1
|
Kok T, Varley R, Clark C, Verriotis M, Seunarine K, Shekhawat GS. Resting-state networks in chronic tinnitus: Increased connectivity between thalamus and visual areas. Hear Res 2024; 453:109122. [PMID: 39437583 DOI: 10.1016/j.heares.2024.109122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Tinnitus is thought to be associated with aberrant spontaneous activity in the central nervous system. Previous resting-state fMRI findings support this hypothesis and have shown a variety of alterations in neural activity in people with tinnitus compared to people without tinnitus. However, there is little replication of findings. Therefore, the current study aimed to extend on previous findings by investigating eight common resting-state networks (i.e. auditory, default mode, sensorimotor, visual, salience, dorsal attention, frontoparietal and language networks) using a control group (n = 36) and a group of tinnitus patients (n = 46) matched for age, sex and years of education. Hearing profiles matched up to 2 kHz and had a small but significant difference between groups in the high frequency range. Functional connectivity (FC) with dorsolateral prefrontal cortex (DLPFC) was also investigated separately for the first time, as this region is proposed to be core to tinnitus distress symptoms and most often used as a stimulation target in transcranial direct current stimulation (tDCS) research. The results showed that tinnitus patients had increased FC between bilateral thalamus and right visual association cortex compared to control participants. No differences were found with DLPFC, or with any of the resting-state networks (RSN), contrary to previous studies which have reported alterations in several RSNs.
Collapse
Affiliation(s)
- Tori Kok
- Ear Institute, University College London 332 Gray's Inn Rd, London WC1X 8EE, UK
| | - Rosemary Varley
- Language & Cognition Chandler House 2 Wakefield Street London WC1N 1PF, UK
| | - Chris Clark
- Professor of Imaging and Biophysics, Clinical Systems Neuroscience, Developmental Neurosciences Research and Teaching Department, Great Ormond Street Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
| | - Madeleine Verriotis
- Developmental Neurosciences Department UCL Great Ormond Street Institute of Child Health London, United Kingdom 30 Guilford Street London WC1N 1EH, UK
| | - Kiran Seunarine
- Developmental Neurosciences Department UCL Great Ormond Street Institute of Child Health, Department of Neurosurgery Great Ormond Street Hospital for Children NHS Foundation Trust, 30 Guilford Street London WC1N 1EH, UK
| | - Giriraj Singh Shekhawat
- Dean (Research) EPSW, College of Education, Psychology and Social Work, Flinders University, Bedford Park, GPO Box 2100, Adelaide 5001, South Australia.
| |
Collapse
|
2
|
Han SY, Shim L, Lee HJ, Park MK. Transcutaneous auricular vagus nerve stimulation can modulate fronto-parietal brain networks. Front Neurosci 2024; 18:1368754. [PMID: 39091347 PMCID: PMC11292796 DOI: 10.3389/fnins.2024.1368754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/24/2024] [Indexed: 08/04/2024] Open
Abstract
Objective Recent studies have shown that transcutaneous vagal nerve stimulation (tVNS) holds promise as a treatment for neurological or psychiatric disease through the ability to modulate neural activity in some brain regions without an invasive procedure. The objective of this study was to identify the neural correlates underlying the effects of tVNS. Methods Twenty right-handed healthy subjects with normal hearing participated in this study. An auricle-applied tVNS device (Soricle, Neurive Co., Ltd., Gyeongsangnam-do, Republic of Korea) was used to administer tVNS stimulation. A session consisted of 14 blocks, including 7 blocks of tVNS stimulation or sham stimulation and 7 blocks of rest, and lasted approximately 7 min (1 block = 30 s). Functional magnetic resonance imaging (fMRI) was performed during the stimulation. Results No activated regions were observed in the fMRI scans following both sham stimulation and tVNS after the first session. After the second session, tVNS activated two clusters of brain regions in the right frontal gyrus. A comparison of the activated regions after the second session of each stimulation revealed that the fMRI following tVNS exhibited four surviving clusters. Additionally, four clusters were activated in the overall stimulated area during both the first and second sessions. When comparing the fMRI results after each type of stimulation, the fMRI following tVNS showed four surviving clusters compared to the fMRI after sham stimulation. Conclusion tVNS could stimulate some brain regions, including the fronto-parietal network. Stimulating these regions for treating neurological or psychiatric disease might require applying tVNS for at least 3.5 min.
Collapse
Affiliation(s)
- Sang-Yoon Han
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Leeseul Shim
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
- Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine, Hallym University Medical Center, Anyang-si, Republic of Korea
| | - Hyo-Jeong Lee
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang-si, Republic of Korea
- Ear and Interaction Center, Doheun Institute for Digital Innovation in Medicine, Hallym University Medical Center, Anyang-si, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Chuncheon-si, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, Republic of Korea
- Sensory Organ Research Institute, Seoul National University, Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
3
|
Liu C, Zhang J, Qi Z, Yue W, Yuan Y, Jiang T, Zhang S, Zhang S. Therapy effect of cochleural alternating acoustic beam therapy versus traditional sound therapy for managing chronic idiopathic tinnitus patients. Sci Rep 2024; 14:5900. [PMID: 38467716 PMCID: PMC10928112 DOI: 10.1038/s41598-024-55866-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/28/2024] [Indexed: 03/13/2024] Open
Abstract
Idiopathic tinnitus is a common and complex disorder with no established cure. The CAABT (Cochleural Alternating Acoustic Beam Therapy CAABT), is a personalized sound therapy designed to target specific tinnitus frequencies and effectively intervene in tinnitus according to clinical tinnitus assessment. This study aimed to compare the effectiveness of the CAABT and Traditional Sound Therapy (TST) in managing chronic idiopathic tinnitus. This was a randomized, double-blind, parallel-group, single-center prospective study. Sixty adult patients with tinnitus were recruited and randomly assigned to the CAABT or TST group in a 1:1 ratio using a computer-generated randomization. The treatment lasted for 12 weeks, and participants underwent assessments using the tinnitus handicap inventory (THI), visual analog scale (VAS), tinnitus loudness measurements, and resting-state functional magnetic resonance imaging (rs-fMRI). Both groups showed significant reductions in THI scores, VAS scores, and tinnitus loudness after treatment. However, CAABT showed superiority to TST in THI Functional (p = 0.018), THI Emotional (p = 0.015), THI Catastrophic (p = 0.022), THI total score (p = 0.005) as well as VAS score (p = 0.022). More interesting, CAABT showed superiority to TST in the changes of THI scores, and VAS scores from baseline. The rs-fMRI results showed significant changes in the precuneus before and after treatment in both groups. Moreover, the CAABT group showed more changes in brain regions compared to the TST. No side effects were observed. These findings suggest that CAABT may be a promising treatment option for chronic idiopathic tinnitus, providing significant improvements in tinnitus-related symptoms and brain activity.Trial registration: ClinicalTrials.gov:NCT02774122.
Collapse
Affiliation(s)
- Chunli Liu
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China
| | - Jie Zhang
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China
| | - Zhiwei Qi
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China
| | - Wenhui Yue
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China
| | - Yujie Yuan
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China
| | - Tao Jiang
- The Labs of Micro-DSP Technology LTD, Fl 10, Tower C, 136 Bin Jiang Dong Lu, Chengdu, 610021, People's Republic of China
| | - Shenglin Zhang
- Department of Oncology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China.
| | - Shujun Zhang
- Department of Otolaryngology, The Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, People's Republic of China.
| |
Collapse
|
4
|
Li J, Zou Y, Kong X, Leng Y, Yang F, Zhou G, Liu B, Fan W. Exploring functional connectivity alterations in sudden sensorineural hearing loss: A multilevel analysis. Brain Res 2024; 1824:148677. [PMID: 37979604 DOI: 10.1016/j.brainres.2023.148677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Sudden sensorineural hearing loss (SSNHL) constitutes an urgent otologic emergency, marked by a rapid decline of at least 30 dB across three consecutive frequencies within 72 h. While previous studies have noted brain region alterations encompassing both auditory and non-auditory areas, this research examines functional connectivity changes across integrity, network, and edge levels in SSNHL. The cohort included 184 participants: 107 SSNHL patients and 77 age- and sex-matched healthy controls. Our investigation comprises: (1) characterization of overall functional connectivity degree across 55 nodes in nine networks (p < 0.05, corrected for false discovery rate), exposing integrity level changes; (2) identification of reduced intranetwork connectivity strength within sensory and attention networks (somatomotor network, auditory network, ventral attention network, dorsal attention network) in SSNHL individuals (p < 0.05, Bonferroni corrected), and reduced internetwork connectivity across twelve distinct subnetwork pairs (p < 0.05, FDR corrected); (3) revelation of increased internetwork connectivity in SSNHL patients, primarily spanning dorsal attention network, fronto parietal network, default mode network, and limbic network, alongside widespread reductions in connectivity patterns among the nine distinct resting-state brain networks. The study further uncovers negative correlations between SSNHL duration and intranetwork connectivity of the auditory network (p < 0.001, R = -0.474), and between Tinnitus Handicap Inventory (THI) scores and internetwork connections linking auditory network and dorsal attention network (p < 0.001, R = -0.331). These observed alterations provide crucial insights into the neural mechanisms underpinning SSNHL and extend our comprehension of the brain's network-level responses to sensory loss. By unveiling the intricate interplay between sensory deprivation, adaptation, and cognitive processes, this study lays the groundwork for future research targeting enhanced diagnosis, treatment, and rehabilitation approaches for individuals afflicted by SSNHL.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yan Zou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Xiangchuang Kong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Guofeng Zhou
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Province Key Laboratory of Molecular Imaging, Wuhan 430022, China.
| |
Collapse
|
5
|
Husain FT, Khan RA. Review and Perspective on Brain Bases of Tinnitus. J Assoc Res Otolaryngol 2023; 24:549-562. [PMID: 37919556 PMCID: PMC10752862 DOI: 10.1007/s10162-023-00914-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
In advancing our understanding of tinnitus, some of the more impactful contributions in the past two decades have come from human brain imaging studies, specifically the idea of both auditory and extra-auditory neural networks that mediate tinnitus. These networks subserve both the perception of tinnitus and the psychological reaction to chronic, continuous tinnitus. In this article, we review particular studies that report on the nodes and links of such neural networks and their inter-network connections. Innovative neuroimaging tools have contributed significantly to the increased understanding of anatomical and functional connections of attention, emotion-processing, and default mode networks in adults with tinnitus. We differentiate between the neural correlates of tinnitus and those of comorbid hearing loss; surprisingly, tinnitus and hearing loss when they co-occur are not necessarily additive in their impact and, in rare cases, additional tinnitus may act to mitigate the consequences of hearing loss alone on the brain. The scale of tinnitus severity also appears to have an impact on brain networks, with some of the alterations typically attributed to tinnitus reaching significance only in the case of bothersome tinnitus. As we learn more about comorbid conditions of tinnitus, such as depression, anxiety, hyperacusis, or even aging, their contributions to the network-level changes observed in tinnitus will need to be parsed out in a manner similar to what is currently being done for hearing loss or severity. Together, such studies advance our understanding of the heterogeneity of tinnitus and will lead to individualized treatment plans.
Collapse
Affiliation(s)
- Fatima T Husain
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign, 901 S. Sixth Street, Champaign, IL, 61820, USA.
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA.
| | - Rafay A Khan
- Neuroscience Program, University of Illinois Urbana-Champaign, 2355/57 Beckman Institute, 405 North Mathews Avenue, Urbana, IL, 61801, USA
- The Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Reisinger L, Demarchi G, Weisz N. Eavesdropping on Tinnitus Using MEG: Lessons Learned and Future Perspectives. J Assoc Res Otolaryngol 2023; 24:531-547. [PMID: 38015287 PMCID: PMC10752863 DOI: 10.1007/s10162-023-00916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 11/29/2023] Open
Abstract
Tinnitus has been widely investigated in order to draw conclusions about the underlying causes and altered neural activity in various brain regions. Existing studies have based their work on different tinnitus frameworks, ranging from a more local perspective on the auditory cortex to the inclusion of broader networks and various approaches towards tinnitus perception and distress. Magnetoencephalography (MEG) provides a powerful tool for efficiently investigating tinnitus and aberrant neural activity both spatially and temporally. However, results are inconclusive, and studies are rarely mapped to theoretical frameworks. The purpose of this review was to firstly introduce MEG to interested researchers and secondly provide a synopsis of the current state. We divided recent tinnitus research in MEG into study designs using resting state measurements and studies implementing tone stimulation paradigms. The studies were categorized based on their theoretical foundation, and we outlined shortcomings as well as inconsistencies within the different approaches. Finally, we provided future perspectives on how to benefit more efficiently from the enormous potential of MEG. We suggested novel approaches from a theoretical, conceptual, and methodological point of view to allow future research to obtain a more comprehensive understanding of tinnitus and its underlying processes.
Collapse
Affiliation(s)
- Lisa Reisinger
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria.
| | - Gianpaolo Demarchi
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
| | - Nathan Weisz
- Centre for Cognitive Neuroscience and Department of Psychology, Paris-Lodron-University Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
7
|
Li J, Leng Y, Ma H, Yang F, Liu B, Fan W. Functional reorganization of intranetwork and internetwork connectivity in patients with Ménière's disease. Sci Rep 2023; 13:16775. [PMID: 37798378 PMCID: PMC10556034 DOI: 10.1038/s41598-023-44090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Ménière's disease (MD) is associated with functional reorganization not only in the auditory or sensory cortex but also in other control and cognitive areas. In this study, we examined intranetwork and internetwork connectivity differences between 55 MD patients and 70 healthy controls (HC) in 9 well-defined resting-state networks. Functional connectivity degree was lower in MD compared to HC in 19 brain areas involved in the somatomotor, auditory, ventral attention, default mode, limbic, and deep gray matter networks. In addition, we observed lower intranetwork connectivity in the auditory, ventral attention, and limbic networks, as well as lower internetwork connectivity between the somatomotor and limbic networks, and between the auditory and somatomotor, deep gray matter, and ventral attention networks, and between the deep gray matter and default mode network. Furthermore, we identified 81 pairs of brain areas with significant differences in functional connectivity between MD patients and HC at the edge level. Notably, the left amygdala's functional connectivity degree was positively correlated with MD's disease stage, and the ventral attention network's intranetwork connectivity was positively correlated with the healthy side vestibular ratio. Our findings suggest that these functional network reorganization alterations may serve as potential biomarkers for predicting clinical progression, evaluating disease severity, and gaining a better understanding of MD's pathophysiology. Large-scale network studies using neuroimaging techniques can provide additional insights into the underlying mechanisms of MD.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Yangming Leng
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Ma
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Fan Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China
| | - Bo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Wenliang Fan
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Province Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
| |
Collapse
|
8
|
Dobel C, Junghöfer M, Mazurek B, Paraskevopoulos E, Groß J. Tinnitus and Multimodal Cortical Interaction. Laryngorhinootologie 2023; 102:S59-S66. [PMID: 37130531 PMCID: PMC10184662 DOI: 10.1055/a-1959-3021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The term of subjective tinnitus is used to describe a perceived noise without an external sound source. Therefore, it seems to be obvious that tinnitus can be understood as purely auditory, sensory problem. From a clinical point of view, however, this is a very inadequate description, as there are significant comorbidities associated with chronic tinnitus. Neurophysiological investigations with different imaging techniques give a very similar picture, because not only the auditory system is affected in chronic tinnitus patients, but also a widely ramified subcortical and cortical network. In addition to auditory processing systems, networks consisting of frontal and parietal regions are particularly disturbed. For this reason, some authors conceptualize tinnitus as a network disorder rather than a disorder of a circumscribed system. These findings and this concept suggest that tinnitus must be diagnosed and treated in a multidisciplinary and multimodal manner.
Collapse
Affiliation(s)
- Christian Dobel
- Klinik und Poliklinik für HNO-Heilkunde, Universitätsklinikum Jena, Jena
| | - Markus Junghöfer
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| | - Birgit Mazurek
- Tinnituszentrum, Charité - Universitätsmedizin Berlin, Berlin
| | | | - Joachim Groß
- Institut für Biomagnetismus und Biosignalanalyse, Universität Münster, Münster
| |
Collapse
|
9
|
Rosemann S, Rauschecker JP. Disruptions of default mode network and precuneus connectivity associated with cognitive dysfunctions in tinnitus. Sci Rep 2023; 13:5746. [PMID: 37029175 PMCID: PMC10082191 DOI: 10.1038/s41598-023-32599-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/29/2023] [Indexed: 04/09/2023] Open
Abstract
Tinnitus is the perception of a ringing, buzzing or hissing sound "in the ear" without external stimulation. Previous research has demonstrated changes in resting-state functional connectivity in tinnitus, but findings do not overlap and are even contradictory. Furthermore, how altered functional connectivity in tinnitus is related to cognitive abilities is currently unknown. Here we investigated resting-state functional connectivity differences between 20 patients with chronic tinnitus and 20 control participants matched in age, sex and hearing loss. All participants underwent functional magnetic resonance imaging, audiometric and cognitive assessments, and filled in questionnaires targeting anxiety and depression. Significant differences in functional connectivity between tinnitus patients and control participants were not obtained. However, we did find significant associations between cognitive scores and functional coupling of the default mode network and the precuneus with the superior parietal lobule, supramarginal gyrus, and orbitofrontal cortex. Further, tinnitus distress correlated with connectivity between the precuneus and the lateral occipital complex. This is the first study providing evidence for disruptions of default mode network and precuneus coupling that are related to cognitive dysfunctions in tinnitus. The constant attempt to decrease the tinnitus sensation might occupy certain brain resources otherwise available for concurrent cognitive operations.
Collapse
Affiliation(s)
- Stephanie Rosemann
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA.
| | - Josef P Rauschecker
- Laboratory of Integrative Neuroscience and Cognition, Department of Neuroscience, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC, 20057, USA
| |
Collapse
|
10
|
Lin J, You N, Li X, Huang J, Wu H, Lu H, Hu J, Zhang J, Lou X. Atypical functional hierarchy contributed to the tinnitus symptoms in patients with vestibular schwannoma. Front Neurosci 2023; 17:1084270. [PMID: 36875656 PMCID: PMC9982843 DOI: 10.3389/fnins.2023.1084270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/03/2023] [Indexed: 02/22/2023] Open
Abstract
Objective Tinnitus is frequently found in patients with vestibular schwannoma (VS), but its underlying mechanisms are currently unclear. Methods Both preoperative (VS pre ) and postoperative (VS post ) functional MR images were collected from 32 patients with unilateral VS and matched healthy controls (HCs). Connectome gradients were generated for the identification of altered regions and perturbed gradient distances. Tinnitus measurements were conducted for predictive analysis with neuroimaging-genetic integration analysis. Results There were 56.25% of preoperative patients and 65.63% of postoperative patients suffering from ipsilateral tinnitus, respectively. No relevant factors were identified including basic demographics info, hearing performances, tumor features, and surgical approaches. Functional gradient analysis confirmed atypical functional features of visual areas in VS pre were rescued after tumor resection, while the gradient performance in the postcentral gyrus continues to maintain (VS post vs. HC : P = 0.016). The gradient features of the postcentral gyrus were not only significantly decreased in patients with tinnitus (P FDR = 0.022), but also significantly correlated with tinnitus handicap inventory (THI) score (r = -0.30, P = 0.013), THI level (r = -0.31, P = 0.010), and visual analog scale (VAS) rating (r = -0.31, P = 0.0093), which could be used to predict VAS rating in the linear model. Neuropathophysiological features linked to the tinnitus gradient framework were linked to Ribosome dysfunction and oxidative phosphorylation. Conclusion Altered functional plasticity in the central nervous system is involved in the maintenance of VS tinnitus.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Na You
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xiaolong Li
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jiayu Huang
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Haoyang Wu
- Basic Medicine School, Air Force Military Medical University, Xi'an, China
| | - Haoxuan Lu
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jianxing Hu
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Jun Zhang
- Department of Neurosurgery, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| | - Xin Lou
- Department of Radiology, Chinese People's Liberation Army General Hospital/Medical School of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
11
|
Amat F, Zimdahl JW, Barry KM, Rodger J, Mulders WHAM. Long-Term Effects of Repetitive Transcranial Magnetic Stimulation on Tinnitus in a Guinea Pig Model. Brain Sci 2022; 12:brainsci12081096. [PMID: 36009159 PMCID: PMC9405768 DOI: 10.3390/brainsci12081096] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The auditory phantom sensation of tinnitus is associated with neural hyperactivity. Modulating this hyperactivity using repetitive transcranial magnetic stimulation (rTMS) has shown beneficial effects in human studies. Previously, we investigated rTMS in a tinnitus animal model and showed that rTMS over prefrontal cortex (PFC) attenuated tinnitus soon after treatment, likely via indirect effects on auditory pathways. Here, we explored the duration of these beneficial effects. Acoustic trauma was used to induce hearing loss and tinnitus in guinea pigs. Once tinnitus developed, high-frequency (20 Hz), high-intensity rTMS was applied over PFC for two weeks (weekdays only; 10 min/day). Behavioral signs of tinnitus were monitored for 6 weeks after treatment ended. Tinnitus developed in 77% of animals between 13 and 60 days post-trauma. rTMS treatment significantly reduced the signs of tinnitus at 1 week on a group level, but individual responses varied greatly at week 2 until week 6. Three (33%) of the animals showed the attenuation of tinnitus for the full 6 weeks, 45% for 1–4 weeks and 22% were non-responders. This study provides further support for the efficacy of high-frequency repetitive stimulation over the PFC as a therapeutic tool for tinnitus, but also highlights individual variation observed in human studies.
Collapse
Affiliation(s)
- Farah Amat
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Jack W. Zimdahl
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Kristin M. Barry
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
| | - Jennifer Rodger
- School of Biological Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Perron Institute for Neurological and Translational Research, Crawley, WA 6009, Australia
| | - Wilhelmina H. A. M. Mulders
- The Auditory Laboratory, School of Human Sciences, University of Western Australia, Crawley, WA 6009, Australia
- Correspondence:
| |
Collapse
|