Cardioprotective Effect of
Croton macrostachyus Stem Bark Extract and Solvent Fractions on Cyclophosphamide-Induced Cardiotoxicity in Rats.
EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020;
2020:8467406. [PMID:
32328140 PMCID:
PMC7150702 DOI:
10.1155/2020/8467406]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/04/2020] [Accepted: 03/09/2020] [Indexed: 01/06/2023]
Abstract
Objective
To evaluate the antioxidant and cardioprotective activities of stem bark extract and solvent fractions of Croton macrostachyus on cyclophosphamide-induced cardiotoxicity in rats. Materials and Methods. DPPH free radical scavenging assay method was used to determine antioxidant activity whereas Sprague-Dawley rats were used to evaluate the cardioprotective activity. Except for the normal control, all groups were subjected to cyclophosphamide (200 mg/kg, i.p.) toxicity on the first day. Enalapril at 10 mg/kg was used as a reference. The hydromethanolic crude extract (100, 200, and 400 mg/kg) and aqueous and ethyl acetate fractions (100 and 200 mg/kg, each) were administered for 10 days. The cardioprotective activities were evaluated using cardiac biomarkers such as Troponin I, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total cholesterol (TC), triglyceride (TG), and histopathological studies of heart tissue.
Results
Crude extract and ethyl acetate and aqueous fractions exhibited free radical scavenging activities at IC50 of 594 μg/mL, 419 μg/mL, and 716 μg/mL, respectively. Crude extract at 400 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.29 ± 0.06 ng/mL, 103.00 ± 7.63 U/L, 99.80 ± 6.18 U/L, and 108.80 ± 8.81 U/L, respectively. In addition, ethyl acetate fraction at 200 mg/kg decreased the levels of troponin, AST, ALT, and ALP to 0.22 ± 0.02 ng/mL, 137.00 ± 14.30 U/L, 90.33 ± 6.13 U/L, and 166.67 ± 13.50 U/L, respectively, compared with the cyclophosphamide control group.
Conclusions
Croton macrostachyus possesses cardioprotective activities and it could be a possible source of treatment for cardiotoxicity induced by cyclophosphamide.
Collapse