1
|
Altergot A, Schürmann M, Jungert T, Auerbach H, Nüsken F, Palm J, Rübe C, Rübe CE, Dzierma Y. Imaging doses for different CBCT protocols on the Halcyon 3.0 linear accelerator - TLD measurements in an anthropomorphic phantom. Z Med Phys 2024; 34:580-595. [PMID: 37088675 PMCID: PMC11624401 DOI: 10.1016/j.zemedi.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Image guided radiotherapy allows for particularly conformal tumour irradiation through precise patient positioning. Becoming the standard for radiotherapy, this increases imaging doses to the patient. The Halcyon 3.0 linear accelerator (Varian Medical Systems, Palo Alto, CA) requires daily imaging due to its geometry. For this reason, the accelerator is equipped with on-line kV and MV imaging. However, daily CBCT images required for irradiation apply additional radiation, which increases the dose to normal tissue and therefore can affect the patient's secondary cancer risk. In this study, actual organ doses were measured for the kV system, and a comparison of normal tissue doses for all available kV CBCT protocols was presented to demonstrate differences in imaging doses across entities and protocols. In addition, effective dose and secondary cancer risk from imaging are evaluated. MATERIAL AND METHODS Measurements were performed with thermoluminescent dosimeters in an anthropomorphic phantom positioned according to each entity (brain, head and neck, breast, lung, pelvis). CBCT images were obtained, using all available pre-set protocols without further adjustment of the parameters. Measured doses for each position and each protocol were then compared and secondary cancer risk of relevant and specifically radiosensitive organs was calculated. RESULTS It was found that imaging doses for protocols such as Pelvis and Head could be reduced by up to half using the corresponding Fast and Low Dose modes, respectively. On the other hand, larger field sizes or the Large mode yielded higher doses than their initial protocols. Image Gently was found to spare normal tissue best, however it is not suitable for certain entities due to low image quality or insufficient projection data. DISCUSSION By using appropriate kV-CBCT protocols, it is possible to reduce imaging doses to a significant extent and therefore spare healthy tissue. Combined with studies of image quality, the results of this study could lead to adjustments in workflow regarding the choice of protocols used in daily routine. This could prevent unnecessary radiation exposure and reduce secondary cancer risk.
Collapse
Affiliation(s)
- Angelika Altergot
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany.
| | - Michaela Schürmann
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Tanja Jungert
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Frank Nüsken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Jan Palm
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Claudia E Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Homburg/Saar, Germany
| |
Collapse
|
2
|
Wang S, Tang W, Luo H, Jin F, Wang Y. The Role of Image-guided Radiotherapy in Prostate Cancer: A Systematic Review and Meta-Analysis. Clin Transl Radiat Oncol 2022; 38:81-89. [DOI: 10.1016/j.ctro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/12/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
3
|
J F, A S, V E, F P, P M, B T, Sw W. New aspects and innovations in the local treatment of renal and urogenital pediatric tumors. Semin Pediatr Surg 2021; 30:151081. [PMID: 34412882 DOI: 10.1016/j.sempedsurg.2021.151081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Local treatment plays a key role for patients' outcome in tumors of the urogenital tract in children. Despite a great variety of different etiologies, the specific localization of pediatric urogenital tumors renders several characteristic demands to the treating personnel. Surgery and radiotherapy are the main elements of local treatment in this group of neoplasms. Numerous new guidelines and innovative technical developments of surgery and radiotherapy have recently been integrated into treatment concepts for pediatric urogenital tumors. Due to the broadness of the field it is not possible to give a full overview over all aspects. Therefore, this article highlights the most important innovations and new guidelines of surgery and radiotherapy of pediatric urogenital tumors.
Collapse
Affiliation(s)
- Fuchs J
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany.
| | - Schmidt A
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Ellerkamp V
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| | - Paulsen F
- Department of Radiation Oncology, University Hospital Tuebingen, Tuebingen, Germany
| | - Melchior P
- Department of Radiotherapy and Radiation Oncology, University Hospital, Homburg, Germany
| | - Timmermann B
- Department of Particle Therapy, West German Proton Therapy Centre, University Hospital Essen, Essen, Germany
| | - Warmann Sw
- Department of Pediatric Surgery and Pediatric Urology, University Children´s Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Özseven A, Dirican B. Evaluation of patient organ doses from kilovoltage cone-beam CT imaging in radiation therapy. ACTA ACUST UNITED AC 2021; 26:251-258. [PMID: 34211776 DOI: 10.5603/rpor.a2021.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 02/08/2021] [Indexed: 11/25/2022]
Abstract
Background Currently, CBCT system is an indispensable component of radiation therapy units. Because of that, it is important in treatment planning and diagnosis. CBCT is also an crucial tool for patient positioning and verification in image-guided radiation therapy (IGRT). Therefore, it is critical to investigate the patient organ doses arising from CBCT imaging. The purpose of this study is to evaluate patient organ doses and effective dose to patients from three different protocols of Elekta Synergy XVI system for kV CBCT imaging examinations in image guided radiation therapy. Materials and methods Organ dose measurements were done with thermoluminescent dosimeters in Alderson RA NDO male phantom for head & neck (H&N), chest and pelvis protocols of the Elekta Synergy XVI kV CBCT system. From the measured organ dose, effective dose to patients were calculated according to the International Commission on Radiological Protection 103 report recommendations. Results For H&N, chest and pelvis scans, the organ doses were in the range of 0.03-3.43 mGy, 6.04-22.94 mGy and 2.5-25.28 mGy, respectively. The calculated effective doses were 0.25 mSv, 5.56 mSv and 4.72 mSv, respectively. Conclusion The obtained results were consistent with the most published studies in the literature. Although the doses to patient organs from the kV CBCT system were relatively low when compared with the prescribed treatment dose, the amount of delivered dose should be monitored and recorded carefully in order to avoid secondary cancer risk, especially in pediatric examinations.
Collapse
Affiliation(s)
- Alper Özseven
- Suleyman Demirel University, Medical Faculty, Isparta, Turkey
| | - Bahar Dirican
- University of Health Sciences, Gulhane Medical Faculty, Ankara, Turkey
| |
Collapse
|
5
|
Duan YH, Gu HL, Yang XH, Chen H, Wang H, Shao Y, Li XY, Feng AH, Ying YC, Fu XL, Ma K, Zhou T, Xu ZY. Evaluation of IGRT-Induced Imaging Doses and Secondary Cancer Risk for SBRT Early Lung Cancer Patients In Silico Study. Technol Cancer Res Treat 2021; 20:15330338211016472. [PMID: 34184567 PMCID: PMC8251513 DOI: 10.1177/15330338211016472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/23/2021] [Accepted: 04/19/2021] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES This study performed dosimetry studies and secondary cancer risk assessments on using electronic portal imaging device (EPID) and cone beam computed tomography (CBCT) as image guided tools for the early lung cancer patients treated with SBRT. METHODS The imaging doses from MV-EPID and kV-CBCT of the Edge accelerator were retrospectively added to sixty-one SBRT treatment plans of early lung cancer patients. The MV-EPID imaging dose (6MV Photon beam) was calculated in Pinnacle TPS, and the kV-CBCT imaging dose was simulated and calculated by modeling of the kV energy beam in TPS using Pinnacle automatic modeling program. Three types of plans, namely PlanEPID, PlanCBCT and Planorigin, were generated with incorporating doses of EPID, CBCT and no imaging, respectively, for analysis. The effects of imaging doses on dose-volume-histogram (DVH) and plan quality were analyzed, and the excess absolute risk (EAR) of secondary cancer for ipsilateral lung was evaluated. RESULTS The regions that received less than 50 cGy were significantly impacted by the imaging doses, while the isodose lines greater than 1000 cGy were barely changed. The DVH values of ipsilateral lung increased the most in PlanEPID, followed by PlanCBCT. Compared to Planorigin on the average, the estimated EAR of ipsilateral lung in PlanEPID increased by 3.43%, while the corresponding EAR increase in PlanCBCT was much smaller (about 0.4%). Considering only the contribution of the imaging dose, the EAR values for the ipsilateral lung due to the MV-EPID dose in 5 years,10 years and 15 years were 1.49 cases, 2.09 cases and 2.88 cases per 104PY respectively, and those due to the kV-CBCT dose were about 9 times lower, correspondingly. CONCLUSIONS The imaging doses produced by MV-EPID and kV-CBCT had little effects on the target dose coverage. The secondary cancer risk caused by MV-EPID dose is more than 8.5 times that of kV-CBCT.
Collapse
Affiliation(s)
- Yan-Hua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Heng-Le Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Hui Yang
- Department of Engineering, Beijing Jingfang Technologies Co. Ltd, Beijing, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ai-Hui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yan-Chen Ying
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Long Fu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Kui Ma
- Clinical helpdesk, Varian Medical Systems, China
| | - Tao Zhou
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong, China
| | - Zhi-Yong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
6
|
Dose calculation deviations induced by fractional image-guided-couch-shifts for Varian Halcyon MV cone beam CT. Phys Med 2019; 58:66-71. [PMID: 30824152 DOI: 10.1016/j.ejmp.2019.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 11/20/2022] Open
Abstract
PURPOSE To assess the criticality of calculation deviations induced by fractional image-guided-couch-shifts for Halcyon MV cone beam CT (CBCT) dose, which is incorporated as part of total treatment dose. METHODS Eclipse-calculated imaging dose was first validated in 'Cheese Phantom' by measurement. Then, the actual imaging dose (Dact) for 18 historical patients of various sites were recalculated based on 513 MV CBCT-guided-couch-shift data, and compared with reference computations based on treatment isocentre (Dref). Patient- and plan-specific dose from treatment fields was integrated with Dact and Dref respectively for comparison. RESULTS The average absolute relative disagreements between the measured and calculated dose were less than 1.23%. The mean ± 1SD of gamma passing rates of the accumulated imaging dose and total dose were 80.71 ± 6.22% and 99.81 ± 0.32% respectively based on 3 mm/3%/local/10% threshold criteria. The accumulated errors of minimum imaging dose to PTV were no larger than -14.38 cGy, which were reduced to -0.82 cGy after the heterogeneous treatment dose was overlaid. The mean relative discrepancies of PTV minimum dose were -0.61 cGy (-0.71%) and -0.00 (0.00%), before and after incorporating the treatment dose respectively. CONCLUSIONS The Eclipse-calculated Halcyon MV CBCT dose was validated. Although the isocentre displacement-induced imaging dose calculation errors for Halcyon MV CBCT were partially cancelled out by couch shifts of various directions and distances, especially after the incorporation of heterogeneous treatment dose, it was still advisable to monitor the accumulated deviations and replan when unacceptable target under-dose or organ over-dose were observed.
Collapse
|
7
|
Bell K, Licht N, Rübe C, Dzierma Y. Image guidance and positioning accuracy in clinical practice: influence of positioning errors and imaging dose on the real dose distribution for head and neck cancer treatment. Radiat Oncol 2018; 13:190. [PMID: 30285806 PMCID: PMC6167812 DOI: 10.1186/s13014-018-1141-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/24/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Modern radiotherapy offers the possibility of highly accurate tumor treatment. To benefit from this precision at its best, regular positioning verification is necessary. By the use of image-guided radiotherapy and the application of safety margins the influence of positioning inaccuracies can be counteracted. In this study the effect of additional imaging dose by set-up verification is compared with the effect of dose smearing by positioning inaccuracies for a collective of head-and-neck cancer patients. METHODS This study is based on treatment plans of 40 head-and-neck cancer patients. To evaluate the imaging dose several image guidance scenarios with different energies, techniques and frequencies were simulated and added to the original plan. The influence of the positioning inaccuracies was assessed by the use of real applied table shifts for positioning. The isocenters were shifted back appropriately to these values to simulate that no positioning correction had been performed. For the single fractions the shifted plans were summed considering three different scenarios: The summation of only shifted plans, the consideration of the original plan for the fractions with set-up verification, and the addition of the extra imaging dose to the latter. For both effects (additional imaging dose and dose smearing), plans were analyzed and compared considering target coverage, sparing of organs at risk (OAR) and normal tissue complication probability (NTCP). RESULTS Daily verification of the patient positioning using 3D imaging with MV energies result in non-negligible high doses. kV imaging has only marginal influence on plan quality, primarily related to sparing of organs at risk, even with daily 3D imaging. For this collective, sparing of organs at risk and NTCP are worse due to potential positioning errors. CONCLUSION Regular set-up verification is essential for precise radiation treatment. Relating to the additional dose, the use of kV modalities is uncritical for any frequency and technique. Dose smearing due to positioning errors for this collective mainly resulted in a decrease of OAR sparing. Target coverage also suffered from the positioning inaccuracies, especially for individual patients. Taking into account both examined effects the relevance of an extensive IGRT is clearly present, even at the expense of additional imaging dose and time expenditure.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Norbert Licht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5/Saar, D-66421 Homburg, Germany
| |
Collapse
|
8
|
Dzierma Y, Mikulla K, Richter P, Bell K, Melchior P, Nuesken F, Rübe C. Imaging dose and secondary cancer risk in image-guided radiotherapy of pediatric patients. Radiat Oncol 2018; 13:168. [PMID: 30185206 PMCID: PMC6125956 DOI: 10.1186/s13014-018-1109-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/21/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Daily image-guided radiotherapy (IGRT) can contribute to cover extended body volumes with low radiation dose. The effect of additional imaging dose on secondary cancer development is modelled for a collective of children with Morbus Hodgkin. METHODS Eleven radiotherapy treatment plans from pediatric patients with Hodgkin's lymphoma were retrospectively analyzed, including imaging dose from scenarios using different energies (kV/MV) and planar/cone-beam computed tomography (CBCT) techniques. In addition to assessing the effect of imaging dose on organs at risk, the excess average risk (EAR) for developing a secondary carcinoma of the lung or breast was modelled. RESULTS Although the variability between the patients is relatively large due to the different target volumes, the additional EAR due to imaging can be consistently determined. For daily 6MV CBCT, the EAR for developing a secondary cancer at age 50 is over 3 cases per 104 PY (patient-years) for the female breast and 0.7-0.8 per 104 PY for the lungs. This can be decreased by using only planar images (< 1 per 104 PY for the breast and 0.1 for the lungs). Similar values are achieved by daily 360° kV CBCT (0.44-0.57 per 104 PY for the breast and 0.08 per 104 PY for the lungs), which is again reduced for daily 200° kV CBCT (0.02 per 104 PY for the lungs and 0.07-0.08 per 104 PY for the breast). These values increase if an older attained age is considered (e.g., for 70 years, by a factor of four for the lungs). CONCLUSIONS Daily imaging can be performed with an additional secondary cancer risk of less than 1 per 104 PY if kV CBCT is applied. If MV modalities must be chosen, a similar EAR can be achieved with planar images. A further reduction in risk is possible if the imaging geometry allows for sparing of the breast by a partial rotation underneath the patient.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Mikulla
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Richter
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Patrick Melchior
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Frank Nuesken
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, 66421 Homburg, Saar Germany
| |
Collapse
|
9
|
Ding GX, Alaei P, Curran B, Flynn R, Gossman M, Mackie TR, Miften M, Morin R, Xu XG, Zhu TC. Image guidance doses delivered during radiotherapy: Quantification, management, and reduction: Report of the AAPM Therapy Physics Committee Task Group 180. Med Phys 2018; 45:e84-e99. [PMID: 29468678 DOI: 10.1002/mp.12824] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. AIMS This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. MATERIALS & METHODS We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. RESULTS We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. DISCUSSION Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. CONCLUSION Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.
Collapse
Affiliation(s)
- George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA
| | - Parham Alaei
- University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bruce Curran
- Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Ryan Flynn
- University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | | - X George Xu
- Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Timothy C Zhu
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
10
|
Dzierma Y, Minko P, Ziegenhain F, Bell K, Buecker A, Rübe C, Jagoda P. Abdominal imaging dose in radiology and radiotherapy - Phantom point dose measurements, effective dose and secondary cancer risk. Phys Med 2017; 43:49-56. [PMID: 29195562 DOI: 10.1016/j.ejmp.2017.10.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 11/28/2022] Open
Abstract
PURPOSE To compare abdominal imaging dose from 3D imaging in radiology (standard/low-dose/dual-energy CT) and radiotherapy (planning CT, kV cone-beam CT (CBCT)). METHODS Dose was measured by thermoluminescent dosimeters (TLD's) placed at 86 positions in an anthropomorphic phantom. Point, organ and effective dose were assessed, and secondary cancer risk from imaging was estimated. RESULTS Overall dose and mean organ dose comparisons yield significantly lower dose for the optimized radiology protocols (dual-source and care kV), with an average dose of 0.34±0.01 mGy and 0.54±0.01 mGy (average ± standard deviation), respectively. Standard abdominal CT and planning CT involve considerably higher dose (13.58 ± 0.18 mGy and 18.78±0.27 mGy, respectively). The CBCT dose show a dose fall-off near the field edges. On average, dose is reduced as compared with the planning or standard CT (3.79 ± 0.21 mGy for 220° rotation and 7.76 ± 0.37 mGy for 360°), unless the high-quality setting is chosen (20.30 ± 0.96 mGy). The mean organ doses show a similar behavior, which translates to the estimated secondary cancer risk. The modelled risk is in the range between 0.4 cases per million patient years (PY) for the radiological scans dual-energy and care kV, and 300 cases per million PY for the high-quality CBCT setting. CONCLUSIONS Modern radiotherapy imaging techniques (while much lower in dose than radiotherapy), involve considerably more dose to the patient than modern radiology techniques. Given the frequency of radiotherapy imaging, a further reduction in radiotherapy imaging dose appears to be both desirable and technically feasible.
Collapse
Affiliation(s)
- Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany.
| | - Peter Minko
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| | - Franziska Ziegenhain
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Arno Buecker
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Center, Kirrberger Str. Geb. 6.5, D-66421 Homburg/Saar, Germany
| | - Philippe Jagoda
- Department of Diagnostic and Interventional Radiology, Saarland University Medical Center, Kirrberger Str. Geb. 50.1, D-66421 Homburg/Saar, Germany
| |
Collapse
|
11
|
Chen H, Rottmann J, Yip SS, Morf D, Füglistaller R, Star-Lack J, Zentai G, Berbeco R. Super-resolution imaging in a multiple layer EPID. Biomed Phys Eng Express 2017; 3:025004. [PMID: 28713589 DOI: 10.1088/2057-1976/aa5d20] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new portal imager consisting of four vertically stacked conventional electronic portal imaging device (EPID) layers has been constructed in pursuit of improved detective quantum efficiency (DQE). We hypothesize that super-resolution (SR) imaging can also be achieved in such a system by shifting each layer laterally by half a pixel relative to the layer above. Super-resolution imaging will improve resolution and contrast-to-noise ratio (CNR) in megavoltage (MV) planar and cone beam computed tomography (MV-CBCT) applications. Simulations are carried out to test this hypothesis with digital phantoms. To assess planar resolution, 2 mm long iron rods with 0.3 × 0.3 mm2 square cross-section are arranged in a grid pattern at the center of a 1 cm thick solid water. For measuring CNR in MV-CBCT, a 20 cm diameter digital phantom with 8 inserts of different electron densities is used. For measuring resolution in MV-CBCT, a digital phantom featuring a bar pattern similar to the Gammex™ phantom is used. A 6 MV beam is attenuated through each phantom and detected by each of the four detector layers. Fill factor of the detector is explicitly considered. Projections are blurred with an estimated point spread function (PSF) before super-resolution reconstruction. When projections from multiple shifted layers are used in SR reconstruction, even a simple shift-add fusion can significantly improve the resolution in reconstructed images. In the reconstructed planar image, the grid pattern becomes visually clearer. In MV-CBCT, combining projections from multiple layers results in increased CNR and resolution. The inclusion of two, three and four layers increases CNR by 40%, 70% and 99%, respectively. Shifting adjacent layers by half a pixel almost doubles resolution. In comparison, using four perfectly aligned layers does not improve resolution relative to a single layer.
Collapse
Affiliation(s)
- Haijian Chen
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Joerg Rottmann
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Stephen Sf Yip
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| | - Daniel Morf
- Varian Medical Systems International AG, Cham, Zug, CH
| | | | | | | | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Bell K, Heitfeld M, Licht N, Rübe C, Dzierma Y. Influence of daily imaging on plan quality and normal tissue toxicity for prostate cancer radiotherapy. Radiat Oncol 2017; 12:7. [PMID: 28069053 PMCID: PMC5223448 DOI: 10.1186/s13014-016-0757-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background Modern radiotherapy offers various possibilities for image guided verification of patient positioning. Different clinically relevant IGRT (image guided radiotherapy) scenarios were considered with regard to their influence on dosimetric plan quality and normal tissue complication probability (NTCP). Methods This study is based on treatment plans of 50 prostate patients. We evaluate the clinically performed IGRT and simulate the influence of different daily IGRT scenarios on plan quality. Imaging doses of planar and cone-beam-CT (CBCT) images for three different energies (6 MV, 1 MV and 121 kV) were added to the treatment plans. The plan quality of the different scenarios was assessed by a visual inspection of the dose distribution and dose-volume-histogram (DVH) and a statistical analysis of DVH criteria. In addition, an assessment of the normal tissue complication probability was performed. Results Daily 1MV-CBCTs result in undesirable high dose regions in the target volume. The DVH shows that the scenarios with actual imaging performed, daily kV-CBCT and daily 6MV imaging (1x CBCT, 4x planar images per week) do not differ exceedingly from the original plan; especially imaging with daily kV-CBCT has little influence to the sparing of organs at risk. In contrast, daily 1MV- CBCT entails an additional dose of up to two fraction doses. Due to the additional dose amount some DVH constraints for plan acceptability could no longer be satisfied, especially for the daily 1MV-CBCT scenario. This scenario also shows increased NTCP for the rectum. Conclusion Daily kV-CBCT has negligible influence on plan quality and is commendable for the clinical routine. If no kV-modality is available, a daily IGRT scenario with one CBCT per week and planar axial images on the other days should be preferred over daily MV-CBCT.
Collapse
Affiliation(s)
- Katharina Bell
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany.
| | - Marina Heitfeld
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Norbert Licht
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| | - Yvonne Dzierma
- Department of Radiotherapy and Radiation Oncology, Saarland University Medical Centre, Kirrberger Str. Geb. 6.5, D-66421, Homburg/Saar, Germany
| |
Collapse
|
13
|
Zechner A, Stock M, Kellner D, Ziegler I, Keuschnigg P, Huber P, Mayer U, Sedlmayer F, Deutschmann H, Steininger P. Development and first use of a novel cylindrical ball bearing phantom for 9-DOF geometric calibrations of flat panel imaging devices used in image-guided ion beam therapy. Phys Med Biol 2016; 61:N592-N605. [DOI: 10.1088/0031-9155/61/22/n592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
14
|
Set-up errors and planning margins in planar and CBCT image-guided radiotherapy using three different imaging systems: A clinical study for prostate and head-and-neck cancer. Phys Med 2015; 31:1055-1059. [DOI: 10.1016/j.ejmp.2015.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 08/18/2015] [Accepted: 09/06/2015] [Indexed: 11/19/2022] Open
|