1
|
Li X, Wang H, Li Z, Tao F, Wu J, Guan W, Liu S. Oxygen switches: Refueling for cancer radiotherapy. Front Oncol 2023; 12:1085432. [PMID: 36873299 PMCID: PMC9978393 DOI: 10.3389/fonc.2022.1085432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 02/18/2023] Open
Abstract
Radiotherapy remains the major therapeutic intervention for tumor patients. However, the hypoxic tumor microenvironment leads to treatment resistance. Recently, a burgeoning number of nano-radiosensitizers designed to increase the oxygen concentration in tumors were reported. These nano radiosensitizers served as oxygen carriers, oxygen generators, and even sustained oxygen pumps, attracting increased research interest. In this review, we focus on the novel oxygen-enrich nano radiosensitizers, which we call oxygen switches, and highlight their influence in radiotherapy through different strategies. Physical strategies-based oxygen switches carried O2 into the tumor via their high oxygen capacity. The chemical reactions to generate O2 in situ were triggered by chemical strategies-based oxygen switches. Biological strategies-based oxygen switches regulated tumor metabolism, remodeled tumor vasculature, and even introduced microorganisms-mediated photosynthesis for long-lasting hypoxia alleviating. Moreover, the challenges and perspectives of oxygen switches-mediated oxygen-enrich radiotherapy were discussed.
Collapse
Affiliation(s)
- Xianghui Li
- First Affiliated Hospital of Guangxi Medical University, Depatment of Dermatology, Nanning, China
- Affiliated Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, China
| | - Haoran Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, China
- Department of Pharmacology, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhiyan Li
- First Affiliated Hospital of Guangxi Medical University, Depatment of Dermatology, Nanning, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School and School of Life Science, Nanjing University, Nanjing, China
| | - Wenxian Guan
- First Affiliated Hospital of Guangxi Medical University, Depatment of Dermatology, Nanning, China
| | - Song Liu
- First Affiliated Hospital of Guangxi Medical University, Depatment of Dermatology, Nanning, China
| |
Collapse
|
2
|
Zhuang Y, Liu K, He Q, Gu X, Jiang C, Wu J. Hypoxia signaling in cancer: Implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e203. [PMID: 36703877 PMCID: PMC9870816 DOI: 10.1002/mco2.203] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/14/2022] [Accepted: 12/18/2022] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a persistent physiological feature of many different solid tumors and a key driver of malignancy, and in recent years, it has been recognized as an important target for cancer therapy. Hypoxia occurs in the majority of solid tumors due to a poor vascular oxygen supply that is not sufficient to meet the needs of rapidly proliferating cancer cells. A hypoxic tumor microenvironment (TME) can reduce the effectiveness of other tumor therapies, such as radiotherapy, chemotherapy, and immunotherapy. In this review, we discuss the critical role of hypoxia in tumor development, including tumor metabolism, tumor immunity, and tumor angiogenesis. The treatment methods for hypoxic TME are summarized, including hypoxia-targeted therapy and improving oxygenation by alleviating tumor hypoxia itself. Hyperoxia therapy can be used to improve tissue oxygen partial pressure and relieve tumor hypoxia. We focus on the underlying mechanisms of hyperoxia and their impact on current cancer therapies and discuss the prospects of hyperoxia therapy in cancer treatment.
Collapse
Affiliation(s)
- Yan Zhuang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Kua Liu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Qinyu He
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
| | - Xiaosong Gu
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical BiotechnologyNational Institute of Healthcare Data Science at Nanjing UniversityJiangsu Key Laboratory of Molecular MedicineMedicineMedical School of Nanjing UniversityNanjing UniversityNanjingChina
- Microecological, Regenerative and Microfabrication Technical Platform for Biomedicine and Tissue EngineeringJinan Microecological Biomedicine Shandong LaboratoryJinan CityChina
| |
Collapse
|
3
|
Yuan Y, Qiao G, Zhou J, Zhou Y, Li Y, Li X, Jiang Z, Wang Y. Integrated analysis reveals the protective mechanism and therapeutic potential of hyperbaric oxygen against pulmonary fibrosis. Genes Dis 2022; 10:1029-1039. [DOI: 10.1016/j.gendis.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
4
|
Gallez B. The Role of Imaging Biomarkers to Guide Pharmacological Interventions Targeting Tumor Hypoxia. Front Pharmacol 2022; 13:853568. [PMID: 35910347 PMCID: PMC9335493 DOI: 10.3389/fphar.2022.853568] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022] Open
Abstract
Hypoxia is a common feature of solid tumors that contributes to angiogenesis, invasiveness, metastasis, altered metabolism and genomic instability. As hypoxia is a major actor in tumor progression and resistance to radiotherapy, chemotherapy and immunotherapy, multiple approaches have emerged to target tumor hypoxia. It includes among others pharmacological interventions designed to alleviate tumor hypoxia at the time of radiation therapy, prodrugs that are selectively activated in hypoxic cells or inhibitors of molecular targets involved in hypoxic cell survival (i.e., hypoxia inducible factors HIFs, PI3K/AKT/mTOR pathway, unfolded protein response). While numerous strategies were successful in pre-clinical models, their translation in the clinical practice has been disappointing so far. This therapeutic failure often results from the absence of appropriate stratification of patients that could benefit from targeted interventions. Companion diagnostics may help at different levels of the research and development, and in matching a patient to a specific intervention targeting hypoxia. In this review, we discuss the relative merits of the existing hypoxia biomarkers, their current status and the challenges for their future validation as companion diagnostics adapted to the nature of the intervention.
Collapse
Affiliation(s)
- Bernard Gallez
- Biomedical Magnetic Resonance Research Group, Louvain Drug Research Institute, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
5
|
Yuan Y, Li Y, Qiao G, Zhou Y, Xu Z, Hill C, Jiang Z, Wang Y. Hyperbaric Oxygen Ameliorates Bleomycin-Induced Pulmonary Fibrosis in Mice. Front Mol Biosci 2021; 8:675437. [PMID: 34150851 PMCID: PMC8211992 DOI: 10.3389/fmolb.2021.675437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
The prevalence of pulmonary fibrosis is increasing with an aging population and its burden is likely to increase following COVID-19, with large financial and medical implications. As approved therapies in pulmonary fibrosis only slow disease progression, there is a significant unmet medical need. Hyperbaric oxygen (HBO) is the inhaling of pure oxygen, under the pressure of greater than one atmosphere absolute, and it has been reported to improve pulmonary function in patients with pulmonary fibrosis. Our recent study suggested that repetitive HBO exposure may affect biological processes in mice lungs such as response to wounding and extracellular matrix. To extend these findings, a bleomycin-induced pulmonary fibrosis mouse model was used to evaluate the effect of repetitive HBO exposure on pulmonary fibrosis. Building on our previous findings, we provide evidence that HBO exposure attenuates bleomycin-induced pulmonary fibrosis in mice. In vitro, HBO exposure could reverse, at least partially, transforming growth factor (TGF)-β-induced fibroblast activation, and this effect may be mediated by downregulating TGF-β-induced expression of hypoxia inducible factor (HIF)-1α. These findings support HBO as a potentially life-changing therapy for patients with pulmonary fibrosis, although further research is needed to fully evaluate this.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yali Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Guoqiang Qiao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yilu Zhou
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Zijian Xu
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Charlotte Hill
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Zhenglin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Yihua Wang
- Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Tchirikov M, Saling E, Bapayeva G, Bucher M, Thews O, Seliger G. Hyperbaric oxygenation and glucose/amino acids substitution in human severe placental insufficiency. Physiol Rep 2019. [PMID: 29536649 PMCID: PMC5849598 DOI: 10.14814/phy2.13589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first case, the AA and glucose were infused through a perinatal port system into the umbilical vein at 30 weeks' gestation due to severe IUGR. The patient received daily hyperbaric oxygenation (HBO, 100% O2) with 1.4 atmospheres absolute for 50 min for 7 days. At 31+4 weeks' gestation, the patient gave birth spontaneously to a newborn weighing 1378 g, pH 7.33, APGAR score 4/6/intubation. In follow‐up examinations at 5 years of age, the boy was doing well without any neurological disturbance or developmental delay. In the second case, the patient presented at 25/5 weeks' gestation suffering from severe IUGR received HBO and maternal AA infusions. The cardiotocography was monitored continuously during HBO treatment. The short‐time variations improved during HBO from 2.9 to 9 msec. The patient developed pathologic CTG and uterine contractions 1 day later and gave birth to a hypotrophic newborn weighing 420 g. After initial adequate stabilization, the extremely preterm newborn unfortunately died 6 days later. Fetal nutrition combined with HBO is technically possible and may allow the prolongation of the pregnancy. Fetal‐specific amino‐acid composition would facilitate the treatment options of IUGR fetuses and extremely preterm newborn.
Collapse
Affiliation(s)
- Michael Tchirikov
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Erich Saling
- Saling Institute of Perinatal Medicine, Berlin, Germany
| | - Gauri Bapayeva
- National Research Center for Mother and Child Health, Nazarbayev University, Astana, Republic of Kazakhstan
| | - Michael Bucher
- Center of HBO, University Clinic of Anesthesiology, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Oliver Thews
- Institute of Physiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Gregor Seliger
- Center of Fetal Surgery, University Clinic of Obstetrics and Fetal Medicine, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|
8
|
Gong G, Guo Y, Sun X, Wang X, Yin Y, Feng DD. Study of an Oxygen Supply and Oxygen Saturation Monitoring System for Radiation Therapy Associated with the Active Breathing Coordinator. Sci Rep 2018; 8:1254. [PMID: 29352224 PMCID: PMC5775202 DOI: 10.1038/s41598-018-19576-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/04/2018] [Indexed: 12/25/2022] Open
Abstract
In this study, we designed an oxygen supply and oxygen saturation monitoring (OSOSM) system. This OSOSM system can provide a continuous supply of oxygen and monitor the peripheral capillary oxygen saturation (SpO2) of patients who accept radiotherapy and use an active breathing coordinator (ABC). A clinical test with 27 volunteers was conducted. The volunteers were divided into two groups based on the tendency of SpO2 decline in breath-holding without the OSOSM system: group A (12 cases) showed a decline in SpO2 of less than 2%, whereas the decline in SpO2 in group B (15 cases) was greater than 2% and reached up to 6% in some cases. The SpO2 of most volunteers declined during rest. The breath-holding time of group A without the OSOSM system was significantly longer than that of group B (p < 0.05) and was extended with the OSOSM system by 26.6% and 27.85% in groups A and B, respectively. The SpO2 recovery time was reduced by 36.1%, and the total rest time was reduced by 27.6% for all volunteers using the OSOSM system. In summary, SpO2 declines during breath-holding and rest time cannot be ignored while applying an ABC. This OSOSM system offers a simple and effective way to monitor SpO2 variation and overcome SpO2 decline, thereby lengthening breath-holding time and shortening rest time.
Collapse
Affiliation(s)
- Guanzhong Gong
- The Radiation Oncology Department of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, 250117, China.,Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia
| | - Yujie Guo
- The Intensive Care Unit Of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, China, 250117
| | - Xuemei Sun
- The Intensive Care Unit Of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, China, 250117
| | - Xiuying Wang
- Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia.
| | - Yong Yin
- The Radiation Oncology Department of Shandong Cancer Hospital, Affiliated To Shandong University, Jiyan Road 440#, Jinan Shandong, 250117, China.
| | - David Dagan Feng
- Biomedical And Multimedia Information Technology (BMIT) Research Group, School Of Information Technologies (SIT), The University Of Sydney, Sydney, Nsw, 2008, Australia
| |
Collapse
|