1
|
Sharma A, Bhardwaj P, Arya SK. Naringin: A potential natural product in the field of biomedical applications. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
2
|
Azraq I, Craveiro RB, Niederau C, Brockhaus J, Bastian A, Knaup I, Neuss S, Wolf M. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann Anat 2021; 234:151668. [PMID: 33400981 DOI: 10.1016/j.aanat.2020.151668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023]
Abstract
Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.
Collapse
Affiliation(s)
- Irma Azraq
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany.
| | - Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Julia Brockhaus
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| |
Collapse
|
3
|
Yang H, Li J, Hu Y, Sun J, Guo W, Li H, Chen J, Huo F, Tian W, Li S. Treated dentin matrix particles combined with dental follicle cell sheet stimulate periodontal regeneration. Dent Mater 2019; 35:1238-1253. [PMID: 31201017 DOI: 10.1016/j.dental.2019.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/14/2019] [Accepted: 05/16/2019] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Periodontal tissue engineering is an attractive approach for restoring periodontal-supporting structures and functions. However, complete periodontal regeneration has not been accomplished. Previous studies demonstrated the feasibility of using cell sheets and treated dentin matrix (TDM) to regenerate bio-roots. METHODS In this study, we regenerated periodontal tissue using cell sheets combined with TDM particles (TDMPs). Human dental follicle cells (hDFCs) were isolated and characterized. Human dental follicle cells sheets (hDFCSs) and human TDMPs (hTDMP) were fabricated and characterized. The osteogenic effect of hTDMP was evaluated on human bone marrow stromal cells (hBMSCs) in vitro and a rat calvarial bone defect in vivo. Real-time PCR, western blotting, radiograph analysis, and histological analysis were performed to evaluate the periodontal induction capacity of hTDMP. One-wall periodontal intrabony defects were prepared to evaluate the periodontal regeneration capacity of TDMP/DFCSs on beagle dogs. RESULTS The results showed that hDFCs were mesenchymal stem cells. hTDMP promoted the proliferation and osteogenic differentiation of hBMSCs. New bone formation was observed in the rat calvarial bone defect zone in both the hTDMP and hydroxyapatite/β-tricalcium phosphate groups. Periodontal-like tissues showed better regeneration in the canine TDMP+DFCS group than in the other groups. SIGNIFICANCE These results demonstrate the potential of using TDMP/DFCSs in periodontal regeneration.
Collapse
Affiliation(s)
- Hefeng Yang
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650500, PR China; National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China
| | - Jie Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, College of Stomatology, Chongqing Medical University, Chongqing 401147, PR China
| | - Yu Hu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650031, PR China
| | - Jingjing Sun
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Weihua Guo
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Hui Li
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Jinglong Chen
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China
| | - Fangjun Huo
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China
| | - Weidong Tian
- National Engineering Laboratory for Oral Regenerative Medicine, Sichuan University, Chengdu 610041, PR China; Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, PR China.
| | - Song Li
- Department of Dental Research, The Affiliated Stomatological Hospital of Kunming Medical University, Kunming, Yunnan 650500, PR China.
| |
Collapse
|
4
|
Zhou J, Zhang Y, Li L, Fu H, Yang W, Yan F. Human β-defensin 3-combined gold nanoparticles for enhancement of osteogenic differentiation of human periodontal ligament cells in inflammatory microenvironments. Int J Nanomedicine 2018; 13:555-567. [PMID: 29416335 PMCID: PMC5790078 DOI: 10.2147/ijn.s150897] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective It is a great challenge to absorb and conduct biophysicochemical interactions at the nano-bio interface. Peptides are emerging as versatile materials whose function can be programmed to perform specific tasks. Peptides combined nanoparticles might be utilized as a new approach of treatment. Human β-defensin 3 (hBD3), possesses both antimicrobial and proregeneration properties. Gold nanoparticles (AuNPs) have shown promising applications in the field of tissue engineering. However, the coordinating effects of AuNPs and hBD3 on human periodontal ligament cells (hPDLCs) remain unknown. In this study, we systematically investigated whether AuNPs and hBD3 would be able to coordinate and enhance the osteogenic differentiation of hPDLCs in inflammatory microenvironments, and the underlying mechanisms was explored. Methods hPDLCs were stimulated with E. coli-LPS, hBD3 and AuNPs. Alkaline phosphatase (ALP) and alizarin red S staining were used to observe the effects of hBD3 and AuNPs on the osteogenic differentiation of hPDLCs. Real-time PCR and western blot were performed to evaluate the osteogenic differentiation and Wnt/β-catenin signaling pathway related gene and protein expression. Results In the inflammatory microenvironments stimulated by E. coli-LPS, we found that AuNPs and hBD3 increased the proliferation of hPDLCs slightly. In addition, hBD3-combined AuNPs could significantly enhance ALP activities and mineral deposition in vitro. Meanwhile, we observed that the osteogenic differentiation-related gene and protein expressions of ALP, collagenase-I (COL-1) and runt-related transcription factor 2 (Runx-2) were remarkably upregulated in the presence of hBD3 and AuNPs. Moreover, hBD3-combined AuNPs strongly activated the Wnt/β-catenin signaling pathway and upregulated the gene and protein expression of β-catenin and cyclin D1. Furthermore, hBD3-combined AuNPs induced osteogenesis, which could be reversed by the Wnt/β-catenin signaling pathway inhibitor (ICG-001). Conclusion The present study demonstrated that hBD3 combined AuNPs could significantly promote the osteogenic differentiation of hPDLCs in inflammatory microenvironments via activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jing Zhou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Yangheng Zhang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Lingjun Li
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| | - Huangmei Fu
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Wenrong Yang
- School of Life and Environmental Science, Centre for Chemistry and Biotechnology, Deakin University, Geelong, VIC, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway. Arch Oral Biol 2017; 78:100-108. [DOI: 10.1016/j.archoralbio.2017.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/02/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
|
6
|
Shiga M, Ogawa T, Ekprachayakoon I, Moriyama K. Orthodontic Treatment and Long-Term Management of a Patient with Marfan Syndrome. Cleft Palate Craniofac J 2017; 54:358-367. [DOI: 10.1597/15-068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Marfan syndrome (MFS) is caused by abnormal systemic connective tissue. The main clinical manifestations include long limbs, long slender fingers, lens subluxation, abnormal cardiac valves, and aortic aneurysm. We report the case of an 11-year-old patient with MFS who underwent orthodontic treatment and was followed up until the age of 25 years. We found no significant differences in tooth movement between the patient with MFS and healthy subjects. However, because patients with MFS show characteristic facial growth and an increased risk of developing systemic comorbidities, their dental status requires careful observation over time.
Collapse
Affiliation(s)
- Momotoshi Shiga
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan, and Head of Orthodontics, Department of Orthodontics, Seirei Hamamatsu General Hospital, Shizuoka, Japan
| | - Takuya Ogawa
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Issareeya Ekprachayakoon
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Moriyama
- Maxillofacial Orthognathics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Endogenous hydrogen sulfide is involved in osteogenic differentiation in human periodontal ligament cells. Arch Oral Biol 2016; 68:1-8. [PMID: 27035752 DOI: 10.1016/j.archoralbio.2016.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 03/01/2016] [Accepted: 03/18/2016] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Endogenous hydrogen sulfide (H2S) has recently emerged as an important intracellular gaseous signaling molecule within cellular systems. Endogenous H2S is synthesized from l-cysteine via cystathionine β-synthase and cystathionine γ-lyase and it regulates multiple signaling pathways in mammalian cells. Indeed, aberrant H2S levels have been linked to defects in bone formation in experimental mice. The aim of this study was to examine the potential production mechanism and function of endogenous H2S within primary human periodontal ligament cells (PDLCs). DESIGN Primary human PDLCs were obtained from donor molars with volunteer permission. Immunofluorescent labeling determined expression of the H2S synthetase enzymes. These enzymes were inhibited with D,L-propargylglycine or hydroxylamine to examine the effects of H2S signaling upon the osteogenic differentiation of PDLCs. Gene and protein expression levels of osteogenic markers in conjunction with ALP staining and activity and alizarin red S staining of calcium deposition were used to assay the progression of osteogenesis under different treatment conditions. Cultures were exposed to Wnt3a treatment to assess downstream signaling mechanisms. RESULTS In this study, we show that H2S is produced by human PDLCs via the cystathionine β-synthase/cystathionine γ-lyase pathway to promote their osteogenic differentiation. These levels must be carefully maintained as excessive or deficient H2S levels temper the observed osteogenic effect by inhibiting Wnt/β-catenin signaling. CONCLUSIONS These results demonstrate that optimal concentrations of endogenous H2S must be maintained within PDLCs to promote osteogenic differentiation by activating the Wnt/β-catenin signaling cascade.
Collapse
|
8
|
Costa CRR, Amorim BR, de Magalhães P, De Luca Canto G, Acevedo AC, Guerra ENS. Effects of Plants on Osteogenic Differentiation and Mineralization of Periodontal Ligament Cells: A Systematic Review. Phytother Res 2016; 30:519-31. [PMID: 26822584 DOI: 10.1002/ptr.5568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 12/05/2015] [Accepted: 12/12/2015] [Indexed: 12/16/2022]
Abstract
This systematic review aimed to evaluate the effects of plants on osteogenic differentiation and mineralization of human periodontal ligament cells. The included studies were selected using five different electronic databases. The reference list of the included studies was crosschecked, and a partial gray literature search was undertaken using Google Scholar and ProQuest. The methodology of the selected studies was evaluated using GRADE. After a two-step selection process, eight studies were identified. Six different types of plants were reported in the selected studies, which were Morinda citrifolia, Aloe vera, Fructus cnidii, Zanthoxylum schinifolium, Centella asiatica, and Epimedium species. They included five types of isolated plant components: acemannan, osthole, hesperetin, asiaticoside, and icariin. In addition, some active substances of these components were identified as polysaccharides, coumarins, flavonoids, and triterpenes. The studies demonstrated the potential effects of plants on osteogenic differentiation, cell proliferation, mineral deposition, and gene and protein expression. Four studies showed that periodontal ligament cells induce mineral deposition after plant treatment. Although there are few studies on the subject, current evidence suggests that plants are potentially useful for the treatment of periodontal diseases. However, further investigations are required to confirm the promising effect of these plants in regenerative treatments.
Collapse
Affiliation(s)
| | - Bruna Rabelo Amorim
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | - Pérola de Magalhães
- Natural Products Laboratory, Health Sciences Faculty, University of Brasilia, Brasília, Brazil
| | - Graziela De Luca Canto
- Brazilian Centre for Evidence-Based Research, Department of Dentistry, Federal University of Santa Catarina, Florianopolis, SC, Brazil.,School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ana Carolina Acevedo
- Oral Histopathology Laboratory, Health Sciences Faculty, University of Brasília, Brasília, Brazil
| | | |
Collapse
|
9
|
Short-term heat pre-treatment modulates the release of HMGB1 and pro-inflammatory cytokines in hPDL cells following mechanical loading and affects monocyte behavior. Clin Oral Investig 2015; 20:923-31. [PMID: 26358476 DOI: 10.1007/s00784-015-1580-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Heat shock proteins (HSP) act as cell-protective molecules that are upregulated upon thermal insult, hypoxia, and ischemia. Such ischemic conditions can be found during tissue remodeling associated with orthodontic tooth movement or trauma when compression forces lead to cell necrosis and subsequent clearance of cellular debris by immune competent cells. Host immune overreaction can result in undesired side effects such as tooth root resorption. Here, we analyzed whether heat pre-treatment would affect the initially catabolic host immune response induced by mechanical loading of human periodontal ligament (hPDL) cells, which represent major constituents of the tooth supporting apparatus involved in the regulation of periodontal remodeling. MATERIALS AND METHODS Fifth passage hPDL cells were exposed to an elevated temperature of 43° for 1 h prior to mechanical loading. Cell morphology, high mobility group box protein 1 (HMGB1), interleukin (IL)-6, and IL-8 expression were analyzed microscopically and by ELISA. The physiological relevance for monocyte behavior was tested in monocyte adhesion and osteoclast differentiation assays. RESULTS Short-term heat pre-treatment did not show any visible effect on hPDL cell morphology, but resulted in a significant downregulation of pro-inflammatory cytokines when being additionally loaded mechanically. Supernatants of heat-exposed hPDL cell cultures demonstrated a reduced impact on monocyte adhesion and osteoclastic differentiation. CONCLUSIONS Heat pre-treatment of hPDL cells induces cell-protective mechanisms towards mechanical stress and favors the reduction of cell stress associated effects on monocyte/macrophage physiology. CLINICAL RELEVANCE These data present the induction of heat shock proteins as a promising treatment option to limit undesired side effects of periodontal remodeling.
Collapse
|
10
|
Effects of Naringin on Proliferation and Osteogenic Differentiation of Human Periodontal Ligament Stem Cells In Vitro and In Vivo. Stem Cells Int 2015; 2015:758706. [PMID: 26078764 PMCID: PMC4452874 DOI: 10.1155/2015/758706] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/26/2015] [Indexed: 12/31/2022] Open
Abstract
This study is to explore the osteogenesis potential of the human periodontal ligament stem cells (hPDLSCs) induced by naringin in vitro and in vitro. The results confirmed that 1 μM naringin performs the best effect and a collection of bone-related genes (RUNX2, COL1A2, OPN, and OCN) had significantly higher expression levels compared to the control group. Furthermore, a typical trabecular structure was observed in vivo, surrounded by a large amount of osteoblasts. These results demonstrated that naringin, at a concentration of 1 μM, can efficiently promote the proliferation and differentiation of hPDLSCs both in vitro and in vivo.
Collapse
|
11
|
Compression of human primary cementoblasts leads to apoptosis. J Orofac Orthop 2014; 75:430-45. [DOI: 10.1007/s00056-014-0237-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 03/04/2014] [Indexed: 12/31/2022]
|