1
|
Gietzen C, Kaya K, Janssen JP, Gertz RJ, Terzis R, Huflage H, Grunz JP, Gietzen T, Pennig H, Celik E, Borggrefe J, Persigehl T, Kabbasch C, Weiss K, Goertz L, Pennig L. Highly compressed SENSE accelerated relaxation-enhanced angiography without contrast and triggering (REACT) for fast non-contrast enhanced magnetic resonance angiography of the neck: Clinical evaluation in patients with acute ischemic stroke at 3 tesla. Magn Reson Imaging 2024; 112:27-37. [PMID: 38599503 DOI: 10.1016/j.mri.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/06/2024] [Accepted: 04/07/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND AND PURPOSE Long acquisition times limit the feasibility of established non-contrast-enhanced MRA (non-CE-MRA) techniques. The purpose of this study was to evaluate a highly accelerated flow-independent sequence (Relaxation-Enhanced Angiography without Contrast and Triggering [REACT]) for imaging of the extracranial arteries in acute ischemic stroke (AIS). MATERIALS AND METHODS Compressed SENSE (CS) accelerated (factor 7) 3D isotropic REACT (fixed scan time: 01:22 min, reconstructed voxel size 0.625 × 0.625 × 0.75 mm3) and CE-MRA (CS factor 6, scan time: 1:08 min, reconstructed voxel size 0.5 mm3) were acquired in 76 AIS patients (69.4 ± 14.3 years, 33 females) at 3 Tesla. Two radiologists assessed scans for the presence of internal carotid artery (ICA) stenosis and stated their diagnostic confidence using a 5-point scale (5 = excellent). Vessel quality of cervical arteries as well as the impact of artifacts and image noise were scored on 5-point scales (5 = excellent/none). Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured for the common carotid artery (CCA) and ICA (C1-segment). RESULTS REACT provided a sensitivity of 88.5% and specificity of 100% for clinically relevant (≥50%) ICA stenosis with substantial concordance to CE-MRA regarding stenosis grading (Cohen's kappa 0.778) and similar diagnostic confidence (REACT: mean 4.5 ± 0.4 vs. CE-MRA: 4.5 ± 0.6; P = 0.674). Presence of artifacts (3.6 ± 0.5 vs. 3.5 ± 0.7; P = 0.985) and vessel quality (all segments: 3.6 ± 0.7 vs. 3.8 ± 0.7; P = 0.004) were comparable between both techniques with REACT showing higher scores at the CCA (4.3 ± 0.6 vs. 3.8 ± 0.9; P < 0.001) and CE-MRA at V2- (3.3 ± 0.5 vs. 3.9 ± 0.8; P < 0.001) and V3-segments (3.3 ± 0.5 vs. 4.0 ± 0.8; P < 0.001). For all vessels, REACT showed a lower impact of image noise (3.8 ± 0.6 vs. 3.6 ± 0.7; P = 0.024) while yielding higher aSNR (52.5 ± 15.1 vs. 37.9 ± 12.5; P < 0.001) and aCNR (49.4 ± 15.0 vs. 34.7 ± 12.3; P < 0.001) for all vessels combined. CONCLUSIONS In patients with acute ischemic stroke, highly accelerated REACT provides an accurate detection of ICA stenosis with vessel quality and scan time comparable to CE-MRA.
Collapse
Affiliation(s)
- Carsten Gietzen
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Kenan Kaya
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Paul Janssen
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman Johannes Gertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Robert Terzis
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henner Huflage
- Institute for Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jan-Peter Grunz
- Institute for Diagnostic and Interventional Radiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Thorsten Gietzen
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Henry Pennig
- Department for Orthopaedic and Trauma Surgery, Faculty of Medicine and University Hospital Cologne, University of Cologne
| | - Erkan Celik
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kabbasch
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Lukas Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Janssen JP, Rose S, Kaya K, Terzis R, Hahnfeldt R, Gertz RJ, Goertz L, Iuga AI, Grunz JP, Kabbasch C, Rauen P, Persigehl T, Weiss K, Borggrefe J, Pennig L, Gietzen C. Non-contrast-enhanced MR-angiography of Extracranial Arteries in Acute Ischemic Stroke at 1.5 Tesla Using Relaxation-Enhanced Angiography Without Contrast and Triggering (REACT). Clin Neuroradiol 2024:10.1007/s00062-024-01458-4. [PMID: 39316116 DOI: 10.1007/s00062-024-01458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/16/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE To evaluate a novel flow-independent sequence (Relaxation-Enhanced Angiography without Contrast and Triggering (REACT)) for imaging of the extracranial arteries in acute ischemic stroke (AIS) at 1.5 T. METHODS This retrospective single-center study included 47 AIS patients who received REACT (scan time: 3:01 min) and contrast-enhanced MRA (CE-MRA) of the extracranial arteries at 1.5 T in clinical routine. Two radiologists assessed scans for proximal internal carotid artery (ICA) stenosis, stated their diagnostic confidence and rated the image quality of cervical arteries, impact of artifacts and image noise. Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured for the common carotid artery and ICA. RESULTS REACT achieved a sensitivity of 95.0% and a specificity of 97.3% for ICA stenoses in high agreement with CE-MRA (κ = 0.83) with equal diagnostic confidence (p = 0.22). Image quality was rated higher for CE-MRA at the aortic arch (p = 0.002) and vertebral arteries (p < 0.001), whereas REACT provided superior results for the extracranial ICA (p = 0.008). Both sequences were only slightly affected by artifacts (p = 0.60), while image noise was more pronounced in CE-MRA (p < 0.001) in line with higher aSNR (p < 0.001) and aCNR (p < 0.001) values in REACT for all vessels. CONCLUSION Given its good diagnostic performance while yielding comparable image quality and scan time to CE-MRA, REACT may be suitable for the imaging of the extracranial arteries in acute ischemic stroke at 1.5 T.
Collapse
Affiliation(s)
- Jan P Janssen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany.
| | - Sarah Rose
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Kenan Kaya
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Robert Terzis
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Robert Hahnfeldt
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Roman J Gertz
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Lukas Goertz
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Andra-Iza Iuga
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Jan-Peter Grunz
- University Hospital Wuerzburg, Institute for Diagnostic and Interventional Radiology, Wuerzburg, Germany
- University of Wisconsin-Madison, Madison, WI, USA
| | - Christoph Kabbasch
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Philip Rauen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Thorsten Persigehl
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | | | - Jan Borggrefe
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | - Lenhard Pennig
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| | - Carsten Gietzen
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute for Diagnostic and Interventional Radiology, Kerpener Straße 62, 50937, Cologne, Germany
| |
Collapse
|
3
|
Pannell JS, Corey AS, Shih RY, Austin MJ, Chu S, Davis MA, Ducruet AF, Hunt CH, Ivanidze J, Kalnins A, Lacy ME, Lo BM, Setzen G, Shaines MD, Soares BP, Soderlund KA, Thaker AA, Wang LL, Burns J. ACR Appropriateness Criteria® Cerebrovascular Diseases-Stroke and Stroke-Related Conditions. J Am Coll Radiol 2024; 21:S21-S64. [PMID: 38823945 DOI: 10.1016/j.jacr.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 06/03/2024]
Abstract
Cerebrovascular disease encompasses a vast array of conditions. The imaging recommendations for stroke-related conditions involving noninflammatory steno-occlusive arterial and venous cerebrovascular disease including carotid stenosis, carotid dissection, intracranial large vessel occlusion, and cerebral venous sinus thrombosis are encompassed by this document. Additional imaging recommendations regarding complications of these conditions including intraparenchymal hemorrhage and completed ischemic strokes are also discussed. The American College of Radiology Appropriateness Criteria are evidence-based guidelines for specific clinical conditions that are reviewed annually by a multidisciplinary expert panel. The guideline development and revision process support the systematic analysis of the medical literature from peer reviewed journals. Established methodology principles such as Grading of Recommendations Assessment, Development, and Evaluation or GRADE are adapted to evaluate the evidence. The RAND/UCLA Appropriateness Method User Manual provides the methodology to determine the appropriateness of imaging and treatment procedures for specific clinical scenarios. In those instances where peer reviewed literature is lacking or equivocal, experts may be the primary evidentiary source available to formulate a recommendation.
Collapse
Affiliation(s)
| | - Amanda S Corey
- Panel Chair, Atlanta VA Health Care System and Emory University, Atlanta, Georgia
| | - Robert Y Shih
- Panel Vice Chair, Uniformed Services University, Bethesda, Maryland
| | | | - Sammy Chu
- University of Washington, Seattle, Washington; University of British Columbia, Vancouver, British Columbia, Canada
| | - Melissa A Davis
- Yale University School of Medicine, New Haven, Connecticut; Committee on Emergency Radiology-GSER
| | - Andrew F Ducruet
- Barrow Neurological Institute, Phoenix, Arizona, Neurosurgery expert
| | - Christopher H Hunt
- Mayo Clinic, Rochester, Minnesota; Commission on Nuclear Medicine and Molecular Imaging
| | | | | | - Mary E Lacy
- Washington State University, Spokane, Washington; American College of Physicians
| | - Bruce M Lo
- Sentara Norfolk General Hospital/Eastern Virginia Medical School, Norfolk, Virginia; American College of Emergency Physicians
| | - Gavin Setzen
- Albany ENT & Allergy Services, Albany, New York; American Academy of Otolaryngology-Head and Neck Surgery
| | - Matthew D Shaines
- Albert Einstein College of Medicine Montefiore Medical Center, Bronx, New York, Primary care physician
| | - Bruno P Soares
- Stanford University School of Medicine, Stanford, California
| | - Karl A Soderlund
- Uniformed Services University of the Health Sciences, Bethesda, Maryland; Naval Medical Center Portsmouth, Portsmouth, Virginia
| | | | - Lily L Wang
- University of Cincinnati Medical Center, Cincinnati, Ohio
| | - Judah Burns
- Specialty Chair, Montefiore Medical Center, Bronx, New York
| |
Collapse
|
4
|
Seo YS, Lee S, Choi YH, Cho YJ, Lee SB, Cheon JE. Monitoring Posterior Cerebral Perfusion Changes With Dynamic Susceptibility Contrast-Enhanced Perfusion MRI After Anterior Revascularization Surgery in Pediatric Moyamoya Disease. Korean J Radiol 2023; 24:784-794. [PMID: 37500579 PMCID: PMC10400367 DOI: 10.3348/kjr.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/29/2023] Open
Abstract
OBJECTIVE To determine whether dynamic susceptibility contrast-enhanced (DSC) perfusion magnetic resonance imaging (MRI) can be used to evaluate posterior cerebral circulation in pediatric patients with moyamoya disease (MMD) who underwent anterior revascularization. MATERIALS AND METHODS This study retrospectively included 73 patients with MMD who underwent DSC perfusion MRI (age, 12.2 ± 6.1 years) between January 2016 and December 2020, owing to recent-onset clinical symptoms during the follow-up period after completion of anterior revascularization. DSC perfusion images were analyzed using a dedicated software package (NordicICE; Nordic NeuroLab) for the middle cerebral artery (MCA), posterior cerebral artery (PCA), and posterior border zone between the two regions (PCA-MCA). Patients were divided into two groups; the PCA stenosis group included 30 patients with newly confirmed PCA involvement, while the no PCA stenosis group included 43 patients without PCA involvement. The relationship between DSC perfusion parameters and PCA stenosis, as well as the performance of the parameters in discriminating between groups, were analyzed. RESULTS In the PCA stenosis group, the mean follow-up duration was 5.3 years after anterior revascularization, and visual disturbances were a common symptom. Normalized cerebral blood volume was increased, and both the normalized time-to-peak (nTTP) and mean transit time values were significantly delayed in the PCA stenosis group compared with those in the no PCA stenosis group in the PCA and PCA-MCA border zones. TTPPCA (odds ratio [OR] = 6.745; 95% confidence interval [CI] = 2.665-17.074; P < 0.001) and CBVPCA-MCA (OR = 1.567; 95% CI = 1.021-2.406; P = 0.040) were independently associated with PCA stenosis. TTPPCA showed the highest receiver operating characteristic curve area in discriminating for PCA stenosis (0.895; 95% CI = 0.803-0.986). CONCLUSION nTTP can be used to effectively diagnose PCA stenosis. Therefore, DSC perfusion MRI may be a valuable tool for monitoring PCA stenosis in patients with MMD.
Collapse
Affiliation(s)
- Yun Seok Seo
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seunghyun Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Innovative Medical Technology Research Institute, Seoul National University Hospital, Seoul, Republic of Korea.
| | - Young Hun Choi
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yeon Jin Cho
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seul Bi Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Eun Cheon
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
5
|
Peret A, Romero-Sanchez G, Dabiri M, McNally JS, Johnson KM, Mossa-Basha M, Eisenmenger LB. MR Angiography of Extracranial Carotid Disease. Magn Reson Imaging Clin N Am 2023; 31:395-411. [PMID: 37414468 DOI: 10.1016/j.mric.2023.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Magnetic resonance angiography sequences, such as time-of-flight and contrast-enhanced angiography, provide clear depiction of vessel lumen, traditionally used to evaluate carotid pathologic conditions such as stenosis, dissection, and occlusion; however, atherosclerotic plaques with a similar degree of stenosis may vary tremendously from a histopathological standpoint. MR vessel wall imaging is a promising noninvasive method to evaluate the content of the vessel wall at high spatial resolution. This is particularly interesting in the case of atherosclerosis as vessel wall imaging can identify higher risk, vulnerable plaques as well as has potential applications in the evaluation of other carotid pathologic conditions.
Collapse
Affiliation(s)
- Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53705, USA
| | - Griselda Romero-Sanchez
- Department of Radiology, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Avenida Vasco de Quiroga No.15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan C.P.14080, Ciudad de México, Mexico City, Mexico
| | - Mona Dabiri
- Radiology Department, Children's Medical Center, Tehran University of Medical Science, No 63, Gharib Avenue, Keshavarz Blv, Tehran 1419733151, Iran
| | - Joseph Scott McNally
- Department of Radiology, University of Utah, 50 N Medical Dr, Salt Lake City, UT 84132, USA
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53705, USA
| | - Mahmud Mossa-Basha
- Department of Radiology, University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA 98195, USA
| | - Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53705, USA.
| |
Collapse
|
6
|
Zhang X, Zhou C, Cao YZ, Su CQ, Shi HB, Lu SS, Liu S. High-resolution magnetic resonance imaging for predicting successful recanalization in patients with chronic internal carotid artery occlusion. Front Neurol 2022; 13:1003800. [PMID: 36119711 PMCID: PMC9475072 DOI: 10.3389/fneur.2022.1003800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe main aim of the study was to investigate the predictive factors of high-resolution magnetic resonance imaging (HR-MRI) for successful recanalization in patients with chronic internal carotid artery occlusion (CICAO).MethodsWe included 41 consecutive patients who had CICAO and underwent recanalization attempts. The demographics, clinical data, and HR-MRI features in relation to the technique success were collected and analyzed using univariate and multivariate analyses. A score-based prediction model was constructed using a regression coefficient-based scoring method.ResultsTechnical success was achieved in 26 (63.4%) patients, with a complication rate of 12.2% (5/41). Based on multivariate analysis, occlusions involving ophthalmic artery segment (C6) or above (OR: 0.036; 95% confidence interval [CI]: 0.004–0.336) and nontapered stump (OR: 0.064; 95% CI: 0.007–0.591) were identified as independent negative predictors of successful recanalization in patients with CICAO. Point scores were assigned according to the model coefficients, and the patients who scored 0, 1, or 2 points had success rates of 93.33% (14/15), 66.67% (12/18), or 0% (0/8), respectively.ConclusionHR-MRI characteristics may be valuable in identifying candidates for endovascular recanalization in patients with CICAO. Occlusions involving the C6 segment or higher, as well as nontapered stumps, were independent negative predictors of technical success.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun Zhou
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yue-zhou Cao
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Chun-qiu Su
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Hai-bin Shi
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Shan-shan Lu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- Shanshan Lu
| | - Sheng Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
- *Correspondence: Sheng Liu
| |
Collapse
|
7
|
Hoyer UCI, Lennartz S, Abdullayev N, Fichter F, Jünger ST, Goertz L, Laukamp KR, Gertz RJ, Grunz JP, Hohmann C, Maintz D, Persigehl T, Kabbasch C, Borggrefe J, Weiss K, Pennig L. Imaging of the extracranial internal carotid artery in acute ischemic stroke: assessment of stenosis, plaques, and image quality using relaxation-enhanced angiography without contrast and triggering (REACT). Quant Imaging Med Surg 2022; 12:3640-3654. [PMID: 35782261 PMCID: PMC9246733 DOI: 10.21037/qims-21-1122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/22/2022] [Indexed: 07/24/2023]
Abstract
BACKGROUND In stroke magnetic resonance imaging (MRI), contrast-enhanced magnetic resonance angiography (CE-MRA) is the clinical standard to depict extracranial arteries but native MRA techniques are of increased interest to facilitate clinical practice. The purpose of this study was to assess the detection of extracranial internal carotid artery (ICA) stenosis and plaques as well as the image quality of cervical carotid arteries between a novel flow-independent relaxation-enhanced angiography without contrast and triggering (REACT) sequence and CE-MRA in acute ischemic stroke (AIS). METHODS In this retrospective, single-center study, 105 consecutive patients (65.27±18.74 years, 63 males) were included, who received a standard stroke protocol at 3T in clinical routine including Compressed SENSE (CS) accelerated (factor 4) 3D isotropic REACT (fixed scan time: 02:46 min) and CS accelerated (factor 6) 3D isotropic CE-MRA. Three radiologists independently assessed scans for the presence of extracranial ICA stenosis and plaques (including hyper-/hypointense signal) with concomitant diagnostic confidence using 3-point scales (3= excellent). Vessel quality, artifacts, and image noise of extracranial carotid arteries were subjectively scored on 5-point scales (5= excellent/none). Wilcoxon tests were used for statistical comparison. RESULTS Considering CE-MRA as the standard of reference, REACT provided a sensitivity of 89.8% and specificity of 95.2% for any and of 93.5% and 95.8% for clinically relevant (≥50%) extracranial ICA stenosis and yielded a to CE-MRA comparable diagnostic confidence [mean ± standard deviation (SD), median (interquartile range): 2.8±0.5, 3 (3-3) vs. 2.7±0.5, 3 (2-3), P=0.03]. Using REACT, readers detected more plaques overall (n=57.3 vs. 47.7, P<0.001) and plaques of hyperintense signal (n=12.3 vs. 5.7, P=0.02) with higher diagnostic confidence [2.8±0.5, 3 (3-3) vs. 2.6±0.7, 3 (2-3), P<0.001] than CE-MRA. After analyzing a total of 1,260 segments, the vessel quality of all segments combined [4.61±0.66 vs. 4.58±0.68, 5 (4-5) vs. 5 (4-5), P=0.0299] and artifacts [4.51±0.70 vs. 4.44±0.73, 5 (4-5) vs. 5 (4-5), P>0.05] were comparable between the sequences with REACT showing a lower image noise [4.43±0.67 vs. 4.25±0.71, 5 (4-5) vs. 4 (4-5), P<0.001]. CONCLUSIONS Without the use of gadolinium-based contrast agents or triggering, REACT provides a high sensitivity and specificity for extracranial ICA stenosis and a potential improved depiction of adjacent plaques while yielding to CE-MRA comparable vessel quality in a large patient cohort with AIS.
Collapse
Affiliation(s)
- Ulrike Cornelia Isabel Hoyer
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nuran Abdullayev
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Fichter
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Stephanie T. Jünger
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lukas Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of General Neurosurgery, Center for Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Roman Johannes Gertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Christopher Hohmann
- Department III of Internal Medicine, Heart Center, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David Maintz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Kabbasch
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| | | | - Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Mizoshiri T, Yoshida M, Oda S, Tsumagari S, Nakaura T, Harada K, Ikeda O. Non-contrast mDixon MR angiography of the neck: Comparison with time-of-flight MR angiography in normal subjects. Medicine (Baltimore) 2021; 100:e28351. [PMID: 34941146 PMCID: PMC8702219 DOI: 10.1097/md.0000000000028351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/01/2021] [Indexed: 01/05/2023] Open
Abstract
We investigated the feasibility of non-contrast three-dimensional modified Dixon (mDixon) magnetic resonance angiography (MRA) to evaluate the carotid artery.We studied 30 normal patients who underwent non-contrast mDixon and conventional time-of-flight (TOF) MRA of the neck with a clinical 3T MR scanner. Carotid artery signal-to-noise ratio (SNR) and contrast-to-noise ratio were compared between mDixon-MRA and TOF-MRA. Two readers independently evaluated vessel sharpness, image contrast, and overall image quality using a 4-point scale.SNR was significantly higher on mDixon-MRA than TOF-MRA (P < .01). There was no significant difference in contrast-to-noise ratio. The visual score for vessel sharpness was significantly higher on mDixon-MRA than TOF-MRA (P < .01), whereas the score for contrast was significantly higher on TOF-MRA (P < .01).Although non-contrast three-dimensional mDixon-MRA showed lower visual contrast than conventional TOF-MRA, it provided images with significantly higher SNR and better vessel sharpness than TOF-MRA.
Collapse
Affiliation(s)
- Tomohiro Mizoshiri
- Department of Radiology, Amakusa Medical Center, 854-1 Jikiba, Kameba, Amakusa, Kumamoto, Japan
| | - Morikatsu Yoshida
- Department of Radiology, Amakusa Medical Center, 854-1 Jikiba, Kameba, Amakusa, Kumamoto, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Shota Tsumagari
- Department of Radiology, Amakusa Medical Center, 854-1 Jikiba, Kameba, Amakusa, Kumamoto, Japan
| | - Takeshi Nakaura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| | - Kazunori Harada
- Department of Surgery, Amakusa Medical Center, 854-1 Jikiba, Kameba, Amakusa, Kumamoto, Japan
| | - Osamu Ikeda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, Japan
| |
Collapse
|
9
|
Imaging methods for surgical revascularization in patients with moyamoya disease: an updated review. Neurosurg Rev 2021; 45:343-356. [PMID: 34417671 PMCID: PMC8827314 DOI: 10.1007/s10143-021-01596-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Neuroimaging is crucial in moyamoya disease (MMD) for neurosurgeons, during pre-surgical planning and intraoperative navigation not only to maximize the success rate of surgery, but also to minimize postsurgical neurological deficits in patients. This is a review of recent literatures which updates the clinical use of imaging methods in the morphological and hemodynamic assessment of surgical revascularization in patients with MMD. We aimed to assist surgeons in assessing the status of moyamoya vessels, selecting bypass arteries, and monitoring postoperative cerebral perfusion through the latest imaging technology.
Collapse
|
10
|
Calloni SF, Perrotta M, Roveri L, Panni P, Del Poggio A, Vezzulli PQ, Filippi M, Falini A, Anzalone N. The role of CE-MRA of the supraortic vessels in the detection of associated intracranial pathology. Neurol Sci 2021; 42:5131-5137. [PMID: 33779864 DOI: 10.1007/s10072-021-05222-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/23/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Contrast-enhanced magnetic resonance angiography (CE-MRA) has become a very popular imaging technique in the evaluation of the extracranial vessels pathology, while it is not commonly used to rule out intracranial vascular pathology. On the contrary, 3D time of flight MRA (TOF-MRA) has a solid role in the study of intracranial arterial vessels disease. MATERIALS AND METHODS One hundred and eight patients were consecutively included in the study. All patients were submitted to a 3 Tesla 3D CE-MRA imaging to rule out extracranial vessels pathology. A comparison was made with a 3D-TOF sequence acquired at the same time in the assessment of intracranial vessels diseases such as steno-occlusion, dissection, and aneurysms. RESULTS With regard to steno-occlusive disease, Spearman's rank correlation coefficient was of 0.56 for stenosis detection and of 0.57 for occlusive disease detection. The two techniques shared similar results in the evaluation of anterior circulation, while 3D-TOF found higher grades of stenosis for posterior circulation. With regard to dissection, Spearman's rank correlation coefficient was of 0.7. 3D-TOF depicted more intramural hematoma (Spearman's rank = 0.46), while CE-MRA showed more pseudo-aneurysms (Spearman's rank = 0.56). Both the technique equally evaluated the presence of intracranial aneurysms (Spearman's rank = 1). CONCLUSION CE-MRA can be considered a reliable tool to rule out intracranial pathology associated to supraortic steno-occlusive disease, also allowing time reduction. In the suspicion of dissection a T1-weighted sequence has to be added to detect the presence of a subacute vessel wall hematoma.
Collapse
Affiliation(s)
- Sonia Francesca Calloni
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | | | - Luisa Roveri
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pietro Panni
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Anna Del Poggio
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Paolo Quintiliano Vezzulli
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy
| | - Nicoletta Anzalone
- Department of Neuroradiology, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
11
|
Pennig L, Kabbasch C, Hoyer UCI, Lennartz S, Zopfs D, Goertz L, Laukamp KR, Wagner A, Grunz JP, Doerner J, Persigehl T, Weiss K, Borggrefe J. Relaxation-Enhanced Angiography Without Contrast and Triggering (REACT) for Fast Imaging of Extracranial Arteries in Acute Ischemic Stroke at 3 T. Clin Neuroradiol 2020; 31:815-826. [PMID: 33026511 PMCID: PMC8463375 DOI: 10.1007/s00062-020-00963-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Purpose To evaluate a novel flow-independent 3D isotropic REACT sequence compared with CE-MRA for the imaging of extracranial arteries in acute ischemic stroke (AIS). Methods This was a retrospective study of 35 patients who underwent a stroke protocol at 3 T including REACT (fixed scan time: 2:46 min) and CE-MRA of the extracranial arteries. Three radiologists evaluated scans regarding vessel delineation, signal, and contrast and assessed overall image noise and artifacts using 5-point scales (5: excellent delineation/no artifacts). Apparent signal- and contrast-to-noise ratios (aSNR/aCNR) were measured for the common carotid artery (CCA), internal carotid artery (ICA, C1 segment), and vertebral artery (V2 segment). Two radiologists graded the degree of proximal ICA stenosis. Results Compared to REACT, CE-MRA showed better delineation for the CCA and ICA (C1 and C2 segments) (median 5, range 2–5 vs. 4, range 3–5; P < 0.05). For the ICA (C1 and C2 segments), REACT provided a higher signal (5, range 3–5; P < 0.05/4.5, range 3–5; P > 0.05 vs. 4, range 2–5) and contrast (5, range 3–5 vs. 4, range 2–5; P > 0.05) than CE-MRA. The remaining segments of the blood-supplying vessels showed equal medians. There was no significant difference regarding artifacts, whereas REACT provided significantly lower image noise (4, range 3–5 vs. 4 range 2–5; P < 0.05) with a higher aSNR (P < 0.05) and aCNR (P < 0.05) for all vessels combined. For clinically relevant (≥50%) ICA stenosis, REACT achieved a detection sensitivity of 93.75% and a specificity of 100%. Conclusion Given its fast acquisition, comparable image quality to CE-MRA and high sensitivity and specificity for the detection of ICA stenosis, REACT was proven to be a clinically applicable method to assess extracranial arteries in AIS. Electronic supplementary material The online version of this article (10.1007/s00062-020-00963-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lenhard Pennig
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Christoph Kabbasch
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ulrike Cornelia Isabel Hoyer
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Simon Lennartz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Harvard Medical School, Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
- Else Kröner Forschungskolleg Clonal Evolution in Cancer, University Hospital Cologne, Cologne, Germany
| | - David Zopfs
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Lukas Goertz
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kai Roman Laukamp
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anton Wagner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Peter Grunz
- Department of Diagnostic and Interventional Radiology, University Hospital Würzburg, Würzburg, Germany
| | - Jonas Doerner
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thorsten Persigehl
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Jan Borggrefe
- Institute for Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Radiology, Neuroradiology and Nuclear Medicine, Johannes Wesling University Hospital, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
12
|
Multiple reader comparison of 2D TOF, 3D TOF, and CEMRA in screening of the carotid bifurcations: Time to reconsider routine contrast use? PLoS One 2020; 15:e0237856. [PMID: 32877415 PMCID: PMC7467222 DOI: 10.1371/journal.pone.0237856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022] Open
Abstract
Background and purpose MR contrast-enhanced techniques are undergoing increased scrutiny since the FDA applied a warning for gadolinium-based MR contrast agents due to gadolinium deposition within multiple organ systems. While CE-MRA provides excellent image quality, is it required in a screening carotid study? This study compares 2D TOF and 3D TOF MRA vs. CE-MRA in defining carotid stenosis in a large clinical patient population, and with multiple readers with varying experience. Materials and methods 200 consecutive patients had their carotid bifurcations evaluated with 2D TOF, 3D TOF and CE-MRA sequences by 6 board-certified neuroradiologists. Stenosis and quality of examinations were defined for each study. Inter-rater reliability was assessed using two-way random effects intraclass correlation coefficients. Intra-reader reliability was computed via weighted Cohen’s κ. Weighted Cohen’s κ were also computed to assess agreement in stenosis ratings between enhanced images and unenhanced images. Results Agreement between unenhanced and enhanced ratings was substantial with a pooled weighted κ of 0.733 (0.628–0.811). For 5 of the 6 readers, the combination of unenhanced 2D TOF and 3D TOF showed better agreement with contrast-enhanced than either 2D TOF or 3D TOF alone. Intra-reader reliability was substantial. Conclusions The combination of 2D TOF and 3D TOF MRA showed substantial agreement with CE-MRA regarding degree of carotid stenosis in this large outpatient population across multiple readers of varying experience. Given the scrutiny that GBCA are undergoing due to concerns regarding CNS and soft tissue deposition, it seems prudent to reserve CE-MRA for cases which are not satisfactorily answered by the nonenhanced study or other noninvasive examinations.
Collapse
|
13
|
Fu Q, Zhang XY, Deng XB, Liu DX. Clinical evaluation of subtracted pointwise encoding time reduction with radial acquisition-based magnetic resonance angiography compared to 3D time-of-flight magnetic resonance angiography for improved flow dephasing at 3 Tesla. Magn Reson Imaging 2020; 73:104-110. [PMID: 32858182 DOI: 10.1016/j.mri.2020.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 08/05/2020] [Accepted: 08/23/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE Flow dephasing artifacts within intracranial internal carotid artery (ICA) have been problematic for 3D time-of-flight magnetic resonance angiography (3D-TOF-MRA). This study aimed to evaluate pointwise encoding time reduction with radial acquisition subtraction-based MR angiography (PETRA-MRA) for decreasing flow dephasing artifacts compared to 3D-TOF-MRA in intracranial segments of ICA at 3 T. METHODS Sixty healthy participants and seven patients with intracranial ICA aneurysms were enrolled to undergo 3D-TOF-MRA and PETRA-MRA. Two radiologists each evaluated the image quality of healthy participants using a 4-point scale (1: the best and 4: the worst). Quantitative analysis of the extent of homogeneity in signal intensity within the ICA and intracranial aneurysms was conducted using a parameter d: the higher the d value, the greater the signal homogeneity. Wilcoxon signed rank test, Chi-square test and the weighted kappa (κ) statistic were used for statistical analyses. RESULTS The image quality of PETRA-MRA with an overall score of 1.35 ± 0.53 was significantly better than that obtained with 3D-TOF-MRA, with an overall score of 3.50 ± 0.62 (Z = -9.56, p < 0.001). The parameter d of PETRA-MRA was higher than that of 3D-TOF-MRA for both 60 healthy participants (0.97 ± 0.05, 0.87 ± 0.11; z = -13.21, p < 0.001) and 7 patients with intracranial aneurysms (0.81 ± 0.18, 0.74 ± 0.16; z = -2.37, p = 0.018). CONCLUSION Compared with conventional 3D-TOF-MRA, PETRA-MRA remarkably improved the image quality with reduced flow dephasing artifacts in segments of intracranial ICA.
Collapse
Affiliation(s)
- Qing Fu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiao-Yong Zhang
- MR Collaborations, Siemens Healthcare Ltd., Shenzhen 518000, China.
| | - Xian-Bo Deng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Ding-Xi Liu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
14
|
Zhang J, Ding S, Zhao H, Sun B, Li X, Zhou Y, Wan J, Degnan AJ, Xu J, Zhu C. Evaluation of chronic carotid artery occlusion by non-contrast 3D-MERGE MR vessel wall imaging: comparison with 3D-TOF-MRA, contrast-enhanced MRA, and DSA. Eur Radiol 2020; 30:5805-5814. [PMID: 32529567 DOI: 10.1007/s00330-020-06989-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 05/27/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES To analyze the accuracy of a non-contrast MR vessel wall imaging technique, three-dimensional motion-sensitized driven equilibrium prepared rapid gradient echo (3D-MERGE) for diagnosing chronic carotid artery occlusion (CCAO) characteristics compared with 3D time-of-flight (TOF) MRA, and contrast-enhanced MRA (CE-MRA), using digital subtraction angiography (DSA) as a reference standard. METHODS Subjects diagnosed with possible CCAO by ultrasound were retrospectively analyzed. Patients underwent 3.0-T MR imaging with 3D-MERGE, 3D-TOF-MRA, and CE-MRA followed by DSA within 1 week. Diagnostic accuracy of occlusion, occlusion site, and proximal stump condition were assessed independently on 3 MRI sequences and DSA. Agreement of the above indicators was evaluated in reference to DSA. RESULTS One hundred twenty-four patients with 129 suspected CCAO (5 with bilateral occlusions) met the inclusion criteria for our study. 3D-MERGE demonstrated a sensitivity, specificity, and accuracy of 97.0%, 86.7%, and 94.6%, respectively, with excellent agreement (Cohen's κ = 0.85; 95% CI, 0.71, 0.94) for diagnosing CCAO in reference to DSA. 3D-MERGE was superior in diagnosing CCAO compared with 3D-TOF-MRA (Cohen's κ = 0.61; 95% CI, 0.42, 0.77) and similar to CE-MRA (Cohen's κ = 0.93; 95% CI, 0.86, 1.00). 3D-MERGE also had excellent agreement compared with DSA for assessing occlusion sites (Cohen's κ = 0.85; 95% CI, 0.71, 0.97) and stump condition (Cohen's κ = 0.83; 95% CI, 0.71, 0.94). Moreover, 3D-MERGE provided additional information regarding the occluded segment, such as distal lumen collapse and vessel wall lesion components. CONCLUSION 3D-MERGE can reliably assess chronic carotid occlusive characteristics and has the ability to identify other vessel wall features of the occluded segment. This non-contrast MR vessel wall imaging technique is promising for assessment of CCAO. KEY POINTS • Excellent agreement was found between 3D-MERGE and DSA for assessing chronic carotid artery occlusion, occlusion site, and proximal stump condition. • 3D-MERGE was shown to be a more accurate and efficient tool than 3D-TOF-MRA to detect the characteristics of the occluded segment. • 3D-MERGE provides not only luminal images for characterizing the proximal characteristics of occlusion but also vessel wall images for assessing the distal lumen and morphology of occlusion segment, which might help clinicians to optimize the treatment strategy for patients with chronic carotid artery occlusion.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Shenghao Ding
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Huilin Zhao
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Beibei Sun
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xiao Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jieqing Wan
- Department of Neurosurgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Andrew J Degnan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,American Institute for Radiologic Pathology, Silver Spring, MD, USA.,Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jianrong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Chengcheng Zhu
- Department of Radiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Peters S, Huhndorf M, Jensen-Kondering U, Larsen N, Koktzoglou I, Edelman RR, Graessner J, Both M, Jansen O, Salehi Ravesh M. Non-Contrast-Enhanced Carotid MRA: Clinical Evaluation of a Novel Ungated Radial Quiescent-Interval Slice-Selective MRA at 1.5T. AJNR Am J Neuroradiol 2019; 40:1529-1537. [PMID: 31395666 DOI: 10.3174/ajnr.a6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/04/2019] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Non-contrast-enhanced MRA techniques have experienced a renaissance due to the known correlation between the use of gadolinium-based contrast agents and the development of nephrogenic systemic fibrosis and the deposition of gadolinium in some brain regions. The purpose of this study was to assess the diagnostic performance of ungated non-contrast-enhanced radial quiescent-interval slice-selective MRA of the extracranial supra-aortic arteries in comparison with conventional contrast-enhanced MRA in patients with clinical suspicion of carotid stenosis. MATERIALS AND METHODS In this prospective study, both MRA pulse sequences were performed in 31 consecutive patients (median age, 68.8 years; 19 men). For the evaluation, the cervical arterial system was divided into 35 segments (right and left side). Three blinded reviewers separately evaluated these segments. An ordinal scoring system was used to assess the image quality of arterial segments and the stenosis grading of carotid arteries. RESULTS Overall venous contamination in quiescent-interval slice-selective MRA was rated as "none" by all readers in 84.9% of cases and in 8.1% of cases in contrast-enhanced MRA (P < .0001). The visualization quality of arterial segments was considered good to excellent in 40.2% for the quiescent-interval slice-selective MRA and in 52.2% for the contrast-enhanced MRA (P < .0001). The diagnostic accuracy of ungated quiescent-interval slice-selective MRA concerning the stenosis grading showed a total sensitivity and specificity of 85.7% and 90.0%, respectively. CONCLUSIONS Ungated quiescent-interval slice-selective MRA can be used clinically as an alternative to contrast-enhanced MRA without a significantly different image quality or diagnostic accuracy for the detection of carotid stenosis at 1.5T.
Collapse
Affiliation(s)
- S Peters
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - M Huhndorf
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - U Jensen-Kondering
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - N Larsen
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - I Koktzoglou
- Department of Radiology (I.K., R.R.E.), NorthShore University Health System, Evanston, Illinois.,University of Chicago Pritzker School of Medicine (I.K.), Chicago, Illinois
| | - R R Edelman
- Department of Radiology (I.K., R.R.E.), NorthShore University Health System, Evanston, Illinois.,Northwestern University Feinberg School of Medicine (R.R.E.), Chicago, Illinois
| | | | - M Both
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - O Jansen
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - M Salehi Ravesh
- From the Department of Radiology and Neuroradiology (S.P., M.H., U.J.-K., N.L., M.B., O.J., M.S.R.), University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
16
|
Murray CSG, Nahar T, Kalashyan H, Becher H, Nanda NC. Ultrasound assessment of carotid arteries: Current concepts, methodologies, diagnostic criteria, and technological advancements. Echocardiography 2019; 35:2079-2091. [PMID: 30506607 DOI: 10.1111/echo.14197] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023] Open
Abstract
Following cardiac disease and cancer, stroke continues to be the third leading cause of death and disability due to chronic disease in the developed world. Appropriate screening tools are integral to early detection and prevention of major cardiovascular events. In a carotid artery, the presence of increased intima-media thickness, plaque, or stenosis is associated with increased risk of a transient ischemic attack or a stroke. Carotid artery ultrasound remains a long-standing and reliable tool in the current armamentarium of diagnostic modalities used to assess vascular morbidity at an early stage. The procedure has, over the last two decades, undergone considerable upgrades in technology, approach, and utility. This review examines in detail the current state and usage of this integrally important means of extracranial cerebrovascular assessment.
Collapse
Affiliation(s)
- Christopher S G Murray
- Department of Internal Medicine, Harlem Hospital Center/Columbia University, New York, New York
| | - Tamanna Nahar
- Section of Cardiology, Department of Internal Medicine, Harlem Hospital Center/Columbia University, New York, New York
| | - Hayrapet Kalashyan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Harald Becher
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Navin C Nanda
- Department of Internal Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
17
|
Jun Y, Eo T, Shin H, Kim T, Lee HJ, Hwang D. Parallel imaging in time-of-flight magnetic resonance angiography using deep multistream convolutional neural networks. Magn Reson Med 2019; 81:3840-3853. [DOI: 10.1002/mrm.27656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 11/27/2018] [Accepted: 12/14/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Yohan Jun
- School of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Taejoon Eo
- School of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Hyungseob Shin
- School of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Taeseong Kim
- School of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| | - Ho-Joon Lee
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital; Yonsei University College of Medicine; Seoul Republic of Korea
- Department of Radiology; Inje University College of Medicine, Haeundae Paik Hospital; Busan Republic of Korea
| | - Dosik Hwang
- School of Electrical and Electronic Engineering; Yonsei University; Seoul Korea
| |
Collapse
|
18
|
Akkan K, Ilgit E, Onal B, Cindil E, Solak EP, Oncu F, Geylan DE. Endovascular Treatment for Near Occlusion of the Internal Carotid Artery : 30-Day Outcome and Long-Term Follow-Up. Clin Neuroradiol 2016; 28:245-252. [PMID: 27783127 DOI: 10.1007/s00062-016-0546-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND The treatment strategy and the correct incidence of near occlusion (NO) of the internal carotid artery (ICA) is still controversial. In routine radiological imaging NO can easily be misdiagnosed as complete occlusion and there is no consensus on the standard treatment strategy. PURPOSE To present our perioperative and long-term follow-up results of ICA NO patients treated with carotid artery stenting (CAS). MATERIAL AND METHODS Between 2004-2014 a total of 182 patients with ICA NO were evaluated for CAS. The study included 132 male (72.5 %) and 50 female (27.5 %) patients with a mean age of 70.2 years. Patients underwent a clinical neurological evaluation and radiological imaging of the carotid arteries before the CAS procedure. Of the patients 80 (44 %) were asymptomatic. The median clinical and carotid Doppler ultrasound (DUS) follow-up period was 64 months (range 18-124 months). RESULTS In 182 patients CAS were performed, 4 patients (2.2 %) developed minor stroke, 2 patients (1.1 %) developed myocardial infarction but no major stroke or death occurred in the following 30-day period. Asymptomatic restenosis was detected in seven patients (3.8 %) in the follow-up period. CONCLUSION With sufficient neurological evaluation during pretreatment and posttreatment periods and when the procedure is performed with technologically developed products by an experienced interventional team, CAS is beneficial in patients with ICA NO.
Collapse
Affiliation(s)
- Koray Akkan
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey.
| | - Erhan Ilgit
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| | - Baran Onal
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| | - Emetullah Cindil
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| | - Evsen Polattas Solak
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| | - Fatih Oncu
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| | - Dilan Ece Geylan
- Department of Radiology, Gazi University School of Medicine, 06510, Besevler/Ankara, Turkey
| |
Collapse
|
19
|
Abstract
Four diagnostic modalities are used to image the following internal carotid artery: digital subtraction angiography (DSA), duplex ultrasound (DUS), computed tomography angiography (CTA), and magnetic resonance angiography (MRA). The aim of this article is to describe the potentials of these techniques and to discuss their advantages and disadvantages. Invasive DSA is still considered the gold standard and is an indivisible part of the carotid stenting procedure. DUS is an inexpensive but operator-dependent tool with limited visibility of the carotid artery course. Conversely, CTA and MRA allow assessment of the carotid artery from the aortic arch to intracranial parts. The disadvantages of CTA are radiation and iodine contrast medium administration. MRA is without radiation but contrast-enhanced MRA is more accurate than noncontrast MRA. The choice of methods depends on the clinical indications and the availability of methods in individual centers. However, the general approach to patient with suspected carotid artery stenosis is to first perform DUS and then other noninvasive methods such as CTA, MRA, or transcranial Doppler US.
Collapse
Affiliation(s)
- Theodor Adla
- Department of Radiology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Radka Adlova
- Complex Cardiovascular Centre for Adult Patients, Cardiology Clinic of the 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
20
|
Zhou L, Xing P, Chen Y, Xu X, Shen J, Lu X. Carotid and vertebral artery stenosis evaluated by contrast-enhanced MR angiography in nasopharyngeal carcinoma patients after radiotherapy: a prospective cohort study. Br J Radiol 2015; 88:20150175. [PMID: 25875781 DOI: 10.1259/bjr.20150175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the incidence of carotid artery (CA) and vertebral artery (VA) stenosis by contrast-enhanced MR angiography (CE-MRA) in patients with nasopharyngeal carcinoma (NPC) after radiotherapy. METHODS 72 patients with NPC after radiotherapy more than 3 years ago were recruited as irradiation group to investigate the incidence and degree of CA and VA stenosis by CE-MRA. The results were compared with those of the control group, which comprised 50 newly diagnosed patients with NPC who had not received radiotherapy. RESULTS There was a higher incidence of CA and VA stenosis in the irradiation group than in the control group in terms of patient number as well as vessel involvement. The incidence of significant (>50%) CA and VA stenosis, except for the basilar artery, was also higher in the irradiation group than in the control group. The most commonly detected stenosis in the irradiation group was found in the internal CA (ICA) and VA, followed by the external CA and common CA (CCA). CCA and/or ICA (CCA/ICA) stenosis was present in 67 (93.1%) of 72 patients, with 27 (37.5%) patients having significant CCA/ICA stenosis. The statistical analysis demonstrated that age at receiving CE-MRA scanning and time interval from radiotherapy were the independent predictors of significant CCA/ICA stenosis. CONCLUSION The CE-MRA scanning results showed that the incidence of stenosis seems to exist in a wider range of CAs and VAs in the patients with NPC after radiotherapy than in the patients who had not received radiotherapy, and the incidence of significant CCA/ICA stenosis is higher in patients with older age and longer interval from radiotherapy. ADVANCES IN KNOWLEDGE Radiation-induced CA and VA stenosis exists widely in patients with NPC after radiotherapy, and its prevalence is more common in patients with older age and longer interval from radiotherapy.
Collapse
Affiliation(s)
- L Zhou
- 1 Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | |
Collapse
|