1
|
von Spreckelsen N, Kesseler C, Brokinkel B, Goldbrunner R, Perry A, Mawrin C. Molecular neuropathology of brain-invasive meningiomas. Brain Pathol 2022; 32:e13048. [PMID: 35213084 PMCID: PMC8877755 DOI: 10.1111/bpa.13048] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Invasion of brain tissue by meningiomas has been identified as one key factor for meningioma recurrence. The identification of meningioma tumor tissue surrounded by brain tissue in neurosurgical samples has been touted as a criterion for atypical meningioma (CNS WHO grade 2), but is only rarely seen in the absence of other high-grade features, with brain-invasive otherwise benign (BIOB) meningiomas remaining controversial. While post-surgery irradiation therapy might be initiated in brain-invasive meningiomas to prevent recurrences, specific treatment approaches targeting key molecules involved in the invasive process are not established. Here we have compiled the current knowledge about mechanisms supporting brain tissue invasion by meningiomas and summarize preclinical models studying targeted therapies with potential inhibitory effects.
Collapse
Affiliation(s)
- Niklas von Spreckelsen
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Christoph Kesseler
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| | | | - Roland Goldbrunner
- Department of General NeurosurgeryCenter for NeurosurgeryCologne University HospitalFaculty of Medicine and University HospitalUniversity of CologneGermany
| | - Arie Perry
- Department of PathologyUCSFSan FranciscoCaliforniaUSA
- Department of Neurological SurgeryUCSFSan FranciscoCaliforniaUSA
| | - Christian Mawrin
- Department of NeuropathologyUniversity Hospital MagdeburgMagdeburgGermany
| |
Collapse
|
2
|
Wank M, Schilling D, Schmid TE, Meyer B, Gempt J, Barz M, Schlegel J, Liesche F, Kessel KA, Wiestler B, Bette S, Zimmer C, Combs SE. Human Glioma Migration and Infiltration Properties as a Target for Personalized Radiation Medicine. Cancers (Basel) 2018; 10:cancers10110456. [PMID: 30463322 PMCID: PMC6266328 DOI: 10.3390/cancers10110456] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 01/28/2023] Open
Abstract
Gliomas are primary brain tumors that present the majority of malignant adult brain tumors. Gliomas are subdivided into low- and high-grade tumors. Despite extensive research in recent years, the prognosis of malignant glioma patients remains poor. This is caused by naturally highly infiltrative capacities as well as high levels of radio- and chemoresistance. Additionally, it was shown that low linear energy transfer (LET) irradiation enhances migration and invasion of several glioma entities which might counteract today’s treatment concepts. However, this finding is discussed controversially. In the era of personalized medicine, this controversial data might be attributed to the patient-specific heterogeneity that ultimately could be used for treatment. Thus, current developments in glioma therapy should be seen in the context of intrinsic and radiation-enhanced migration and invasion. Due to the natural heterogeneity of glioma cells and different radiation responses, a personalized radiation treatment concept is suggested and alternative radiation concepts are discussed.
Collapse
Affiliation(s)
- Michaela Wank
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Daniela Schilling
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Thomas E Schmid
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Bernhard Meyer
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jens Gempt
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Melanie Barz
- Department of Neurosurgery, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
| | - Jürgen Schlegel
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Friederike Liesche
- Department of Neuropathology, Technical University of Munich (TUM), 81675 Munich, Germany.
| | - Kerstin A Kessel
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| | - Benedikt Wiestler
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stefanie Bette
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Claus Zimmer
- Department of Neuroradiology, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.
| | - Stephanie E Combs
- Institute of Innovative Radiotherapy (iRT), Department of Radiation Sciences (DRS), Helmholtz Zentrum München, 85764 Neuherberg, Germany.
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, 81675 Munich, Germany.
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 81675 Munich, Germany.
| |
Collapse
|
3
|
Zollner B, Ganswindt U, Maihöfer C, Corradini S, Albert NL, Schichor C, Belka C, Niyazi M. Recurrence pattern analysis after [ 68Ga]-DOTATATE-PET/CT -planned radiotherapy of high-grade meningiomas. Radiat Oncol 2018; 13:110. [PMID: 29898747 PMCID: PMC6000954 DOI: 10.1186/s13014-018-1056-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 05/28/2018] [Indexed: 12/25/2022] Open
Abstract
Background The aim of the present study was to evaluate the influence of the applied safety margins of modern intensity-modulated radiotherapy (IMRT) in patients with high-grade meningiomas on local control and recurrence patterns. Methods Twenty patients with a neuropathological diagnosis of a high-grade meningioma (WHO°II or °III) treated with adjuvant or definitive radiotherapy between 2010 and 2015 were included in the present retrospective analysis. All patients were planned PET-based. Recurrence patterns were assessed by means of MRI and/or DOTATATE-PET/computertomography (CT). Results The median follow-up was 31.0 months [95% confidence interval (CI): 20.1–42.0] and the progression-free survival (PFS) after 24 months was 87.5%. Overall, four patients had a local recurrence of their meningioma. Of these, three were located in field according to the prior radiotherapy treatment region, while only one patient had a distant relapse. There were no independent factors influencing progression-free or overall survival (OS). Conclusion After radiotherapy (RT), patients with atypical or anaplastic meningiomas still have a defined risk of tumor recurrence. The aim of the present study was to examine mono-institutional data concerning target volume definition and recurrence patterns after radiotherapy of high-grade meningiomas as there are limited data available. Our data suggest that extended safety margins are necessary to achieve a favorable local control for high-grade meningiomas.
Collapse
Affiliation(s)
- Barbara Zollner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Ute Ganswindt
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Cornelius Maihöfer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Nathalie Lisa Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany. .,German Cancer Consortium (DKTK), partner site Munich; and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
5
|
Walenta S, Mueller-Klieser W. Differential Superiority of Heavy Charged-Particle Irradiation to X-Rays: Studies on Biological Effectiveness and Side Effect Mechanisms in Multicellular Tumor and Normal Tissue Models. Front Oncol 2016; 6:30. [PMID: 26942125 PMCID: PMC4766872 DOI: 10.3389/fonc.2016.00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/28/2016] [Indexed: 01/31/2023] Open
Abstract
This review is focused on the radiobiology of carbon ions compared to X-rays using multicellular models of tumors and normal mucosa. The first part summarizes basic radiobiological effects, as observed in cancer cells. The second, more clinically oriented part of the review, deals with radiation-induced cell migration and mucositis. Multicellular spheroids from V79 hamster cells were irradiated with X-rays or carbon ions under ambient or restricted oxygen supply conditions. Reliable oxygen enhancement ratios could be derived to be 2.9, 2.8, and 1.4 for irradiation with photons, 12C+6 in the plateau region, and 12C+6 in the Bragg peak, respectively. Similarly, a relative biological effectiveness of 4.3 and 2.1 for ambient pO2 and hypoxia was obtained, respectively. The high effectiveness of carbon ions was reflected by an enhanced accumulation of cells in G2/M and a dose-dependent massive induction of apoptosis. These data clearly show that heavy charged particles are more efficient in sterilizing tumor cells than conventional irradiation even under hypoxic conditions. Clinically relevant doses (3 Gy) of X-rays induced an increase in migratory activity of U87 but not of LN229 or HCT116 tumor cells. Such an increase in cell motility following irradiation in situ could be the source of recurrence. In contrast, carbon ion treatment was associated with a dose-dependent decrease in migration with all cell lines and under all conditions investigated. The radiation-induced loss of cell motility was correlated, in most cases, with corresponding changes in β1 integrin expression. The photon-induced increase in cell migration was paralleled by an elevated phosphorylation status of the epidermal growth factor receptor and AKT-ERK1/2 pathway. Such a hyperphosphorylation did not occur during 12C+6 irradiation under all conditions registered. Comparing the gene toxicity of X-rays with that of particles using the γH2AX technique in organotypic cultures of the oral mucosa, the superior effectiveness of heavy ions was confirmed by a twofold higher number of foci per nucleus. However, proinflammatory signs were similar for both treatment modalities, e.g., the activation of NFκB and the release of IL6 and IL8. The presence of peripheral blood mononuclear cell increased the radiation-induced release of the proinflammatory cytokines by factors of 2–3. Carbon ions are part of the cosmic radiation. Long-term exposure to such particles during extended space flights, as planned by international space agencies, may thus impose a medical and safety risk on the astronauts by a potential induction of mucositis. In summary, particle irradiation is superior to gamma-rays due to a higher radiobiological effectiveness, a reduced hypoxia-induced radioresistance, a multicellular radiosensitization, and the absence of a radiation-induced cell motility. However, the potential of inducing mucositis is similar for both radiation types.
Collapse
Affiliation(s)
- Stefan Walenta
- Institute of Pathophysiology, University Medical Center, University of Mainz , Mainz , Germany
| | | |
Collapse
|