.88 and 2.44 μg/mL, respectively. The most potent aminated QQs (AQQ8 and AQQ9) were identified as promising lead molecules to further explore their mode of action. The selected QQs (AQQ8 and AQQ9) were further evaluated in vitro to assess their potential antimicrobial activity against each of 20 clinically obtained methicillin-resistant S. aureus isolates, antibiofilm activity, and bactericidal activity using time-kill curve assay. We found that the molecules prevented adhesion of over 50% of the cells in the biofilm. Molecular docking studies were performed to predict the predominant binding mode(s) of the ligands. We believe that the molecules need further investigation, especially against infections involving biofilm-forming microbes.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department
of Chemistry, Engineering Faculty, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Nilüfer Bayrak
- Department
of Chemistry, Engineering Faculty, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Mahmut Yıldız
- Department
of Chemistry, Gebze Technical University, Gebze, 41400 Kocaeli, Turkey
| | - Emel Mataracı-Kara
- Department
of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116 Istanbul, Turkey
| | - Serol Korkmaz
- Institute
of Health Sciences, Marmara University, 34722 Istanbul, Turkey
| | - Deepak Shilkar
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Venkatesan Jayaprakash
- Department
of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835 215, Jharkhand, India
| | - Amaç Fatih TuYuN
- Department
of Chemistry, Faculty of Science, Istanbul
University, Fatih, 34126 Istanbul, Turkey
| |
Collapse
|
4
|
Yıldız M, Bayrak N, Yıldırım H, Çakmak SM, Yılmaz FN, Mataracı-Kara E, Shilkar D, Jayaprakash V, TuYuN AF. Discovery of quinolinequinones with N-phenylpiperazine by conversion of hydroxyquinoline as a new class of antimicrobial agents targeting resistant pathogenic microorganisms. Bioorg Chem 2022; 128:106045. [DOI: 10.1016/j.bioorg.2022.106045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|
5
|
Exploring the Anticancer Effects of Brominated Plastoquinone Analogs with Promising Cytotoxic Activity in MCF-7 Breast Cancer Cells via Cell Cycle Arrest and Oxidative Stress Induction. Pharmaceuticals (Basel) 2022; 15:ph15070777. [PMID: 35890076 PMCID: PMC9318129 DOI: 10.3390/ph15070777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
Plastoquinone analogs are privileged structures among the known antiproliferative natural product-based compound families. Exploiting one of these analogs as a lead structure, we report the investigation of the brominated PQ analogs (BrPQ) in collaboration with the National Cancer Institute of Bethesda within the Developmental Therapeutics Program (DTP). These analogs exhibited growth inhibition in the micromolar range across leukemia, non-small cell lung cancer (EKVX, HOP-92, and NCI-H522), colon cancer (HCT-116, HOP-92), melanoma (LOX IMVI), and ovarian cancer (OVCAR-4) cell lines. One brominated PQ analog (BrPQ5) was selected for a full panel five-dose in vitro assay by the NCI’s Development Therapeutic Program (DTP) division to determine GI50, TGI, and LC50 parameters. The brominated PQ analog (BrPQ5) displayed remarkable activity against most tested cell lines, with GI50 values ranging from 1.55 to 4.41 µM. The designed molecules (BrPQ analogs) obeyed drug-likeness rules, displayed a favorable predictive Absorption, Distribution, Metabolism, and Excretion (ADME) profile, and an in silico simulation predicted a possible BrPQ5 interaction with proteasome catalytic subunits. Furthermore, the in vitro cytotoxic activity of BrPQ5 was assessed, and IC50 values for U-251 glioma, MCF-7 and MDA-MB-231 breast cancers, DU145 prostate cancer, HCT-116 colon cancer, and VHF93 fibroblast cell lines were evaluated using an MTT assay. MCF-7 was the most affected cell line, and the effects of BrPQ5 on cell proliferation, cell cycle, oxidative stress, apoptosis/necrosis induction, and proteasome activity were further investigated in MCF-7 cells. The in vitro assay results showed that BrPQ5 caused cytotoxicity in MCF-7 breast cancer cells via cell cycle arrest and oxidative stress induction. However, BrPQ5 did not inhibit the catalytic activity of the proteasome. These results provide valuable insights for further discovery of novel antiproliferative agents.
Collapse
|
6
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Radwan MO, Jannuzzi AT, Otsuka M, Fujita M, TuYuN AF. Promising Antibacterial and Antifungal Agents Based on Thiolated Vitamin K3 Analogs: Synthesis, Bioevaluation, Molecular Docking. Pharmaceuticals (Basel) 2022; 15:586. [PMID: 35631412 PMCID: PMC9146127 DOI: 10.3390/ph15050586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In the present study, we designed and synthesized thiolated VK3 analogs (VK3a-g) along with an extensive antimicrobial study. After the evaluation of the antibacterial and antifungal activity against various bacterial and fungal strains, we presented an initial structure-activity relationship study on these VK3 analogs. In particular, four thiolated VK3 analogs exhibited superior biological potency against some Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). Next, all thiolated VK3 analogs were evaluated for their potential of cell growth inhibition on the NCI-60 cancer cell lines panel. This screening underlined that the thiolated VK3 analogs have no visible cytotoxicity on different cancer cell lines. The selected two thiolated VK3 analogs (VK3a and VK3b), having minimal hemolytic activity, which also have the lowest MIC values on S. aureus and E. faecalis, were further evaluated for their inhibition capacities on biofilm formation after evaluating their potential in vitro antimicrobial activity against each of the 20 clinically obtained resistant strains of Staphylococcus aureus. VK3b showed excellent antimicrobial activity against clinically resistant S. aureus isolates. Furthermore, the tested molecules showed nearly two log10 reduction in the viable cell count at six hours according to the time kill curve studies. Although these molecules decreased biofilm attachment about 50%, when sub-MIC concentrations were used these molecules increased the percentage of biofilm formation. The molecular docking of VK3a and VK3b in S. aureus thymidylate kinase was conducted in order to predict their molecular interactions. VK3a and VK3b exhibited excellent lead-likeness properties and pharmacokinetic profiles that qualify them for further optimization and development. In conclusion, since investigating efficient novel antimicrobial molecules is quite difficult, these studies are of high importance, especially in the present era of antimicrobial resistance.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey;
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Mohamed Osman Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul 34126, Turkey
| |
Collapse
|
7
|
Highly Active Small Aminated Quinolinequinones against Drug-Resistant Staphylococcus aureus and Candida albicans. Molecules 2022; 27:molecules27092923. [PMID: 35566274 PMCID: PMC9104734 DOI: 10.3390/molecules27092923] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023] Open
Abstract
Two subseries of aminated quinolinequinones (AQQs, AQQ1-16) containing electron-withdrawing group (EWG) or electron-donating group (EDG) in aryl amine moiety were successfully synthesized. Antimicrobial activity assessment indicates that some of the AQQs (AQQ8-10 and AQQ12-14) with an EDG in aryl amine exhibited strong antibacterial activity against Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). In contrast, AQQ4 with an EWG in aryl amine displayed excellent antifungal activity against fungi Candida albicans (ATCC® 10231) with a MIC value of 1.22 μg/mL. To explore the mode of action, the selected AQQs (AQQ4 and AQQ9) were further evaluated in vitro to determine their antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria by performing antibiofilm activity assay and time-kill curve assay. In addition, in silico studies were carried out to determine the possible mechanism of action observed in vitro. The data obtained from these experiments suggests that these molecules could be used to target pathogens in different modes of growth, such as planktonic and biofilm.
Collapse
|
8
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Özbek-Çelik B, Otsuka M, Fujita M, Radwan MO, TuYuN AF. Natural-product-inspired design and synthesis of thiolated coenzyme Q analogs as promising agents against Gram-positive bacterial strains: insights into structure–activity relationship, activity profile, mode of action, and molecular docking. RSC Adv 2022; 12:20507-20518. [PMID: 35919160 PMCID: PMC9284347 DOI: 10.1039/d2ra02136f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/05/2022] [Indexed: 11/21/2022] Open
Abstract
In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study. The antimicrobial profile of these analogs was determined using four Gram-negative bacteria, three Gram-positive bacteria, and three fungi. Because of the fact that the thiolated CoQ analogs were quite effective on all tested Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212), the first two thiolated CoQ analogs emerged as potentially the most desirable ones in this series. Importantly, after the evaluation of the antibacterial and antifungal activity, we presented an initial structure–activity relationship for these CoQ analogs. In addition, the most promising thiolated CoQ analogs (CoQ1 and CoQ2) having the lowest MIC values on all tested Gram-positive bacterial strains, were further evaluated for their inhibition capacities of biofilm formation after evaluating their in vitro potential antimicrobial activity against each of 20 clinically obtained resistant strains of Gram-positive bacteria. CoQ1 and CoQ2 exhibited potential molecular interactions with S. aureus DNA gyrase in addition to excellent pharmacokinetics and lead-likeness profiles. Our findings offer important implications for a potential antimicrobial drug candidate, in particular for the treatment of infections caused by clinically resistant MRSA isolates. In an attempt to develop effective and potentially active antibacterial and/or antifungal agents, we designed, synthesized, and characterized thiolated CoQ analogs (CoQ1–8) with an extensive antimicrobial study.![]()
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
| | - Nilüfer Bayrak
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, Avcilar, 34320, Istanbul, Turkey
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Berna Özbek-Çelik
- Department of Pharmaceutical Microbiology, Pharmacy Faculty, Istanbul University, Beyazit, 34116, Istanbul, Turkey
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Department of Drug Discovery, Science Farm Ltd, 1–7–30 Kuhonji, Chuo-ku, Kumamoto 862–0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
| | - Mohamed O. Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5–1 Oe-honmachi, Chuo-ku, Kumamoto 862–0973, Japan
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul, Turkey
| |
Collapse
|