1
|
Schimpfle L, Tsilingiris D, Mooshage CM, Kender Z, Sulaj A, von Rauchhaupt E, Szendroedi J, Herzig S, Goepfert J, Groener J, Nawroth PP, Bendszus M, Heiland S, Kurz FT, Jende JME, Kopf S. Phase Angle of Bioelectrical Impedance Analysis as an Indicator for Diabetic Polyneuropathy in Type 2 Diabetes Mellitus. J Clin Endocrinol Metab 2024; 109:e2110-e2119. [PMID: 38215056 PMCID: PMC11479692 DOI: 10.1210/clinem/dgad737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 01/14/2024]
Abstract
CONTEXT Due to the heterogenous clinical symptoms and deficits, the diagnosis of diabetic polyneuropathy (DPN) is still difficult in clinical routines, leading to increased morbidity and mortality. OBJECTIVE We studied the correlation of phase angle (PhA) of bioelectrical impedance analysis (BIA) with clinical, laboratory, and physical markers of DPN to evaluate PhA as a possible diagnostic method for DPN. MATERIALS AND METHODS In this cross-sectional observational study as part of the Heidelberg Study on Diabetes and Complications, we examined 104 healthy individuals and 205 patients with type 2 diabetes mellitus (T2D), among which 63 had DPN. The PhA was calculated from multifrequency BIA. Nerve conduction studies, quantitative sensory testing (QST) and diffusion-weighted magnetic resonance neurography to determine fractional anisotropy (FA) reflecting peripheral nerve integrity were performed. RESULTS T2D patients with DPN had lower PhA values (5.71 ± 0.10) compared to T2D patients without DPN (6.07 ± 0.08, P = .007, + 6.1%) and healthy controls (6.18 ± 0.08, P < .001, + 7.9%). Confounder-adjusted analyses showed correlations of the PhA with conduction velocities and amplitudes of the peroneal (β=.28; β=.31, P < .001) and tibial nerves (β=.28; β=.32, P < .001), Z-scores of QST (thermal detection β=.30, P < .05) and the FA (β=.60, P < .001). Receiver-operating characteristic analysis showed similar performance of PhA in comparison to the mentioned diagnostic methods. CONCLUSION The study shows that PhA is, in comparison to other test systems used, at least an equally good and much easier to handle investigator-independent marker for detection of DPN.
Collapse
Affiliation(s)
- Lukas Schimpfle
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Dimitrios Tsilingiris
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Christoph M Mooshage
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Zoltan Kender
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Alba Sulaj
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Ekatherina von Rauchhaupt
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Julia Szendroedi
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer IDC and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center, 85764 Munich-Neuherberg, Germany
| | - Stephan Herzig
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
- Institute for Diabetes and Cancer IDC and Joint Heidelberg-IDC Translational Diabetes Program, Helmholtz Center, 85764 Munich-Neuherberg, Germany
| | - Jens Goepfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72076 Tübingen, Germany
| | - Jan Groener
- Zentrum für Diabetes und Hormonerkrankungen, 67433 Neustadt an der Weinstraße, Germany
| | - Peter P Nawroth
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Felix T Kurz
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Cancer Research Center, Radiology, 69120 Heidelberg, Germany
| | - Johann M E Jende
- Department of Neuroradiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Stefan Kopf
- Department for Endocrinology, Diabetology, Metabolic diseases and Clinical Chemistry, University Hospital Heidelberg, 69120 Heidelberg, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany
| |
Collapse
|
2
|
Preisner F, Pitarokoili K, Lueling B, Motte J, Fisse AL, Grüter T, Godel T, Schwarz D, Heiland S, Gold R, Bendszus M, Kronlage M. Quantitative magnetic resonance neurography in chronic inflammatory demyelinating polyradiculoneuropathy: A longitudinal study over 6 years. Ann Clin Transl Neurol 2024; 11:593-606. [PMID: 38111964 DOI: 10.1002/acn3.51978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
OBJECTIVE To evaluate magnetic resonance neurography (MRN) for the longitudinal assessment of patients with chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Prospective examination of twelve CIDP patients by neurological assessment, MRN, and nerve conduction studies in 2016 and 6 years later in 2022. Imaging parameters were compared with matched healthy controls and correlated with clinical and electrophysiological markers. The MRN protocol included T2-weighted imaging, diffusion tensor imaging (DTI), T2 relaxometry, and magnetization transfer imaging (MTI). RESULTS Nerve cross-sectional area (CSA) was increased in CIDP patients compared to controls (plexus: p = 0.003; sciatic nerve: p < 0.001). Over 6 years, nerve CSA decreased in CIDP patients, most pronounced at the lumbosacral plexus (p = 0.015). Longitudinally, changes in CSA correlated with changes in the inflammatory neuropathy cause and treatment validated overall disability sum score (INCAT/ODSS) (p = 0.006). High initial nerve CSA was inversely correlated with changes in the INCAT/ODSS over 6 years (p < 0.05). The DTI parameter fractional anisotropy (FA) showed robust correlations with electrodiagnostic testing both cross-sectionally and longitudinally (p < 0.05). MTI as a newly added imaging technique revealed a significantly reduced magnetization transfer ratio (MTR) in CIDP patients (p < 0.01), suggesting underlying changes in macromolecular tissue composition, and correlated significantly with electrophysiological parameters of demyelination (p < 0.05). INTERPRETATION This study provides evidence that changes in nerve CSA and FA reflect the clinical and electrophysiological course of CIDP patients. Initial nerve hypertrophy might predict a rather benign course or better therapy response.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Kalliopi Pitarokoili
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Benjamin Lueling
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Jeremias Motte
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Anna Lena Fisse
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Thomas Grüter
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Tim Godel
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Ralf Gold
- Department of Neurology, St. Josef Hospital, Ruhr University of Bochum, 44791, Bochum, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Neurological Clinic, Heidelberg University Hospital, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Boonsuth R, Battiston M, Grussu F, Samlidou CM, Calvi A, Samson RS, Gandini Wheeler-Kingshott CAM, Yiannakas MC. Feasibility of in vivo multi-parametric quantitative magnetic resonance imaging of the healthy sciatic nerve with a unified signal readout protocol. Sci Rep 2023; 13:6565. [PMID: 37085693 PMCID: PMC10121559 DOI: 10.1038/s41598-023-33618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/15/2023] [Indexed: 04/23/2023] Open
Abstract
Magnetic resonance neurography (MRN) has been used successfully over the years to investigate the peripheral nervous system (PNS) because it allows early detection and precise localisation of neural tissue damage. However, studies demonstrating the feasibility of combining MRN with multi-parametric quantitative magnetic resonance imaging (qMRI) methods, which provide more specific information related to nerve tissue composition and microstructural organisation, can be invaluable. The translation of emerging qMRI methods previously validated in the central nervous system to the PNS offers real potential to characterise in patients in vivo the underlying pathophysiological mechanisms involved in a plethora of conditions of the PNS. The aim of this study was to assess the feasibility of combining MRN with qMRI to measure diffusion, magnetisation transfer and relaxation properties of the healthy sciatic nerve in vivo using a unified signal readout protocol. The reproducibility of the multi-parametric qMRI protocol as well as normative qMRI measures in the healthy sciatic nerve are reported. The findings presented herein pave the way to the practical implementation of joint MRN-qMRI in future studies of pathological conditions affecting the PNS.
Collapse
Affiliation(s)
- Ratthaporn Boonsuth
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK.
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.
| | - Marco Battiston
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Francesco Grussu
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Christina Maria Samlidou
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Alberto Calvi
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Laboratory of Advanced Imaging in Neuroimmunological Diseases, Center of Neuroimmunology, Hospital Clinic Barcelona, Fundació Clinic Per a La Recerca Biomedica, Barcelona, Spain
| | - Rebecca S Samson
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Brain Connectivity Research Centre, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Marios C Yiannakas
- NMR Research Unit, Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Foesleitner O, Knop KC, Lindenau M, Preisner F, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR Neurography in Multifocal Motor Neuropathy and Amyotrophic Lateral Sclerosis. Diagnostics (Basel) 2023; 13:diagnostics13071237. [PMID: 37046455 PMCID: PMC10093201 DOI: 10.3390/diagnostics13071237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
Background: The aim of this study was to assess the phenotype of multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) in quantitative MR neurography. Methods: In this prospective study, 22 patients with ALS, 8 patients with MMN, and 10 healthy volunteers were examined with 3T MR neurography, using a high-resolution fat-saturated T2-weighted sequence, diffusion-tensor imaging (DTI), and a multi-echo T2-relaxometry sequence. The quantitative biomarkers fractional anisotropy (FA), radial and axial diffusivity (RD, AD), mean diffusivity (MD), cross-sectional area (CSA), T2-relaxation time, and proton spin density (PSD) were measured in the tibial nerve at the thigh and calf, and in the median, radial, and ulnar nerves at the mid-upper arm. Results: MMN showed a characteristic imaging pattern of decreased FA (p = 0.018), increased RD (p = 0.014), increased CSA (p < 0.001), increased T2-relaxation time (p < 0.001), and increased PSD (p = 0.025) in the upper arm nerves compared to ALS and controls. ALS patients did not differ from controls in any imaging marker, nor were there any group differences in the tibial nerve (p > 0.05). Conclusions: MMN shows a characteristic pattern of quantitative DTI and T2-relaxometry parameters in the upper-arm nerves, primarily indicating demyelination. Peripheral nerve changes in ALS seem to be below the detection level of current state-of-the-art quantitative MR neurography.
Collapse
|
5
|
Kender Z, Jende JME, Kurz FT, Tsilingiris D, Schimpfle L, Sulaj A, von Rauchhaupt E, Bartl H, Mooshage C, Göpfert J, Nawroth P, Herzig S, Szendroedi J, Bendszus M, Kopf S. Sciatic nerve fractional anisotropy and neurofilament light chain protein are related to sensorimotor deficit of the upper and lower limbs in patients with type 2 diabetes. Front Endocrinol (Lausanne) 2023; 14:1046690. [PMID: 37008917 PMCID: PMC10053786 DOI: 10.3389/fendo.2023.1046690] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/06/2023] [Indexed: 03/16/2023] Open
Abstract
BACKGROUND Diabetic sensorimotor polyneuropathy (DSPN) is one of the most prevalent and poorly understood diabetic microvascular complications. Recent studies have found that fractional anisotropy (FA), a marker for microstructural nerve integrity, is a sensitive parameter for the structural and functional nerve damage in DSPN. The aim of this study was to investigate the significance of proximal sciatic nerve's FA on different distal nerve fiber deficits of the upper and lower limbs and its correlation with the neuroaxonal biomarker, neurofilament light chain protein (NfL). MATERIALS AND METHODS Sixty-nine patients with type 2 diabetes (T2DM) and 30 healthy controls underwent detailed clinical and electrophysiological assessments, complete quantitative sensory testing (QST), and diffusion-weighted magnetic resonance neurography of the sciatic nerve. NfL was measured in the serum of healthy controls and patients with T2DM. Multivariate models were used to adjust for confounders of microvascular damage. RESULTS Patients with DSPN showed a 17% lower sciatic microstructural integrity compared to healthy controls (p<0.001). FA correlated with tibial and peroneal motor nerve conduction velocity (NCV) (r=0.6; p<0.001 and r=0.6; p<0.001) and sural sensory NCV (r=0.50; p<0.001). Participants with reduced sciatic nerve´s FA showed a loss of function of mechanical and thermal sensation of upper (r=0.3; p<0.01 and r=0.3; p<0.01) and lower (r=0.5; p<0.001 and r=0.3; p=<0.01) limbs and reduced functional performance of upper limbs (Purdue Pegboard Test for dominant hand; r=0.4; p<0.001). Increased levels of NfL and urinary albumin-creatinine ratio (ACR) were associated with loss of sciatic nerve´s FA (r=-0.5; p<0.001 and r= -0.3, p= 0.001). Of note, there was no correlation between sciatic FA and neuropathic symptoms or pain. CONCLUSION This is the first study showing that microstructural nerve integrity is associated with damage of different nerve fiber types and a neuroaxonal biomarker in DSPN. Furthermore, these findings show that proximal nerve damage is related to distal nerve function even before clinical symptoms occur. The microstructure of the proximal sciatic nerve and is also associated with functional nerve fiber deficits of the upper and lower limbs, suggesting that diabetic neuropathy involves structural changes of peripheral nerves of upper limbs too.
Collapse
Affiliation(s)
- Zoltan Kender
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- *Correspondence: Zoltan Kender,
| | - Johann M. E. Jende
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Felix T. Kurz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Dimitrios Tsilingiris
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Lukas Schimpfle
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Alba Sulaj
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Ekaterina von Rauchhaupt
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| | - Hannelore Bartl
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
| | - Christoph Mooshage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Göpfert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Peter Nawroth
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Stephan Herzig
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
- Joint-IDC Institute for Diabetes and Cancer, Helmholtz-Zentrum Munich, Munich, Germany
| | - Julia Szendroedi
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
- Joint-IDC Institute for Diabetes and Cancer, Heidelberg University, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Kopf
- Department of Endocrinology, Diabetology and Clinical Chemistry (Internal Medicine 1), Heidelberg University Hospital, Heidelberg, Germany
- German Center of Diabetes Research [Deutsches Zentrum für Diabetesforschung (DZD)], München, Germany
| |
Collapse
|
6
|
Preisner F, Behnisch R, Schwehr V, Godel T, Schwarz D, Foesleitner O, Bäumer P, Heiland S, Bendszus M, Kronlage M. Quantitative MR-Neurography at 3.0T: Inter-Scanner Reproducibility. Front Neurosci 2022; 16:817316. [PMID: 35250457 PMCID: PMC8888927 DOI: 10.3389/fnins.2022.817316] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background Quantitative MR-neurography (MRN) is increasingly applied, however, the impact of the MR-scanner on the derived parameters is unknown. Here, we used different 3.0T MR scanners and applied comparable MR-sequences in order to quantify the inter-scanner reproducibility of various MRN parameters of the sciatic nerve. Methods Ten healthy volunteers were prospectively examined at three different 3.0T MR scanners and underwent MRN of their sciatic nerve using comparable imaging protocols including diffusion tensor imaging (DTI) and T2 relaxometry. Subsequently, inter-scanner agreement was assessed for seven different parameters by calculating the intraclass correlation coefficients (ICCs) and the standard error of measurement (SEM). Results Assessment of inter-scanner reliability revealed good to excellent agreement for T2 (ICC: 0.846) and the quantitative DTI parameters, such as fractional anisotropy (FA) (ICC: 0.876), whereas moderate agreement was observed for proton spin density (PD) (ICC: 0.51). Analysis of variance identified significant inter-scanner differences for several parameters, such as FA (p < 0.001; p = 0.02), T2 (p < 0.01) and PD (p = 0.02; p < 0.01; p = 0.02). Calculated SEM values were mostly within the range of one standard deviation of the absolute mean values, for example 0.033 for FA, 4.12 ms for T2 and 27.8 for PD. Conclusion This study quantifies the measurement imprecision for peripheral nerve DTI and T2 relaxometry, which is associated with the use of different MR scanners. The here presented values may serve as an orientation of the possible scanner-associated fluctuations of MRN biomarkers, which can occur under similar conditions.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, Heidelberg University, Heidelberg, Germany
| | - Véronique Schwehr
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Godel
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Moritz Kronlage,
| |
Collapse
|
7
|
D'Souza A, Wang C, Tu S, Soligo DJ, Kiernan MC, Barnett M, Calamante F. A robust framework for characterising diffusion metrics of the median and ulnar nerves: Exploiting state-of-the-art tracking methods. J Peripher Nerv Syst 2021; 27:67-83. [PMID: 34908209 DOI: 10.1111/jns.12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 11/10/2021] [Accepted: 12/11/2021] [Indexed: 11/26/2022]
Abstract
Diffusion-weighted imaging has been used to quantify peripheral nerve properties; however, traditional post-processing techniques have several limitations. Advanced neuroimaging techniques, which overcome many of these limitations, have not been applied to peripheral nerves. Here, we use state-of-the-art diffusion analysis tools to reconstruct the median and ulnar nerves and quantify their diffusion properties. Diffusion-weighted MRI scans were obtained from eight healthy adult subjects. Constrained spherical deconvolution was combined with probabilistic fibre tracking to compute track-weighted fibre orientation distribution (TW-FOD). The tensor was computed and used along with the tracks to estimate TW apparent diffusion coefficient (TW-ADC), TW fractional anisotropy (TW-FA), TW axial diffusivity (TW-AD), and TW radial diffusivity (TW-RD). Variability of TW measurements was used to estimate power size information. The population intersession mean (± SD) measurements for the median nerve were TW-FOD 1.30 (±0.17), TW-ADC 1.16 (±0.13) × 10-3 mm2 /s, TW-FA 0.60 (±0.05), TW-AD 2.05 (±0.16) × 10-3 mm2 /s, and TW-RD 0.72 (±0.12) × 10-3 mm2 /s. The corresponding measurements for the ulnar nerve were TW-FOD 1.25 (±0.14), TW-ADC 1.13 (±0.10) × 10-3 mm2 /s, TW-FA 0.56 (±0.06), TW-AD 1.93 (±0.01) × 10-3 mm2 /s, and TW-RD 0.74 (±0.12) × 10-3 mm2 /s. Based on these measurements, a sample size of 37 would be sufficient to detect a 10% difference in any of the measured TW metrics. A sample size of 20 would be large enough to detect within-subject differences as small as 2.9% (TW-AD, ulnar nerve) and between-subject differences as small as 3.8% (TW-AD, ulnar nerve).
Collapse
Affiliation(s)
- Arkiev D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Imaging, The University of Sydney, Sydney, New South Wales, Australia
| | - Chenyu Wang
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia
| | - Sicong Tu
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Central Clinical School, The University of Sydney, Sydney, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Neuroimaging Analysis Centre, Camperdown, New South Wales, Australia.,Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Fernando Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Imaging, The University of Sydney, Sydney, New South Wales, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
8
|
Preisner F, Behnisch R, Foesleitner O, Schwarz D, Wehrstein M, Meredig H, Friedmann-Bette B, Heiland S, Bendszus M, Kronlage M. Reliability and reproducibility of sciatic nerve magnetization transfer imaging and T2 relaxometry. Eur Radiol 2021; 31:9120-9130. [PMID: 34104997 PMCID: PMC8589742 DOI: 10.1007/s00330-021-08072-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Objectives To assess the interreader and test-retest reliability of magnetization transfer imaging (MTI) and T2 relaxometry in sciatic nerve MR neurography (MRN). Materials and methods In this prospective study, 21 healthy volunteers were examined three times on separate days by a standardized MRN protocol at 3 Tesla, consisting of an MTI sequence, a multi-echo T2 relaxometry sequence, and a high-resolution T2-weighted sequence. Magnetization transfer ratio (MTR), T2 relaxation time, and proton spin density (PSD) of the sciatic nerve were assessed by two independent observers, and both interreader and test-retest reliability for all readout parameters were reported by intraclass correlation coefficients (ICCs) and standard error of measurement (SEM). Results For the sciatic nerve, overall mean ± standard deviation MTR was 26.75 ± 3.5%, T2 was 64.54 ± 8.2 ms, and PSD was 340.93 ± 78.8. ICCs ranged between 0.81 (MTR) and 0.94 (PSD) for interreader reliability and between 0.75 (MTR) and 0.94 (PSD) for test-retest reliability. SEM for interreader reliability was 1.7% for MTR, 2.67 ms for T2, and 21.3 for PSD. SEM for test-retest reliability was 1.7% for MTR, 2.66 ms for T2, and 20.1 for PSD. Conclusions MTI and T2 relaxometry of the sciatic nerve are reliable and reproducible. The values of measurement imprecision reported here may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies. Key Points • Magnetization transfer imaging (MTI) and T2 relaxometry of the sciatic nerve are reliable and reproducible. • The imprecision that is unavoidably associated with different scans or different readers can be estimated by the here presented SEM values for the biomarkers T2, PSD, and MTR. • These values may serve as a guide for correct interpretation of quantitative MRN biomarkers in future studies and possible clinical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08072-9.
Collapse
Affiliation(s)
- Fabian Preisner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rouven Behnisch
- Institute of Medical Biometry and Informatics, University of Heidelberg, Im Neuenheimer Feld 130.3, 69120, Heidelberg, Germany
| | - Olivia Foesleitner
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Daniel Schwarz
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Michaela Wehrstein
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Hagen Meredig
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Birgit Friedmann-Bette
- Department of Sports Medicine (Internal Medicine VII), Medical Clinic, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Moritz Kronlage
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|