1
|
Gough HM, Rubin JJ, Kawahara AY, Barber JR. Tiger beetles produce anti-bat ultrasound and are probable Batesian moth mimics. Biol Lett 2024; 20:20230610. [PMID: 38747686 PMCID: PMC11285850 DOI: 10.1098/rsbl.2023.0610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 07/31/2024] Open
Abstract
Echolocating bats and their eared insect prey are in an acoustic evolutionary war. Moths produce anti-bat sounds that startle bat predators, signal noxiousness, mimic unpalatable models and jam bat sonar. Tiger beetles (Cicindelidae) also purportedly produce ultrasound in response to bat attacks. Here we tested 19 tiger beetle species from seven genera and showed that they produce anti-bat signals to playback of authentic bat echolocation. The dominant frequency of beetle sounds substantially overlaps the sonar calls of sympatric bats. As tiger beetles are known to produce defensive chemicals such as benzaldehyde and hydrogen cyanide, we hypothesized that tiger beetle sounds are acoustically advertising their unpalatability. We presented captive big brown bats (Eptesicus fuscus) with seven different tiger beetle species and found that 90 out of 94 beetles were completely consumed, indicating that these tiger beetle species are not aposematically signalling. Instead, we show that the primary temporal and spectral characteristics of beetle warning sounds overlap with sympatric unpalatable tiger moth (Arctinae) sounds and that tiger beetles are probably Batesian mimics of noxious moth models. We predict that many insect taxa produce anti-bat sounds and that the acoustic mimicry rings of the night sky are hyperdiverse.
Collapse
Affiliation(s)
- Harlan M. Gough
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Juliette J. Rubin
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biology, University of Florida, Gainesville, FL32611, USA
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
| | - Jesse R. Barber
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, FL32611, USA
- Department of Biological Sciences, Boise State University, Boise, ID83725, USA
| |
Collapse
|
2
|
Silva-Brandão KL, Freitas AVL, Cardoso MZ, Cogni R, de Morais ABB. The Chemistry and Chemical Ecology of Lepidopterans as Investigated in Brazil. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 116:37-66. [PMID: 34698945 DOI: 10.1007/978-3-030-80560-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The interdisciplinary field of Chemical Ecology in Brazil is currently composed of groups that emerged through the pioneering studies of Keith Spalding Brown Jr. and José Tércio Barbosa Ferreira. Following Keith Brown 's steps, José Roberto Trigo continued investigating the role of plant natural products in mediating the association among insects and their host plants, mainly in the Order Lepidoptera. The role of pyrrolizidine alkaloids in those associations was investigated extensively by Brown and Trigo, and most of what is currently known on this subject is based on their studies. The present work acknowledges their contribution to the Brazilian chemical ecology field and on insect-plant communication studies mediated by different chemical compounds.
Collapse
Affiliation(s)
- Karina L Silva-Brandão
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av. Candido Rondom, 400, Campinas, SP, Brazil.
| | - André V L Freitas
- Departamento de Biologia Animal and Museu da Diversidade Biológica, Instituto de Biologia, Universidade Estadual de Campinas, Rua Monteiro Lobato, 255, Campinas, SP, Brazil
| | - Márcio Zikán Cardoso
- Departamento de Ecologia, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, CEP 21941-902, Brazil
| | - Rodrigo Cogni
- Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 321, São Paulo, SP, CEP 05508-090, Brazil
| | | |
Collapse
|
3
|
Mattila ALK, Jiggins CD, Opedal ØH, Montejo-Kovacevich G, Pinheiro de Castro ÉC, McMillan WO, Bacquet C, Saastamoinen M. Evolutionary and ecological processes influencing chemical defense variation in an aposematic and mimetic Heliconius butterfly. PeerJ 2021; 9:e11523. [PMID: 34178447 PMCID: PMC8216171 DOI: 10.7717/peerj.11523] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/05/2021] [Indexed: 02/01/2023] Open
Abstract
Chemical defences against predators underlie the evolution of aposematic coloration and mimicry, which are classic examples of adaptive evolution. Surprisingly little is known about the roles of ecological and evolutionary processes maintaining defence variation, and how they may feedback to shape the evolutionary dynamics of species. Cyanogenic Heliconius butterflies exhibit diverse warning color patterns and mimicry, thus providing a useful framework for investigating these questions. We studied intraspecific variation in de novo biosynthesized cyanogenic toxicity and its potential ecological and evolutionary sources in wild populations of Heliconius erato along environmental gradients, in common-garden broods and with feeding treatments. Our results demonstrate substantial intraspecific variation, including detectable variation among broods reared in a common garden. The latter estimate suggests considerable evolutionary potential in this trait, although predicting the response to selection is likely complicated due to the observed skewed distribution of toxicity values and the signatures of maternal contributions to the inheritance of toxicity. Larval diet contributed little to toxicity variation. Furthermore, toxicity profiles were similar along steep rainfall and altitudinal gradients, providing little evidence for these factors explaining variation in biosynthesized toxicity in natural populations. In contrast, there were striking differences in the chemical profiles of H. erato from geographically distant populations, implying potential local adaptation in the acquisition mechanisms and levels of defensive compounds. The results highlight the extensive variation and potential for adaptive evolution in defense traits for aposematic and mimetic species, which may contribute to the high diversity often found in these systems.
Collapse
Affiliation(s)
- Anniina L K Mattila
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland.,Current affiliation: Finnish Museum of Natural History (LUOMUS), University of Helsinki, Helsinki, Finland
| | - Chris D Jiggins
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | | | | | | - Marjo Saastamoinen
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland.,Helsinki Life Science Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Sculfort O, McClure M, Nay B, Elias M, Llaurens V. Assessing the Role of Developmental and Environmental Factors in Chemical Defence Variation in Heliconiini Butterflies. J Chem Ecol 2021; 47:577-587. [PMID: 34003420 PMCID: PMC8217024 DOI: 10.1007/s10886-021-01278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 11/12/2022]
Abstract
Chemical defences in animals are both incredibly widespread and highly diverse. Yet despite the important role they play in mediating interactions between predators and prey, extensive differences in the amounts and types of chemical compounds can exist between individuals, even within species and populations. Here we investigate the potential role of environment and development on the chemical defences of warningly coloured butterfly species from the tribe Heliconiini, which can both synthesize and sequester cyanogenic glycosides (CGs). We reared 5 Heliconiini species in captivity, each on a single species-specific host plant as larvae, and compared them to individuals collected in the wild to ascertain whether the variation in CG content observed in the field might be the result of differences in host plant availability. Three of these species were reared as larvae on the same host plant, Passiflora riparia, to further test how species, sex, and age affected the type and amount of different defensive CGs, and how they affected the ratio of synthesized to sequestered compounds. Then, focusing on the generalist species Heliconius numata, we specifically explored variation in chemical profiles as a result of the host plant consumed by caterpillars and their brood line, using rearing experiments carried out on two naturally co-occurring host plants with differing CG profiles. Our results show significant differences in both the amount of synthesized and sequestered compounds between butterflies reared in captivity and those collected in the field. We also found a significant effect of species and an effect of sex in some, but not all, species. We show that chemical defences in H. numata continue to increase throughout their life, likely because of continued biosynthesis, and we suggest that variation in the amount of synthesized CGs in this species does not appear to stem from larval host plants, although this warrants further study. Interestingly, we detected a significant effect of brood lines, consistent with heritability influencing CG concentrations in H. numata. Altogether, our results point to multiple factors resulting in chemical defence variation in Heliconiini butterflies and highlight the overlooked effect of synthesis capabilities, which may be genetically determined to some extent.
Collapse
Affiliation(s)
- Ombeline Sculfort
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université Des Antilles, 45 rue Buffon, 75005, Paris, France. .,Unité Molécules de Communication Et Adaptations Des Micro-Organismes (MCAM), Muséum National D'Histoire Naturelle, CNRS, 57 rue Cuvier (BP 54), 75005, Paris, France. .,Laboratoire Écologie, Évolution, Interactions Des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300, Cayenne, France.
| | - Melanie McClure
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université Des Antilles, 45 rue Buffon, 75005, Paris, France.,Laboratoire Écologie, Évolution, Interactions Des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300, Cayenne, France
| | - Bastien Nay
- Unité Molécules de Communication Et Adaptations Des Micro-Organismes (MCAM), Muséum National D'Histoire Naturelle, CNRS, 57 rue Cuvier (BP 54), 75005, Paris, France.,Laboratoire de Synthèse Organique, Ecole Polytechnique, CNRS, ENSTA, Route de Saclay, 91128, Palaiseau Cedex, France
| | - Marianne Elias
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université Des Antilles, 45 rue Buffon, 75005, Paris, France
| | - Violaine Llaurens
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum National D'Histoire Naturelle, CNRS, Sorbonne-Université, EPHE, Université Des Antilles, 45 rue Buffon, 75005, Paris, France
| |
Collapse
|