1
|
Silva RPDS, Monteiro LN, Dias LDS, Haddad JOD, Souza VBD, Oliveira VFLD, Fernandes AS, Olivera MFD, Rotta JM. Role of Neural Plasticity of Motor Cortex in Gliomas Evaluated by Brain Imaging and Mapping Techniques in Pre- and Postoperative Period: A Systematic Review. J Neurol Surg A Cent Eur Neurosurg 2024; 85:396-404. [PMID: 36808404 DOI: 10.1055/a-2037-5993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND Resection of infiltrative neuroepithelial primary brain tumors, such as low-grade gliomas (LGGs) remains a neurosurgical challenge. Usual lack of clinical deficit despite LGGs growing in eloquent brain areas may be explained by reshaping and reorganization of functional networks. The development of modern diagnostic imaging techniques could disclose better understanding of the rearrangement of the brain cortex; however, mechanisms underlying such compensation and how it occurs in the motor cortex remain unclear. This systematic review aims to analyze the neuroplasticity of motor cortex in patients with LGGs, as determined by neuroimaging and functional techniques. METHODS Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, medical subject headings (MeSH) and the following terms related to neuroimaging, LGGs and neuroplasticity were used with the Boolean operators AND and OR to synonymous terms in the PubMed database. Among the 118 results, 19 studies were included in the systematic review. RESULTS Motor function in patients with LGG was characterized by a compensation in the contralateral and supplementary motor areas and premotor functional networks. Furthermore, ipsilateral activation in these types of gliomas was rarely described. Moreover, some studies did not reveal statistical significance in association between functional reorganization and the postoperative period, which can be explained by the low number of patients. CONCLUSION Our findings suggest a high pattern of reorganization per different eloquent motor areas and gliomas diagnosis. Understanding this process is useful to guide safe surgical resection and to develop protocols that assess the plasticity, even though functional network rearrangement needs to be better characterized by more studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jose Marcus Rotta
- Neurosurgery Department, Hospital do Servidor Público Estadual de São Paulo, Brazil
| |
Collapse
|
2
|
Angstwurm P, Hense K, Rosengarth K, Strotzer Q, Schmidt NO, Bumes E, Hau P, Pukrop T, Wendl C. Attenuation of the BOLD fMRI Signal and Changes in Functional Connectivity Affecting the Whole Brain in Presence of Brain Metastasis. Cancers (Basel) 2024; 16:2010. [PMID: 38893128 PMCID: PMC11171012 DOI: 10.3390/cancers16112010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
To date, there are almost no investigations addressing functional connectivity (FC) in patients with brain metastases (BM). In this retrospective study, we investigate the influence of BM on hemodynamic brain signals derived from functional magnetic resonance imaging (fMRI) and FC. Motor-fMRI data of 29 patients with BM and 29 matched healthy controls were analyzed to assess percent signal changes (PSC) in the ROIs motor cortex, premotor cortex, and supplementary motor cortex and FC in the sensorimotor, default mode, and salience networks using Statistical Parametric Mapping (SPM12) and marsbar and CONN toolboxes. In the PSC analysis, an attenuation of the BOLD signal in the metastases-affected hemisphere compared to the contralateral hemisphere was significant only in the supplementary motor cortex during hand movement. In the FC analysis, we found alterations in patients' FC compared to controls in all examined networks, also in the hemisphere contralateral to the metastasis. This indicates a qualitative attenuation of the BOLD signal in the affected hemisphere and also that FC is altered by the presence of BM, similarly to what is known for primary brain tumors. This transformation is not only visible in the infiltrated hemisphere, but also in the contralateral one, suggesting an influence of BM beyond local damage.
Collapse
Affiliation(s)
- Pia Angstwurm
- Faculty of Medicine, University of Regensburg, 93053 Regensburg, Germany
- Center for Neuroradiology, Institute for Diagnostic Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (Q.S.); (C.W.)
| | - Katharina Hense
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (K.H.); (K.R.); (N.O.S.)
| | - Katharina Rosengarth
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (K.H.); (K.R.); (N.O.S.)
| | - Quirin Strotzer
- Center for Neuroradiology, Institute for Diagnostic Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (Q.S.); (C.W.)
| | - Nils Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, 93053 Regensburg, Germany; (K.H.); (K.R.); (N.O.S.)
| | - Elisabeth Bumes
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.B.); (P.H.)
| | - Peter Hau
- Department of Neurology, University Hospital Regensburg, 93053 Regensburg, Germany; (E.B.); (P.H.)
| | - Tobias Pukrop
- Department of Haematology and Internal Oncology, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Christina Wendl
- Center for Neuroradiology, Institute for Diagnostic Radiology, University Hospital Regensburg, 93053 Regensburg, Germany; (Q.S.); (C.W.)
| |
Collapse
|
3
|
Idu AA, Bogaciu NS, Ciurea AV. Brain imaging and morphological plasticity in glioblastoma: a literature review. J Med Life 2023; 16:344-347. [PMID: 37168303 PMCID: PMC10165525 DOI: 10.25122/jml-2022-0201] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/03/2023] [Indexed: 05/13/2023] Open
Abstract
This article provides a comprehensive review of the role of functional magnetic resonance imaging (fMRI) in characterizing neural plasticity in glioblastoma patients. Glioblastoma, the most common primary brain tumor, has a rapid growth rate and infiltrative nature that leads to the disorganization of the normal brain network. Neuroplasticity, still not fully understood, is the foundation for the development of brain functions during the growth and recovery of certain brain functions after a brain lesion such as a tumor, trauma, or vascular event. Functional MRI has the capacity to identify the regions that activate at rest or when performing a task. It can determine the extent to which these regions, responsible for a specific function, are impacted by a tumor and eventually after surgical excision. Likewise, it can help evaluate to which extent activation changes when recovery of function occurs. In this article, we aimed to understand the significance of fMRI in the management of glioblastoma by analyzing representative articles from the literature.
Collapse
Affiliation(s)
- Andreea-Anamaria Idu
- Department of Neurosurgery, Henri Mondor Hospital, Créteil, France
- Corresponding Author: Andreea-Anamaria Idu, Department of Neurosurgery, Henri Mondor Hospital, Créteil, France. E-mail:
| | | | - Alexandru Vlad Ciurea
- Department of Neurosurgery, Sanador Hospital, Bucharest, Romania
- Clinical Neurosciences Department, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Zangrossi A, Silvestri E, Bisio M, Bertoldo A, De Pellegrin S, Vallesi A, Della Puppa A, D'Avella D, Denaro L, Scienza R, Mondini S, Semenza C, Corbetta M. Presurgical predictors of early cognitive outcome after brain tumor resection in glioma patients. Neuroimage Clin 2022; 36:103219. [PMID: 36209618 PMCID: PMC9668620 DOI: 10.1016/j.nicl.2022.103219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/01/2022] [Indexed: 11/07/2022]
Abstract
Gliomas are commonly characterized by neurocognitive deficits that strongly impact patients' and caregivers' quality of life. Surgical resection is the mainstay of therapy, and it can also cause cognitive impairment. An important clinical problem is whether patients who undergo surgery will show post-surgical cognitive impairment above and beyond that present before surgery. The relevant rognostic factors are largely unknown. This study aims to quantify the cognitive impairment in glioma patients 1-week after surgery and to compare different pre-surgical information (i.e., cognitive performance, tumor volume, grading, and lesion topography) towards predicting early post-surgical cognitive outcome. We retrospectively recruited a sample of N = 47 patients affected by high-grade and low-grade glioma undergoing brain surgery for tumor resection. Cognitive performance was assessed before and immediately after (∼1 week) surgery with an extensive neurocognitive battery. Multivariate linear regression models highlighted the combination of predictors that best explained post-surgical cognitive impairment. The impact of surgery on cognitive functioning was relatively small (i.e., 85% of test scores across the whole sample indicated no decline), and pre-operative cognitive performance was the main predictor of early post-surgical cognitive outcome above and beyond information from tumor topography and volume. In fact, structural lesion information did not significantly improve the accuracy of prediction made from cognitive data before surgery. Our findings suggest that post-surgery neurocognitive deficits are only partially explained by preoperative brain damage. The present results suggest the possibility to make reliable, individualized, and clinically relevant predictions from relatively easy-to-obtain information.
Collapse
Affiliation(s)
- Andrea Zangrossi
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Corresponding author at: Padova Neuroscience Center (PNC), University of Padova, Italy.
| | - Erica Silvestri
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | - Marta Bisio
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Biomedical Sciences, University of Padova, Italy
| | - Alessandra Bertoldo
- Padova Neuroscience Center (PNC), University of Padova, Italy,Department of Information Engineering, University of Padova, Italy
| | | | | | - Alessandro Della Puppa
- Neurosurgery Clinical Unit, Department of Neuroscience, Psychology, Pharmacology and Child Health, Careggi University Hospital and University of Florence, Florence, Italy
| | - Domenico D'Avella
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Luca Denaro
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Renato Scienza
- Academic Neurosurgery, Department of Neuroscience, University of Padova, Italy
| | - Sara Mondini
- Department of Philosophy, Sociology, Pedagogy and Applied Psychology, University of Padova, Padova, Italy
| | - Carlo Semenza
- Padova Neuroscience Center (PNC), University of Padova, Italy
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Italy,Padova Neuroscience Center (PNC), University of Padova, Italy,Neurology Clinical Unit, University Hospital of Padova, Padova, Italy,Venetian Institute of Molecular Medicine, VIMM, Foundation for Advanced Biomedical Research, Padova, Italy
| |
Collapse
|
5
|
Hemispheric Asymmetry of the Hand Motor Representations in Patients with Highly Malignant Brain Tumors: Implications for Surgery and Clinical Practice. Brain Sci 2022; 12:brainsci12101274. [PMID: 36291208 PMCID: PMC9599694 DOI: 10.3390/brainsci12101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
We addressed both brain pre-surgical functional and neurophysiological aspects of the hand representation in 18 right-handed patients harboring a highly malignant brain tumor in the sensorimotor (SM) cortex (10 in the left hemisphere, LH, and 8 in the right hemisphere, RH) and 10 healthy controls, who performed an fMRI hand-clenching task with both hands alternatively. We extracted the main ROI in the SM cortex and compared ROI values and volumes between hemispheres and groups, in addition to their motor neurophysiological measures. Hemispheric asymmetry in the fMRI signal was observed for healthy controls, namely higher signal for the left-hand movements, but not for either patients’ groups. ROI values, although altered in patients vs. controls, did not differ significantly between groups. ROI volumes associated with right-hand movement were lower for both patients’ groups vs. controls, and those associated with left-hand movement were lower in the RH group vs. all groups. These results are relevant to interpret potential preoperative plasticity and make inferences about postoperative plasticity and can be integrated in the surgical planning to increase surgery success and postoperative prognosis and quality of life.
Collapse
|
6
|
Contralesional Cortical and Network Features Associated with Preoperative Language Deficit in Glioma Patients. Cancers (Basel) 2022; 14:cancers14184469. [PMID: 36139629 PMCID: PMC9496725 DOI: 10.3390/cancers14184469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Gliomas that infiltrate eloquent areas can damage the corresponding cortical or subcortical structures, leading to language dysfunction. A total of 20–40% of eloquent area glioma patients have language deficits. Gliomas anchored in eloquent areas cause varying degrees of language impairment. A tumor’s size, grade, location, and contralesional compensation may explain these differences. This study aimed to retrospectively explore gray and white matter plasticity in the contralesional hemisphere of patients with gliomas in the eloquent area using VBM and DTI network analysis. Abstract Lower-grade Gliomas anchored in eloquent areas cause varying degrees of language impairment. Except for a tumor’s features, contralesional compensation may explain these differences. Therefore, studying changes in the contralateral hemisphere can provide insights into the underlying mechanisms of language function compensation in patients with gliomas. This study included 60 patients with eloquent-area or near-eloquent-area gliomas. The participants were grouped according to the degree of language defect. T1 and diffusion tensor imaging were obtained. The contralesional cortical volume and the subcortical network were compared between groups. Patients with unimpaired language function showed elevated cortical volume in the midline areas of the frontal and temporal lobes. In subcortical networks, the group also had the highest global efficiency and shortest global path length. Ten nodes had intergroup differences in nodal efficiency, among which four nodes were in the motor area and four nodes were in the language area. Linear correlation was observed between the efficiency of the two nodes and the patient’s language function score. Functional compensation in the contralesional hemisphere may alleviate language deficits in patients with gliomas. Structural compensation mainly occurs in the contralesional midline area in the frontal and temporal lobes, and manifests as an increase in cortical volume and subcortical network efficiency.
Collapse
|
7
|
Fang S, Li L, Weng S, Guo Y, Zhong Z, Fan X, Jiang T, Wang Y. Contralesional Sensorimotor Network Participates in Motor Functional Compensation in Glioma Patients. Front Oncol 2022; 12:882313. [PMID: 35530325 PMCID: PMC9072743 DOI: 10.3389/fonc.2022.882313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022] Open
Abstract
Background Some gliomas in sensorimotor areas induce motor deficits, while some do not. Cortical destruction and reorganization contribute to this phenomenon, but detailed reasons remain unclear. This study investigated the differences of the functional connectivity and topological properties in the contralesional sensorimotor network (cSMN) between patients with motor deficit and those with normal motor function. Methods We retrospectively reviewed 65 patients (32 men) between 2017 and 2020. The patients were divided into four groups based on tumor laterality and preoperative motor status (deficit or non-deficit). Thirty-three healthy controls (18 men) were enrolled after matching for sex, age, and educational status. Graph theoretical measurement was applied to reveal alterations of the topological properties of the cSMN by analyzing resting-state functional MRI. Results The results for patients with different hemispheric gliomas were similar. The clustering coefficient, local efficiency, transitivity, and vulnerability of the cSMN significantly increased in the non-deficit group and decreased in the deficit group compared to the healthy group (p < 0.05). Moreover, the nodes of the motor-related thalamus showed a significantly increased nodal efficiency and nodal local efficiency in the non-deficit group and decreased in the deficit group compared with the healthy group (p < 0.05). Conclusions We posited the existence of two stages of alterations of the preoperative motor status. In the compensatory stage, the cSMN sacrificed stability to acquire high efficiency and to compensate for impaired motor function. With the glioma growing and the motor function being totally damaged, the cSMN returned to a stable state and maintained healthy hemispheric motor function, but with low efficiency.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Lianwang Li
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shimeng Weng
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yuhao Guo
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhang Zhong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xing Fan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
- Research Unit of Accurate Diagnosis, Treatment and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Saito T, Muragaki Y, Tamura M, Maruyama T, Nitta M, Tsuzuki S, Fukui A, Kawamata T. Correlation between localization of supratentorial glioma to the precentral gyrus and difficulty in identification of the motor area during awake craniotomy. J Neurosurg 2021; 134:1490-1499. [PMID: 32357342 DOI: 10.3171/2020.2.jns193471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Identification of the motor area during awake craniotomy is crucial for preservation of motor function when resecting gliomas located within or close to the motor area or the pyramidal tract. Nevertheless, sometimes the surgeon cannot identify the motor area during awake craniotomy. However, the factors that influence failure to identify the motor area have not been elucidated. The aim of this study was to assess whether tumor localization was correlated with a negative cortical response in motor mapping during awake craniotomy in patients with gliomas located within or close to the motor area or pyramidal tract. METHODS Between April 2000 and May 2019 at Tokyo Women's Medical University, awake craniotomy was performed to preserve motor function in 137 patients with supratentorial glioma. Ninety-one of these patients underwent intraoperative cortical motor mapping for a primary glioma located within or close to the motor area or pyramidal tract and were enrolled in the study. MRI was used to evaluate whether or not the tumors were localized to or involved the precentral gyrus. The authors performed motor functional mapping with electrical stimulation during awake craniotomy and evaluated the correlation between identification of the motor area and various clinical characteristics, including localization to the precentral gyrus. RESULTS Thirty-four of the 91 patients had tumors that were localized to the precentral gyrus. The mean extent of resection was 89.4%. Univariate analyses revealed that identification of the motor area correlated significantly with age and localization to the precentral gyrus. Multivariate analyses showed that older age (≥ 45 years), larger tumor volume (> 35.5 cm3), and localization to the precentral gyrus were significantly correlated with failure to identify the motor area (p = 0.0021, 0.0484, and 0.0015, respectively). Localization to the precentral gyrus showed the highest odds ratio (14.135) of all regressors. CONCLUSIONS Identification of the motor area can be difficult when a supratentorial glioma is localized to the precentral gyrus. The authors' findings are important when performing awake craniotomy for glioma located within or close to the motor area or the pyramidal tract. A combination of transcortical motor evoked potential monitoring and awake craniotomy including subcortical motor mapping may be needed for removal of gliomas showing negative responses in the motor area to preserve the motor-related subcortical fibers.
Collapse
Affiliation(s)
| | - Yoshihiro Muragaki
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Manabu Tamura
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | - Takashi Maruyama
- 1Department of Neurosurgery and
- 2Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
9
|
Direct Evidence of Plasticity within Human Primary Motor and Somatosensory Cortices of Patients with Glioblastoma. Neural Plast 2020; 2020:8893708. [PMID: 33029127 PMCID: PMC7527884 DOI: 10.1155/2020/8893708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/04/2020] [Accepted: 09/02/2020] [Indexed: 01/20/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a devastating disease without cure. It is also the most common primary brain tumor in adults. Although aggressive surgical resection is standard of care, these operations are limited by tumor infiltration of critical cortical and subcortical regions. A better understanding of how the brain can recover and reorganize function in response to GBM would provide valuable clinical data. This ability, termed neuroplasticity, is not well understood in the adult human brain. A better understanding of neuroplasticity in GBM could allow for improved extent of resection, even in areas classically thought to have critical, static function. The best evidence to date has demonstrated neuroplasticity only in slower growing tumors or through indirect measures such as functional MRI or transcranial magnetic stimulation. In this novel study, we utilize a unique experimental paradigm to show direct evidence of plasticity via serial direct electrocortical stimulation (DES) within primary motor (M1) and somatosensory (S1) cortices in GBM patients. Six patients with glioblastoma multiforme in or near the primary motor or somatosensory cortex were included in this retrospective observational study. These patients had two awake craniotomies with DES to map cortical motor and sensory sites in M1 and S1. Five of six patients exhibited at least one site of neuroplasticity within M1 or S1. Out of the 51 total sites stimulated, 32 (62.7%) demonstrated plasticity. Of these sites, 14 (43.7%) were in M1 and 18 (56.3%) were in S1. These data suggest that even in patients with GBM in or near primary brain regions, significant functional reorganization is possible. This is a new finding which may lead to a better understanding of the fundamental factors promoting or inhibiting plasticity. Further exploration may aid in treatment of patients with brain tumors and other neurologic disorders.
Collapse
|
10
|
Cargnelutti E, Ius T, Skrap M, Tomasino B. What do we know about pre- and postoperative plasticity in patients with glioma? A review of neuroimaging and intraoperative mapping studies. NEUROIMAGE-CLINICAL 2020; 28:102435. [PMID: 32980599 PMCID: PMC7522801 DOI: 10.1016/j.nicl.2020.102435] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023]
Abstract
Brain reorganization can take place before and after surgery of low- and high-grade gliomas. Plasticity is observed for low-grade but also for high-grade gliomas. The contralesional hemisphere can be vital for successful compensation. There is evidence of plasticity for both the language system and the sensorimotor system. Partial compensation can also occur at the white-matter level. Subcortical connectivity is crucial for brain reorganization.
Brain plasticity potential is a central theme in neuro-oncology and is currently receiving increased attention. Advances in treatment have prolonged life expectancy in neuro-oncological patients and the long-term preservation of their quality of life is, therefore, a new challenge. To this end, a better understanding of brain plasticity mechanisms is vital as it can help prevent permanent deficits following neurosurgery. Indeed, reorganization processes can be fundamental to prevent or recover neurological and cognitive deficits by reallocating brain functions outside the lesioned areas. According to more recent studies in the literature, brain reorganization taking place following neurosurgery is associated with good neurofunctioning at follow-up. Interestingly, in the last few years, the number of reports on plasticity has notably increased. Aim of the current review was to provide a comprehensive overview of pre- and postoperative neuroplasticity patterns. Within this framework, we aimed to shed light on some tricky issues, including i) involvement of the contralateral healthy hemisphere, ii) role and potential changes of white matter and connectivity patterns, and iii) reorganization in low- versus high-grade gliomas. We finally discussed the practical implications of these aspects and role of additional potentially relevant factors to be explored. Final purpose was to provide a guideline helpful in promoting increase in the extent of tumor resection while preserving the patients’ neurological and cognitive functioning.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy
| | - Tamara Ius
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Miran Skrap
- SOC Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Dipartimento/Unità Operativa Pasian di Prato, Udine, Italy.
| |
Collapse
|
11
|
Duffau H. Functional Mapping before and after Low-Grade Glioma Surgery: A New Way to Decipher Various Spatiotemporal Patterns of Individual Neuroplastic Potential in Brain Tumor Patients. Cancers (Basel) 2020; 12:E2611. [PMID: 32933174 PMCID: PMC7565450 DOI: 10.3390/cancers12092611] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Intraoperative direct electrostimulation mapping (DEM) is currently the gold-standard for glioma surgery, since functional-based resection allows an optimization of the onco-functional balance (increased resection with preserved quality of life). Besides intrasurgical awake mapping of conation, cognition, and behavior, preoperative mapping by means of functional neuroimaging (FNI) and transcranial magnetic stimulation (TMS) has increasingly been utilized for surgical selection and planning. However, because these techniques suffer from several limitations, particularly for direct functional mapping of subcortical white matter pathways, DEM remains crucial to map neural connectivity. On the other hand, non-invasive FNI and TMS can be repeated before and after surgical resection(s), enabling longitudinal investigation of brain reorganization, especially in slow-growing tumors like low-grade gliomas. Indeed, these neoplasms generate neuroplastic phenomena in patients with usually no or only slight neurological deficits at diagnosis, despite gliomas involving the so-called "eloquent" structures. Here, data gained from perioperative FNI/TMS mapping methods are reviewed, in order to decipher mechanisms underpinning functional cerebral reshaping induced by the tumor and its possible relapse, (re)operation(s), and postoperative rehabilitation. Heterogeneous spatiotemporal patterns of rearrangement across patients and in a single patient over time have been evidenced, with structural changes as well as modifications of intra-hemispheric (in the ipsi-lesional and/or contra-lesional hemisphere) and inter-hemispheric functional connectivity. Such various fingerprints of neural reconfiguration were correlated to different levels of cognitive compensation. Serial multimodal studies exploring neuroplasticity might lead to new management strategies based upon multistage therapeutic approaches adapted to the individual profile of functional reallocation.
Collapse
Affiliation(s)
- Hugues Duffau
- Department of Neurosurgery, Montpellier University Medical Center, 34295 Montpellier, France; ; Tel.: +33-4-67-33-66-12; Fax: +33-4-67-33-69-12
- Institute of Functional Genomics, INSERM U-1191, University of Montpellier, 34298 Montpellier, France
| |
Collapse
|
12
|
Fang S, Bai HX, Fan X, Li S, Zhang Z, Jiang T, Wang Y. A Novel Sequence: ZOOMit-Blood Oxygen Level-Dependent for Motor-Cortex Localization. Neurosurgery 2020; 86:E124-E132. [PMID: 31642505 DOI: 10.1093/neuros/nyz441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 08/18/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Use of conventional blood oxygen level-dependent functional magnetic resonance imaging (conventional-BOLD-fMRI) presents challenges in accurately identifying the hand-motor cortex when a glioma involves the ipsilateral hand-knob. Zoomed imaging technique with parallel transmission (ZOOMit)-BOLD is a novel sequence allowing high spatial resolution with a relatively small field of view that may solve this problem. OBJECTIVE To compare the accuracy of ZOOMit-BOLD and conventional-BOLD in hand-motor cortex identification. METHODS A total of 20 patients with gliomas involving the sensorimotor cortex were recruited to identify the hand-motor cortex by both ZOOMit-BOLD and conventional-BOLD. Based on whether the entire or partial glioma directly invaded (was located within) the hand-knob or indirectly affected it by proximity, patients were placed into the involved or uninvolved groups, respectively. Direct cortical stimulation was applied intraoperatively to verify the location of the hand-motor cortex. Overlap indices were used to evaluate the accuracy of the hand-motor cortex identification. An overlap index equal to 0, indicating lack of overlap, was classified as inaccurate classification. RESULTS The accuracy of motor-cortex identification with ZOOMit-BOLD was 100% compared to only 65% with conventional-BOLD. The average overlap index yielded by ZOOMit-BOLD was higher than that of conventional-BOLD, regardless of whether gliomas directly invaded the hand-knob (P = .008) or not (P = .004). The overlap index in the involved group was significantly lower than that in the uninvolved group with both ZOOMit-BOLD (P = .002) and conventional-BOLD (P < .001). CONCLUSION ZOOMit-BOLD may potentially replace conventional-BOLD to identify the hand-motor cortex, particularly in cases in which gliomas directly invade the hand-knob.
Collapse
Affiliation(s)
- Shengyu Fang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Harrison X Bai
- Department of Diagnostic Imaging, Rhode Island Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Xing Fan
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Shaowu Li
- Functional Neuroradiology Center, Beijing Neurosurgical Institute, Beijing, China
| | - Zhong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center, Beijing, China
| | - Yinyan Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| |
Collapse
|
13
|
Nakajima R, Kinoshita M, Nakada M. Motor Functional Reorganization Is Triggered by Tumor Infiltration Into the Primary Motor Area and Repeated Surgery. Front Hum Neurosci 2020; 14:327. [PMID: 32922279 PMCID: PMC7457049 DOI: 10.3389/fnhum.2020.00327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/23/2020] [Indexed: 12/22/2022] Open
Abstract
In patients with gliomas, motor deficits are not always observed, even though tumor cells infiltrate into the motor area. Currently, it is recognized that this phenomenon can occur through the neuroplasticity potential. The aim of this study is to investigate the characteristics of motor functional reorganization in gliomas. Out of 100 consecutive patients who underwent awake surgery, 29 patients were assessed as regards their motor function and were retrospectively explored to determine whether positive motor responses were elicited. A total of 73 positive mapping sites from 27 cases were identified, and their spatial anatomical locations and activated region by functional MRI were analyzed. Additionally, the factors promoting neuroplasticity were analyzed through multiple logistic regression analysis. As a result, a total of 60 points (21 cases) were found in place, while 13 points (17.8%) were found to be shifted from anatomical localization. Reorganizations were classified into three categories: Type 1 (move to ipsilateral different gyrus) was detected at nine points (four cases), and they moved into the postcentral gyrus. Type 2 (move within the ipsilateral precentral gyrus) was detected at four points (two cases). Unknown type (two cases) was categorized as those whose motor functional cortex was moved to other regions, although we could not find the compensated motor area. Two factors for the onset of reorganization were identified: tumor cells infiltrate into the primary motor area and repeated surgery (p < 0.0001 and p = 0.0070, respectively). Our study demonstrated that compensation can occur mainly in two ways, and it promoted repeated surgery and infiltration of tumor into the primary motor area.
Collapse
Affiliation(s)
- Riho Nakajima
- Department of Occupational Therapy, Faculty of Health Science, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
14
|
Plasticity of the Primary Motor Cortex in Patients with Primary Brain Tumors. Neural Plast 2020; 2020:3648517. [PMID: 32714384 PMCID: PMC7354670 DOI: 10.1155/2020/3648517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 01/21/2023] Open
Abstract
There are two neuron-level mechanisms proposed to underlie neural plasticity: recruiting neurons nearby to support the lost function (ipsilesional plasticity) and uncovering latent pathways that can assume the function that was lost (contralesional plasticity). While both patterns have been demonstrated in patient groups following injury, the specific mechanisms underlying each mode of plasticity are poorly understood. In a retrospective case series of 13 patients, we utilize a novel paradigm that analyzes serial fMRI scans in patients harboring intrinsic brain tumors that vary in location and growth kinetics to better understand the mechanisms underlying these two modes of plasticity in the human primary motor cortex. Twelve patients in our series had some degree of primary motor cortex plasticity, an area previously thought to have limited plasticity. Patients harboring smaller lesions with slower growth kinetics and increasing distance from the primary motor region demonstrated recruitment of ipsilateral motor regions. Conversely, larger, faster-growing lesions in close proximity to the primary motor region were associated with activation of the contralesional primary motor cortex, along with increased activation of the supplementary motor area. These data increase our understanding of the adaptive abilities of the brain and may lead to improved treatment strategies for those suffering from motor loss secondary to brain injuries.
Collapse
|
15
|
Role of Functional Imaging Techniques to Assess Motor and Language Cortical Plasticity in Glioma Patients: A Systematic Review. Neural Plast 2019; 2019:4056436. [PMID: 31814822 PMCID: PMC6878806 DOI: 10.1155/2019/4056436] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/05/2019] [Indexed: 01/19/2023] Open
Abstract
Cerebral plasticity is the ability of the central nervous system to reorganize itself in response to different injuries. The reshaping of functional areas is a crucial mechanism to compensate for damaged function. It is acknowledged that functional remodeling of cortical areas may occur also in glioma patients. Principal limits of previous investigations on cortical plasticity of motor and language functions included scarce reports of longitudinal evaluations and limited sample sizes. This systematic review is aimed at elucidating cortical brain plasticity for motor and language functions, in adult glioma patients, by means of preoperative and intraoperative mapping techniques. We systematically reviewed the literature for prospective studies, assessing cortical plasticity of motor and language functions in low-grade and high-grade gliomas. Eight longitudinal studies investigated cortical plasticity, evaluated by motor and language task-based functional MRI (fMRI), motor navigated transcranial magnetic stimulation (n-TMS), and intraoperative mapping with cortical direct electrocortical stimulation (DES) of language and motor function. Motor function reorganization appeared relatively limited and mostly characterized by intrahemispheric functional changes, including secondary motor cortices. On the other hand, a high level of functional reshaping was found for language function in DES studies. Occurrence of cortical functional reorganization of language function was described focusing on the intrahemispheric recruitment of perilesional areas. However, the association between these functional patterns and recovery of motor and language deficits still remains partially clear. A number of relevant methodological issues possibly affecting the finding generalization emerged, such as the complexity of plasticity outcome measures and the lack of large longitudinal studies. Future studies are required to further confirm these evidences on cortical plasticity in larger samples, combining both functional imaging and intraoperative mapping techniques in longitudinally evaluations.
Collapse
|
16
|
Cho NS, Jenabi M, Arevalo-Perez J, Brennan N, Young RJ, Karimi S, Holodny AI, Peck KK. Diffusion Tensor Imaging Shows Corpus Callosum Differences between High-Grade Gliomas and Metastases. J Neuroimaging 2017; 28:199-205. [PMID: 29064137 DOI: 10.1111/jon.12478] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/20/2017] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The corpus callosum (CC) has an important role in regulating interhemispheric transfer and is thought to be instrumental in contralateral brain reorganization in patients with brain tumors, as suggested by a previous study reporting callosal differences between language dominance groups through diffusion tensor imaging (DTI) characteristics. The purpose of this study was to explore the structural differences in the CC between high-grade gliomas (HGGs) and metastatic tumors (METs) using the DTI characteristics of fractional anisotropy (FA), mean diffusivity (MD), and axial diffusivity (AD). METHODS HGG (n = 30) and MET (n = 20) subjects with Magnetic Resonance Imaging (MRI) scans including DTI were retrospectively studied. The tumor and CC were segmented using the 3-dimensional T1-weighted scans to determine their volumes. The region of interest (ROI; mean volume of the ROI = 3,090 ± 464 mm3 ) of the body of the CC was overlaid onto the DTI parametric maps to obtain the averaged FA, MD, and AD values. RESULTS There were significant differences in the distributions of FA and MD values between the two patient groups (mean FA for HGG/MET = .691/.646, P < .05; mean MD for HGG/MET = .894×10-3 mm 2/ second /.992×10-3 mm2 /second, P < .01), while there was no correlation between the DTI parameters and the anatomical volumes. CONCLUSION These results suggest that there is more contralateral brain reorganization in HGG patients than MET patients and that neither the tumor nor callosal volume impact the degree of contralateral brain reorganization.
Collapse
Affiliation(s)
- Nicholas S Cho
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Julio Arevalo-Perez
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nicole Brennan
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Robert J Young
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Sasan Karimi
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kyung K Peck
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| |
Collapse
|
17
|
Fang S, Liang J, Qian T, Wang Y, Liu X, Fan X, Li S, Wang Y, Jiang T. Anatomic Location of Tumor Predicts the Accuracy of Motor Function Localization in Diffuse Lower-Grade Gliomas Involving the Hand Knob Area. AJNR Am J Neuroradiol 2017; 38:1990-1997. [PMID: 28838912 DOI: 10.3174/ajnr.a5342] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/04/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The accuracy of preoperative blood oxygen level-dependent fMRI remains controversial. This study assessed the association between the anatomic location of a tumor and the accuracy of fMRI-based motor function mapping in diffuse lower-grade gliomas. MATERIALS AND METHODS Thirty-five patients with lower-grade gliomas involving motor areas underwent preoperative blood oxygen level-dependent fMRI scans with grasping tasks and received intraoperative direct cortical stimulation. Patients were classified into an overlapping group and a nonoverlapping group, depending on the extent to which blood oxygen level-dependent fMRI and direct cortical stimulation results concurred. Tumor location was quantitatively measured, including the shortest distance from the tumor to the hand knob and the deviation distance of the midpoint of the hand knob in the lesion hemisphere relative to the midline compared with the normal contralateral hemisphere. RESULTS A 4-mm shortest distance from the tumor to the hand knob value was identified as optimal for differentiating the overlapping and nonoverlapping group with the receiver operating characteristic curve (sensitivity, 84.6%; specificity, 77.8%). The shortest distances from the tumor to the hand knob of ≤4 mm were associated with inaccurate fMRI-based localizations of the hand motor cortex. The shortest distances from the tumor to the hand knob were larger (P = .002), and the deviation distances for the midpoint of the hand knob in the lesion hemisphere were smaller (P = .003) in the overlapping group than in the nonoverlapping group. CONCLUSIONS This study suggests that the shortest distance from the tumor to the hand knob and the deviation distance for the midpoint of the hand knob on the lesion hemisphere are predictive of the accuracy of blood oxygen level-dependent fMRI results. Smaller shortest distances from the tumor to the hand knob and larger deviation distances for the midpoint of hand knob on the lesion hemisphere are associated with less accuracy of motor cortex localization with blood oxygen level-dependent fMRI. Preoperative fMRI data for surgical planning should be used cautiously when the shortest distance from the tumor to the hand knob is ≤4 mm, especially for lower-grade gliomas anterior to the central sulcus.
Collapse
Affiliation(s)
- S Fang
- From the Department of Neurosurgery (S.F., Y.W., T.J.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - J Liang
- Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - T Qian
- MR Collaborations NE Asia (T.Q.), Siemens Healthcare, Beijing, China
| | - Y Wang
- From the Department of Neurosurgery (S.F., Y.W., T.J.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - X Liu
- Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - X Fan
- Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - S Li
- Functional Neuroradiology Center (S.L.), Beijing Neurosurgical Institute, Beijing, China
| | - Y Wang
- Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China
| | - T Jiang
- From the Department of Neurosurgery (S.F., Y.W., T.J.), Beijing Tiantan Hospital, Capital Medical University, Beijing, China .,Beijing Neurosurgical Institute (S.F., J.L., Y.W., X.L., X.F., Y.W., T.J.), Capital Medical University, Beijing, China.,Beijing Institute for Brain Disorders Brain Tumor Center (T.J.), Beijing, China
| |
Collapse
|
18
|
Gao B, Shen X, Shiroishi MS, Pang M, Li Z, Yu B, Shen G. A pilot study of pre-operative motor dysfunction from gliomas in the region of corticospinal tract: Evaluation with diffusion tensor imaging. PLoS One 2017; 12:e0182795. [PMID: 28829841 PMCID: PMC5568729 DOI: 10.1371/journal.pone.0182795] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/25/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Brain tumors in the corticospinal tract (CST) region are more likely to cause motor dysfunction. The aim of this study is to evaluate the effect of gliomas located in the CST region on motor function with diffusion tensor imaging (DTI) preoperatively. MATERIALS AND METHODS Forty-five patients with histopathologically confirmed gliomas were included in this pilot study, in all cases (low-grade n = 13, high-grade n = 32) CST but not the motor cortex were involved by the tumor. DTI image were acquired and the posterior limb of the internal capsule fractional anisotropy (FA) and relative FA (rFA = affected FA/contralateral FA) were measured. Injury of the CST from tumor was divided into three grades (grade 1: displacement, grade 2: displacement and infiltration, grade 3: displacement and disruption). The fiber density index (FDi) and relative FDi (rFDi = affected FDi/contralateral FDi) of the injured and contralateral CST were measured. The correlations between muscle strength and the CST injury grade and the rFA, affected FDi, rFDi values were calculated using Spearman rank correlation analysis. rFA and rFDi values of muscle strength groups (MMT2-5) were compared with one-way analysis of variance (ANOVA). The difference of muscle strength between low- and high-grade glioma groups were analysed with the Mann-Whitney U-test. RESULTS Muscle strength was negatively correlated with the injury grade of the CST (r = -0.840, P<0.001). Muscle strength was positively correlated with rFA, FDi and rFDi (correlation coefficients (r) were 0.615, 0.643 and 0.567 for rFA, FDi and rFDi, respectively). The rFA values between grades (2&3, 2&4, 2&5, 3&5, 4&5) of muscle strength were significantly different (P<0.05), the rFDi values between grades (2&4, 2&5, 3&4, 3&5) of muscle strength were significantly different (P<0.05), while the rFA and rFDi values in the remaining groups of muscle strength grades showed no significant differences(P>0.05). CONCLUSIONS Preoperative DTI and diffusion tensor tractography may quantify the injury degrees of CST and the extent of motor dysfunction in patients with brain glioma.
Collapse
Affiliation(s)
- Bo Gao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong, People’s Republic of China
| | - Xudong Shen
- Department of Radiology, Enshi Central Hospital, Enshi, Hubei, People’s Republic of China
| | - Mark S. Shiroishi
- Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Mingfan Pang
- Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zhiqian Li
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
| | - Benxia Yu
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, Shandong, People’s Republic of China
- * E-mail: (GS); (BY)
| | - Guiquan Shen
- Department of Radiology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, People’s Republic of China
- * E-mail: (GS); (BY)
| |
Collapse
|
19
|
Neuroplasticity: Insights from Patients Harboring Gliomas. Neural Plast 2016; 2016:2365063. [PMID: 27478645 PMCID: PMC4949342 DOI: 10.1155/2016/2365063] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 06/08/2016] [Indexed: 12/16/2022] Open
Abstract
Neuroplasticity is the ability of the brain to reorganize itself during normal development and in response to illness. Recent advances in neuroimaging and direct cortical stimulation in human subjects have given neuroscientists a window into the timing and functional anatomy of brain networks underlying this dynamic process. This review will discuss the current knowledge about the mechanisms underlying neuroplasticity, with a particular emphasis on reorganization following CNS pathology. First, traditional mechanisms of neuroplasticity, most relevant to learning and memory, will be addressed, followed by a review of adaptive mechanisms in response to pathology, particularly the recruitment of perilesional cortical regions and unmasking of latent connections. Next, we discuss the utility and limitations of various investigative techniques, such as direct electrocortical stimulation (DES), functional magnetic resonance imaging (fMRI), corticocortical evoked potential (CCEP), and diffusion tensor imaging (DTI). Finally, the clinical utility of these results will be highlighted as well as possible future studies aimed at better understanding of the plastic potential of the brain with the ultimate goal of improving quality of life for patients with neurologic injury.
Collapse
|