1
|
Huang HM. Calculation of intravoxel incoherent motion parameter maps using a kernelized total difference-based method. NMR IN BIOMEDICINE 2024; 37:e5201. [PMID: 38863271 DOI: 10.1002/nbm.5201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/13/2024] [Accepted: 05/23/2024] [Indexed: 06/13/2024]
Abstract
Quantitative analysis of diffusion-weighted magnetic resonance imaging (DW-MRI) has been explored for many clinical applications since its development. In particular, the intravoxel incoherent motion (IVIM) model for DW-MRI has been commonly utilized in various organs. However, because of the presence of excessive noise, the IVIM parameter maps obtained from pixel-wise fitting are often unreliable. In this study, we propose a kernelized total difference-based curve-fitting method to estimate the IVIM parameters. Simulated DW-MRI data at five signal-to-noise ratios (i.e., 10, 20, 30, 50, and 100) and real abdominal DW-MRI data acquired on a 1.5-T MRI scanner with nine b-values (i.e., 0, 10, 25, 50, 100, 200, 300, 400, and 500 s/mm2) and six diffusion-encoding gradient directions were used to evaluate the performance of the proposed method. The results were compared with those obtained by three existing methods: trust-region reflective (TRR) algorithm, Bayesian probability (BP), and deep neural network (DNN). Our simulation results showed that the proposed method outperformed the other three comparing methods in terms of root-mean-square error. Moreover, the proposed method could preserve small details in the estimated IVIM parameter maps. The experimental results showed that, compared with the TRR method, the proposed method as well as the BP (and DNN) method could reduce the overestimation of the pseudodiffusion coefficient and improve the quality of IVIM parameter maps. For all studied abdominal organs except the pancreas, both the proposed method and the BP method could provide IVIM parameter estimates close to the reference values; the former had higher precision. The kernelized total difference-based curve-fitting method has the potential to improve the reliability of IVIM parametric imaging.
Collapse
Affiliation(s)
- Hsuan-Ming Huang
- Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan
- Program for Precision Health and Intelligent Medicine, Graduate School of Advanced Technology, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
2
|
Sample C, Wu J, Clark H. Image denoising and model-independent parameterization for IVIM MRI. Phys Med Biol 2024; 69:105001. [PMID: 38604177 DOI: 10.1088/1361-6560/ad3db8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Objective. To improve intravoxel incoherent motion imaging (IVIM) magnetic resonance Imaging quality using a new image denoising technique and model-independent parameterization of the signal versusb-value curve.Approach. IVIM images were acquired for 13 head-and-neck patients prior to radiotherapy. Post-radiotherapy scans were also acquired for five of these patients. Images were denoised prior to parameter fitting using neural blind deconvolution, a method of solving the ill-posed mathematical problem of blind deconvolution using neural networks. The signal decay curve was then quantified in terms of several area under the curve (AUC) parameters. Improvements in image quality were assessed using blind image quality metrics, total variation (TV), and the correlations between parameter changes in parotid glands with radiotherapy dose levels. The validity of blur kernel predictions was assessed by the testing the method's ability to recover artificial 'pseudokernels'. AUC parameters were compared with monoexponential, biexponential, and triexponential model parameters in terms of their correlations with dose, contrast-to-noise (CNR) around parotid glands, and relative importance via principal component analysis.Main results. Image denoising improved blind image quality metrics, smoothed the signal versusb-value curve, and strengthened correlations between IVIM parameters and dose levels. Image TV was reduced and parameter CNRs generally increased following denoising.AUCparameters were more correlated with dose and had higher relative importance than exponential model parameters.Significance. IVIM parameters have high variability in the literature and perfusion-related parameters are difficult to interpret. Describing the signal versusb-value curve with model-independent parameters like theAUCand preprocessing images with denoising techniques could potentially benefit IVIM image parameterization in terms of reproducibility and functional utility.
Collapse
Affiliation(s)
- Caleb Sample
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, CA, Canada
- Department of Medical Physics, BC Cancer, Surrey, BC, CA, Canada
| | - Jonn Wu
- Department of Radiation Oncology, BC Cancer, Vancouver, BC, CA, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, CA, Canada
| | - Haley Clark
- Department of Physics and Astronomy, Faculty of Science, University of British Columbia, Vancouver, BC, CA, Canada
- Department of Medical Physics, BC Cancer, Surrey, BC, CA, Canada
- Department of Surgery, Faculty of Medicine, University of British Columbia, Vancouver, BC, CA, Canada
| |
Collapse
|
3
|
Finkelstein AJ, Liao C, Cao X, Mani M, Schifitto G, Zhong J. High-fidelity intravoxel incoherent motion parameter mapping using locally low-rank and subspace modeling. Neuroimage 2024; 292:120601. [PMID: 38588832 DOI: 10.1016/j.neuroimage.2024.120601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/23/2024] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
PURPOSE Intravoxel incoherent motion (IVIM) is a quantitative magnetic resonance imaging (MRI) method used to quantify perfusion properties of tissue non-invasively without contrast. However, clinical applications are limited by unreliable parameter estimates, particularly for the perfusion fraction (f) and pseudodiffusion coefficient (D*). This study aims to develop a high-fidelity reconstruction for reliable estimation of IVIM parameters. The proposed method is versatile and amenable to various acquisition schemes and fitting methods. METHODS To address current challenges with IVIM, we adapted several advanced reconstruction techniques. We used a low-rank approximation of IVIM images and temporal subspace modeling to constrain the magnetization dynamics of the bi-exponential diffusion signal decay. In addition, motion-induced phase variations were corrected between diffusion directions and b-values, facilitating the use of high SNR real-valued diffusion data. The proposed method was evaluated in simulations and in vivo brain acquisitions in six healthy subjects and six individuals with a history of SARS-CoV-2 infection and compared with the conventionally reconstructed magnitude data. Following reconstruction, IVIM parameters were estimated voxel-wise. RESULTS Our proposed method reduced noise contamination in simulations, resulting in a 60%, 58.9%, and 83.9% reduction in the NRMSE for D, f, and D*, respectively, compared to the conventional reconstruction. In vivo, anisotropic properties of D, f, and D* were preserved with the proposed method, highlighting microvascular differences in gray matter between individuals with a history of COVID-19 and those without (p = 0.0210), which wasn't observed with the conventional reconstruction. CONCLUSION The proposed method yielded a more reliable estimation of IVIM parameters with less noise than the conventional reconstruction. Further, the proposed method preserved anisotropic properties of IVIM parameter estimates and demonstrated differences in microvascular perfusion in COVID-affected subjects, which weren't observed with conventional reconstruction methods.
Collapse
Affiliation(s)
- Alan J Finkelstein
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Congyu Liao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA; Department of Neurology, University of Rochester, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA; Department of Imaging Sciences, University of Rochester, Rochester, NY, USA; Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
4
|
Thomaides‐Brears H. Editorial for “Microvascular Dysfunction Associates With Outcomes in Hypertrophic Cardiomyopathy: Insights From the Intravoxel Incoherent Motion
MRI
”. J Magn Reson Imaging 2022; 57:1776-1777. [PMID: 36349891 DOI: 10.1002/jmri.28516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
|
5
|
Huang HM. An unsupervised convolutional neural network method for estimation of intravoxel incoherent motion parameters. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac9a1f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Abstract
Objective. Intravoxel incoherent motion (IVIM) imaging obtained by fitting a biexponential model to multiple b-value diffusion-weighted magnetic resonance imaging (DW-MRI) has been shown to be a promising tool for different clinical applications. Recently, several deep neural network (DNN) methods were proposed to generate IVIM imaging. Approach. In this study, we proposed an unsupervised convolutional neural network (CNN) method for estimation of IVIM parameters. We used both simulated and real abdominal DW-MRI data to evaluate the performance of the proposed CNN-based method, and compared the results with those obtained from a non-linear least-squares fit (TRR, trust-region reflective algorithm) and a feed-forward backward-propagation DNN-based method. Main results. The simulation results showed that both the DNN- and CNN-based methods had lower coefficients of variation than the TRR method, but the CNN-based method provided more accurate parameter estimates. The results obtained from real DW-MRI data showed that the TRR method produced many biased IVIM parameter estimates that hit the upper and lower parameter bounds. In contrast, both the DNN- and CNN-based methods yielded less biased IVIM parameter estimates. Overall, the perfusion fraction and diffusion coefficient obtained from the DNN- and CNN-based methods were close to literature values. However, compared with the CNN-based method, both the TRR and DNN-based methods tended to yield increased pseudodiffusion coefficients (55%–180%). Significance. Our preliminary results suggest that it is feasible to estimate IVIM parameters using CNN.
Collapse
|
6
|
Zhang E, Li Y, Xing X, Qin S, Yuan H, Lang N. Intravoxel incoherent motion to differentiate spinal metastasis: A pilot study. Front Oncol 2022; 12:1012440. [PMID: 36276105 PMCID: PMC9582254 DOI: 10.3389/fonc.2022.1012440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundTo investigate the value of intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) to discriminate spinal metastasis from tuberculous spondylitis.MethodsThis study included 50 patients with spinal metastasis (32 lung cancer, 7 breast cancer, 11 renal cancer), and 20 with tuberculous spondylitis. The IVIM parameters, including the single-index model (apparent diffusion coefficient (ADC)-stand), double exponential model (ADCslow, ADCfast, and f), and the stretched-exponential model parameters (distributed diffusion coefficient (DDC) and α), were acquired. Receiver operating characteristic (ROC) and the area under the ROC curve (AUC) analysis was used to evaluate the diagnostic performance. Each parameter was substituted into a logistic regression model to determine the meaningful parameters, and the combined diagnostic performance was evaluated.ResultsThe ADCfast and f showed significant differences between spinal metastasis and tuberculous spondylitis (all p < 0.05). The logistic regression model results showed that ADCfast and f were independent factors affecting the outcome (P < 0.05). The AUC values of ADCfast and f were 0.823 (95% confidence interval (CI): 0.719 to 0.927) and 0.876 (95%CI: 0.782 to 0.969), respectively. ADCfast combined with f showed the highest AUC value of 0.925 (95% CI: 0.858 to 0.992).ConclusionsIVIM MR imaging might be helpful to differentiate spinal metastasis from tuberculous spondylitis, and provide guidance for clinical treatment.
Collapse
Affiliation(s)
- Enlong Zhang
- Department of Radiology, Peking University Third Hospital, Beijing, China
- Department of Radiology, Peking University International Hospital, Beijing, China
| | - Yuan Li
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Xiaoying Xing
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Siyuan Qin
- Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, China
- *Correspondence: Huishu Yuan, ; Ning Lang,
| | - Ning Lang
- Department of Radiology, Peking University Third Hospital, Beijing, China
- *Correspondence: Huishu Yuan, ; Ning Lang,
| |
Collapse
|
7
|
Yamashita K, Kamei R, Sugimori H, Kuwashiro T, Tokunaga S, Kawamata K, Furuya K, Harada S, Maehara J, Okada Y, Noguchi T. Interobserver Reliability on Intravoxel Incoherent Motion Imaging in Patients with Acute Ischemic Stroke. AJNR Am J Neuroradiol 2022; 43:696-700. [PMID: 35450854 PMCID: PMC9089262 DOI: 10.3174/ajnr.a7486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 12/11/2022]
Abstract
BACKGROUND AND PURPOSE Noninvasive perfusion-weighted imaging with short scanning time could be advantageous in order to determine presumed penumbral regions and subsequent treatment strategy for acute ischemic stroke (AIS). Our aim was to evaluate interobserver agreement and the clinical utility of intravoxel incoherent motion MR imaging in patients with acute ischemic stroke. MATERIALS AND METHODS We retrospectively studied 29 patients with AIS (17 men, 12 women; mean age, 75.2 [SD, 12.0 ] years; median, 77 years). Each patient underwent intravoxel incoherent motion MR imaging using a 1.5T MR imaging scanner. Diffusion-sensitizing gradients were applied sequentially in the x, y, and z directions with 6 different b-values (0, 50, 100, 150, 200, and 1000 seconds/mm2). From the intravoxel incoherent motion MR imaging data, diffusion coefficient, perfusion fraction, and pseudodiffusion coefficient maps were obtained using a 2-step fitting algorithm based on the Levenberg-Marquardt method. The presence of decreases in the intravoxel incoherent motion perfusion fraction and pseudodiffusion coefficient values compared with the contralateral normal-appearing brain was graded on a 2-point scale by 2 independent neuroradiologists. Interobserver agreement on the rating scale was evaluated using the κ statistic. Clinical characteristics of patients with a nondecreased intravoxel incoherent motion perfusion fraction and/or pseudodiffusion coefficient rated by the 2 observers were also assessed. RESULTS Interobserver agreement was shown for the intravoxel incoherent motion perfusion fraction (κ = 0.854) and pseudodiffusion coefficient (κ = 0.789) maps, which indicated almost perfect and substantial agreement, respectively. Patients with a nondecreased intravoxel incoherent motion perfusion fraction tended to show recanalization of the occluded intracranial arteries more frequently than patients with a decreased intravoxel incoherent motion perfusion fraction. CONCLUSIONS Intravoxel incoherent motion MR imaging could be performed in < 1 minute in addition to routine DWI. Intravoxel incoherent motion parameters noninvasively provide feasible, qualitative perfusion-related information for assessing patients with acute ischemic stroke.
Collapse
Affiliation(s)
- K Yamashita
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - R Kamei
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - H Sugimori
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - T Kuwashiro
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - S Tokunaga
- Neuroendovascular Therapy (S.T.), Clinical Research Institute
| | - K Kawamata
- Medical Technology (K.K.), Division of Radiology, National Hospital Organization Kyushu Medical Center, Fukuoka, Japan
| | - K Furuya
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - S Harada
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - J Maehara
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| | - Y Okada
- Cerebrovascular Medicine and Neurology (H.S., T.K., Y.O.)
| | - T Noguchi
- From the Departments of Radiology (K.Y., R.K., K.F., S.H., J.M., T.N.)
| |
Collapse
|
8
|
Wang DJJ, Le Bihan D, Krishnamurthy R, Smith M, Ho ML. Noncontrast Pediatric Brain Perfusion: Arterial Spin Labeling and Intravoxel Incoherent Motion. Magn Reson Imaging Clin N Am 2021; 29:493-513. [PMID: 34717841 DOI: 10.1016/j.mric.2021.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Noncontrast magnetic resonance imaging techniques for measuring brain perfusion include arterial spin labeling (ASL) and intravoxel incoherent motion (IVIM). These techniques provide noninvasive and repeatable assessment of cerebral blood flow or cerebral blood volume without the need for intravenous contrast. This article discusses the technical aspects of ASL and IVIM with a focus on normal physiologic variations, technical parameters, and artifacts. Multiple pediatric clinical applications are presented, including tumors, stroke, vasculopathy, vascular malformations, epilepsy, migraine, trauma, and inflammation.
Collapse
Affiliation(s)
- Danny J J Wang
- USC Institute for Neuroimaging and Informatics, SHN, 2025 Zonal Avenue, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Denis Le Bihan
- NeuroSpin, Centre d'études de Saclay, Bâtiment 145, Gif-sur-Yvette 91191, France
| | - Ram Krishnamurthy
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mark Smith
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA
| | - Mai-Lan Ho
- Department of Radiology, Nationwide Children's Hospital, 700 Children's Drive - ED4, Columbus, OH 43205, USA.
| |
Collapse
|
9
|
Lee W, Kim B, Park H. Quantification of intravoxel incoherent motion with optimized b-values using deep neural network. Magn Reson Med 2021; 86:230-244. [PMID: 33594783 DOI: 10.1002/mrm.28708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a framework for quantifying intravoxel incoherent motion (IVIM) parameters, where a neural network for quantification and b-values for diffusion-weighted imaging are simultaneously optimized. METHOD A deep neural network (DNN) method is proposed for accurate quantification of IVIM parameters from multiple diffusion-weighted images. In addition, optimal b-values are selected to acquire the multiple diffusion-weighted images. The proposed framework consists of an MRI signal generation part and an IVIM parameter quantification part. Monte-Carlo (MC) simulations were performed to evaluate the accuracy of the IVIM parameter quantification and the efficacy of b-value optimization. In order to analyze the effect of noise on the optimized b-values, simulations were performed with five different noise levels. For in vivo data, diffusion images were acquired with the b-values from four b-values selection methods for five healthy volunteers at 3T MRI system. RESULTS Experiment results showed that both the optimization of b-values and the training of DNN were simultaneously performed to quantify IVIM parameters. We found that the accuracies of the perfusion coefficient (Dp ) and perfusion fraction (f) were more sensitive to b-values than the diffusion coefficient (D) was. Furthermore, when the noise level changed, the optimized b-values also changed. Therefore, noise level has to be considered when optimizing b-values for IVIM quantification. CONCLUSION The proposed scheme can simultaneously optimize b-values and train DNN to minimize quantification errors of IVIM parameters. The trained DNN can quantify IVIM parameters from the diffusion-weighted images obtained with the optimized b-values.
Collapse
Affiliation(s)
- Wonil Lee
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Byungjai Kim
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - HyunWook Park
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|