1
|
Cooper ID, Kyriakidou Y, Edwards K, Petagine L, Seyfried TN, Duraj T, Soto-Mota A, Scarborough A, Jacome SL, Brookler K, Borgognoni V, Novaes V, Al-Faour R, Elliott BT. Ketosis Suppression and Ageing (KetoSAge): The Effects of Suppressing Ketosis in Long Term Keto-Adapted Non-Athletic Females. Int J Mol Sci 2023; 24:15621. [PMID: 37958602 PMCID: PMC10650498 DOI: 10.3390/ijms242115621] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Most studies on ketosis have focused on short-term effects, male athletes, or weight loss. Hereby, we studied the effects of short-term ketosis suppression in healthy women on long-standing ketosis. Ten lean (BMI 20.5 ± 1.4), metabolically healthy, pre-menopausal women (age 32.3 ± 8.9) maintaining nutritional ketosis (NK) for > 1 year (3.9 years ± 2.3) underwent three 21-day phases: nutritional ketosis (NK; P1), suppressed ketosis (SuK; P2), and returned to NK (P3). Adherence to each phase was confirmed with daily capillary D-beta-hydroxybutyrate (BHB) tests (P1 = 1.9 ± 0.7; P2 = 0.1 ± 0.1; and P3 = 1.9 ± 0.6 pmol/L). Ageing biomarkers and anthropometrics were evaluated at the end of each phase. Ketosis suppression significantly increased: insulin, 1.78-fold from 33.60 (± 8.63) to 59.80 (± 14.69) pmol/L (p = 0.0002); IGF1, 1.83-fold from 149.30 (± 32.96) to 273.40 (± 85.66) µg/L (p = 0.0045); glucose, 1.17-fold from 78.6 (± 9.5) to 92.2 (± 10.6) mg/dL (p = 0.0088); respiratory quotient (RQ), 1.09-fold 0.66 (± 0.05) to 0.72 (± 0.06; p = 0.0427); and PAI-1, 13.34 (± 6.85) to 16.69 (± 6.26) ng/mL (p = 0.0428). VEGF, EGF, and monocyte chemotactic protein also significantly increased, indicating a pro-inflammatory shift. Sustained ketosis showed no adverse health effects, and may mitigate hyperinsulinemia without impairing metabolic flexibility in metabolically healthy women.
Collapse
Affiliation(s)
- Isabella D. Cooper
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Yvoni Kyriakidou
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kurtis Edwards
- Cancer Biomarkers and Mechanisms Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK;
| | - Lucy Petagine
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Thomas N. Seyfried
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Tomas Duraj
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA; (T.N.S.); (T.D.)
| | - Adrian Soto-Mota
- Metabolic Diseases Research Unit, National Institute of Medical Sciences and Nutrition Salvador Zubiran, Mexico City 14080, Mexico;
- Tecnologico de Monterrey, School of Medicine, Mexico City 14380, Mexico
| | - Andrew Scarborough
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Sandra L. Jacome
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Kenneth Brookler
- Retired former Research Collaborator, Aerospace Medicine and Vestibular Research Laboratory, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Valentina Borgognoni
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Vanusa Novaes
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Rima Al-Faour
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| | - Bradley T. Elliott
- Ageing Biology and Age-Related Diseases, School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK; (Y.K.); (L.P.); (A.S.); (S.L.J.); (V.B.); (V.N.); (R.A.-F.); (B.T.E.)
| |
Collapse
|
2
|
Larionova I, Rakina M, Ivanyuk E, Trushchuk Y, Chernyshova A, Denisov E. Radiotherapy resistance: identifying universal biomarkers for various human cancers. J Cancer Res Clin Oncol 2022; 148:1015-1031. [PMID: 35113235 DOI: 10.1007/s00432-022-03923-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Radiotherapy (RT) is considered as a standard in the treatment of most solid cancers, including glioblastoma, lung, breast, rectal, prostate, colorectal, cervical, esophageal, and head and neck cancers. The main challenge in RT is tumor cell radioresistance associated with a high risk of locoregional relapse and distant metastasis. Despite significant progress in understanding mechanisms of radioresistance, its prediction and overcoming remain unresolved. This review presents the state-of-the-art for the potential universal biomarkers correlated to the radioresistance and poor outcome in different cancers. We describe radioresistance biomarkers functionally attributed to DNA repair, signal transduction, hypoxia, and angiogenesis. We also focus on high throughput genetic and proteomic studies, which revealed a set of molecular biomarkers related to radioresistance. In conclusion, we discuss biomarkers which are overlapped in most several cancers.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia.
| | - Militsa Rakina
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk, 634050, Tomsk, Russia
| | - Elena Ivanyuk
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Yulia Trushchuk
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Alena Chernyshova
- Department of Gynecologic Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| | - Evgeny Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, 634009, Tomsk, Russia
| |
Collapse
|
3
|
Lv T, Zhao Y, Jiang X, Yuan H, Wang H, Cui X, Xu J, Zhao J, Wang J. uPAR: An Essential Factor for Tumor Development. J Cancer 2021; 12:7026-7040. [PMID: 34729105 PMCID: PMC8558663 DOI: 10.7150/jca.62281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Tumorigenesis is closely related to the loss of control of many genes. Urokinase-type plasminogen activator receptor (uPAR), a glycolipid-anchored protein on the cell surface, is controlled by many factors in tumorigenesis and is expressed in many tumor tissues. In this review, we summarize the regulatory effects of the uPAR signaling pathway on processes and factors related to tumor progression, such as tumor cell proliferation, adhesion, metastasis, glycolysis, tumor microenvironment and angiogenesis. Overall, the evidence accumulated to date suggests that uPAR induction by tumor progression may be one of the most important factors affecting therapeutic efficacy. An improved understanding of the interactions between uPAR and its coreceptors in cancer will provide critical biomolecular information that may help to better predict the disease course and response to therapy.
Collapse
Affiliation(s)
- Tao Lv
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Ying Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Xinni Jiang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, Sichuan, China 610500
| | - Hemei Yuan
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Haibo Wang
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011.,Key Laboratory of Yunnan Province Universities of the Diversity and Ecological Adaptive Evolution for Animals and Plants on YunGui Plateau, Qujing Normal University, Qujing, China 655011
| | - Xuelin Cui
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jiashun Xu
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jingye Zhao
- College of Biological Resource and Food Engineering, Qujing Normal University, Qujing, Yunnan, China 655011
| | - Jianlin Wang
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, Yunnan, China 655011
| |
Collapse
|
4
|
Hypoxia in Lung Cancer Management: A Translational Approach. Cancers (Basel) 2021; 13:cancers13143421. [PMID: 34298636 PMCID: PMC8307602 DOI: 10.3390/cancers13143421] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Hypoxia is a common feature of lung cancers. Nonetheless, no guidelines have been established to integrate hypoxia-associated biomarkers in patient management. Here, we discuss the current knowledge and provide translational novel considerations regarding its clinical detection and targeting to improve the outcome of patients with non-small-cell lung carcinoma of all stages. Abstract Lung cancer represents the first cause of death by cancer worldwide and remains a challenging public health issue. Hypoxia, as a relevant biomarker, has raised high expectations for clinical practice. Here, we review clinical and pathological features related to hypoxic lung tumours. Secondly, we expound on the main current techniques to evaluate hypoxic status in NSCLC focusing on positive emission tomography. We present existing alternative experimental approaches such as the examination of circulating markers and highlight the interest in non-invasive markers. Finally, we evaluate the relevance of investigating hypoxia in lung cancer management as a companion biomarker at various lung cancer stages. Hypoxia could support the identification of patients with higher risks of NSCLC. Moreover, the presence of hypoxia in treated tumours could help clinicians predict a worse prognosis for patients with resected NSCLC and may help identify patients who would benefit potentially from adjuvant therapies. Globally, the large quantity of translational data incites experimental and clinical studies to implement the characterisation of hypoxia in clinical NSCLC management.
Collapse
|
5
|
The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int J Mol Sci 2021; 22:ijms22084111. [PMID: 33923400 PMCID: PMC8073738 DOI: 10.3390/ijms22084111] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Proteolysis is a key event in several biological processes; proteolysis must be tightly controlled because its improper activation leads to dramatic consequences. Deregulation of proteolytic activity characterizes many pathological conditions, including cancer. The plasminogen activation (PA) system plays a key role in cancer; it includes the serine-protease urokinase-type plasminogen activator (uPA). uPA binds to a specific cellular receptor (uPAR), which concentrates proteolytic activity at the cell surface, thus supporting cell migration. However, a large body of evidence clearly showed uPAR involvement in the biology of cancer cell independently of the proteolytic activity of its ligand. In this review we will first describe this multifunctional molecule and then we will discuss how uPAR can sustain most of cancer hallmarks, which represent the biological capabilities acquired during the multistep cancer development. Finally, we will illustrate the main data available in the literature on uPAR as a cancer biomarker and a molecular target in anti-cancer therapy.
Collapse
|
6
|
An individualized immune signature of pretreatment biopsies predicts pathological complete response to neoadjuvant chemoradiotherapy and outcomes in patients with esophageal squamous cell carcinoma. Signal Transduct Target Ther 2020; 5:182. [PMID: 32883946 PMCID: PMC7471268 DOI: 10.1038/s41392-020-00221-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
No clinically available biomarkers can predict pathological complete response (pCR) for esophageal squamous cell carcinomas (ESCCs) with neoadjuvant chemoradiotherapy (nCRT). Considering that antitumor immunity status is an important determinant for nCRT, we performed an integrative analysis of immune-related gene profiles from pretreatment biopsies and constructed the first individualized immune signature for pCR and outcome prediction of ESCCs through a multicenter analysis. During the discovery phase, 14 differentially expressed immune-related genes (DEIGs) with greater than a twofold change between pCRs and less than pCRs (<pCRs) were revealed from 28 pretreatment tumors in a Guangzhou cohort using microarray data. Ten DEIGs were verified by qPCR from 30 cases in a Beijing discovery cohort. Then, a four-gene-based immune signature (SERPINE1, MMP12, PLAUR, and EPS8) was built based on the verified DEIGs from 71 cases in a Beijing training cohort, and achieved a high accuracy with an area under the receiver operating characteristic curve (AUC) of 0.970. The signature was further validated in an internal validation cohort and an integrated external cohort (Zhengzhou and Anyang cohorts) with AUCs of 0.890 and 0.859, respectively. Importantly, a multivariate analysis showed that the signature was the only independent predictor for pCR. In addition, patients with high predictive scores showed significantly longer overall and relapse-free survival across multiple centers (P < 0.05). This is the first, validated, and clinically applicable individualized immune signature of pCR and outcome prediction for ESCCs with nCRT. Further prospective validation may facilitate the combination of nCRT and immunotherapy.
Collapse
|
7
|
Prognostic value of plasma fibrinogen and D-dimer levels in patients with surgically resected non-small cell lung cancer. Surg Today 2020; 50:1427-1433. [PMID: 32409869 DOI: 10.1007/s00595-020-02019-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/26/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A high plasma level of either fibrinogen or D-dimer has been shown to correlate with a poor prognosis in patients with surgically resected non-small-cell lung cancer (NSCLC). The present study aimed to identify whether or not both markers combined had a superior prognostic value to either alone. METHODS Of the 1344 patients who underwent surgical resection for NSCLC at our institution between January 2007 and December 2016, 1065 had preoperative plasma fibrinogen and D-dimer data available and were included in the analysis. RESULTS The recurrence-free survival (RFS) and overall survival (OS) rates were similar for patients with high plasma levels of either or both fibrinogen (> 4.0 g/L) or D-dimer (> 1.0 μg/mL); therefore, these three groups were combined for a further analysis into a single group with high plasma levels of either or both proteins. The high-level group had significantly lower 5-year RFS (53% vs. 68%, p < 0.001) and 5-year OS (65% vs. 80%, p < 0.001) rates than patients with normal plasma levels of fibrinogen and D-dimer (control group). CONCLUSIONS Our results suggest that preoperative tests for both plasma fibrinogen and D-dimer are necessary to identify patients with surgically resected NSCLC likely to have a poor RFS and OS.
Collapse
|
8
|
Tumor regression during radiotherapy for non-small cell lung cancer patients using cone-beam computed tomography images. Strahlenther Onkol 2019; 196:159-171. [PMID: 31559481 PMCID: PMC6994551 DOI: 10.1007/s00066-019-01522-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 09/12/2019] [Indexed: 01/25/2023]
Abstract
PURPOSE Previous literature has reported contradicting results regarding the relationship between tumor volume changes during radiotherapy treatment for non-small cell lung cancer (NSCLC) patients and locoregional recurrence-free rate or overall survival. The aim of this study is to validate the results from a previous study by using a different volume extraction procedure and evaluating an external validation dataset. METHODS For two datasets of 94 and 141 NSCLC patients, gross tumor volumes were determined manually to investigate the relationship between tumor volume regression and locoregional control using Kaplan-Meier curves. For both datasets, different subgroups of patients based on histology and chemotherapy regimens were also investigated. For the first dataset (n = 94), automatically determined tumor volumes were available from a previously published study to further compare their correlation with updated clinical data. RESULTS A total of 70 out of 94 patients were classified into the same group as in the previous publication, splitting the dataset based on median tumor regression calculated by the two volume extraction methods. Non-adenocarcinoma patients receiving concurrent chemotherapy with large tumor regression show reduced locoregional recurrence-free rates in both datasets (p < 0.05 in dataset 2). For dataset 2, the opposite behavior is observed for patients not receiving chemotherapy, which was significant for overall survival (p = 0.01) but non-significant for locoregional recurrence-free rate (p = 0.13). CONCLUSION The tumor regression pattern observed during radiotherapy is not only influenced by irradiation but depends largely on the delivered chemotherapy schedule, so it follows that the relationship between patient outcome and the degree of tumor regression is also largely determined by the chemotherapy schedule. This analysis shows that the relationship between tumor regression and outcome is complex, and indicates factors that could explain previously reported contradicting findings. This, in turn, will help guide future studies to fully understand the relationship between tumor regression and outcome.
Collapse
|
9
|
Liu WJ, Zhou L, Liang ZY, Zhou WX, You L, Zhang TP, Zhao YP. Plasminogen Activator Inhibitor 1 as a Poor Prognostic Indicator in Resectable Pancreatic Ductal Adenocarcinoma. Chin Med J (Engl) 2019; 131:2947-2952. [PMID: 30539907 PMCID: PMC6302640 DOI: 10.4103/0366-6999.247211] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Background Plasminogen activator inhibitor 1 (PAI-1) was previously established to impact several phenotypes in many kinds of cancer, including pancreatic cancer. However, its prognostic significance in pancreatic ductal adenocarcinoma (PDAC) needs support of further evidence. This study was designed to address the issue. Methods PAI-1 expression was detected by tissue microarray-based immunohistochemical staining in formalin-fixed paraffin-embedded specimens from 93 PDAC patients with surgical resection from September 2004 to December 2008. Its relationships with clinicopathologic variables and tumor-specific survival (TSS) were further evaluated using Chi-square, Kaplan-Meier, log-rank, as well as Cox regression analyses. Results Expression of PAI-1 was much higher in tumor than that in nontumor tissues, based on comparison of all samples and 74 matched ones (95 [47.5, 180] vs. 80 [45, 95], Z = -2.439, P = 0.015 and 100 [46.9, 182.5] vs. 80 [45, 95], Z = -2.594, P = 0.009, respectively). In addition, tumoral PAI-1 expression was positively associated with N stage (22/35 for N1 vs. 21/51 for N0, χ2 = 3.903, P = 0.048). Univariate analyses showed that TSS of patients with high PAI-1 tumors was significantly poorer than that of those with low PAI-1 tumors (log rank value = 19.00, P < 0.0001). In multivariate Cox regression test, PAI-1 expression was identified as an independent predictor for long-term prognosis of resectable PDAC (hazard ratio = 2.559, 95% confidence interval = 1.499-4.367, P = 0.001). Conclusion These results suggest that expression of PAI-1 is upregulated in PDAC and might serve as a poor prognostic indicator.
Collapse
Affiliation(s)
- Wen-Jing Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li Zhou
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhi-Yong Liang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei-Xun Zhou
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tai-Ping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yu-Pei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
10
|
Ouyang X, Huang Y, Jin X, Zhao W, Hu T, Wu F, Huang J. Osteopontin promotes cancer cell drug resistance, invasion, and lactate production and is associated with poor outcome of patients with advanced non-small-cell lung cancer. Onco Targets Ther 2018; 11:5933-5941. [PMID: 30275702 PMCID: PMC6157984 DOI: 10.2147/ott.s164007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Osteopontin (OPN), a member of the small integrin binding ligand N-linked glycoprotein family, has been analyzed in numerous types of human malignancy. Purpose The present study detected the expression levels of OPN and evaluated its role in tumor progression in patients with non-small cell lung cancer (NSCLC). Patients and methods OPN expression levels were detected using immunohistochemistry in 101 NSCLC tumors. The mRNA and protein levels have significant difference between advanced NSCLC and stage I/II NSCLC. The drug resistance, invasive ability and lactate production of NSCLC cancer cell lines (A549 and SK-MES-1) were detected in cancer cells with the disturbance of OPN. Results Immunostaining indicated that OPN was primarily expressed in the cytoplasm of NSCLC cells. Moreover, OPN correlates with NSCLC clinical traits. The results demonstrated that OPN expression levels significantly correlated with cancer differentiation, distant metastasis and the efficacy of platinum-based treatment. Notably, the results identified OPN expression levels as a potential factor for predicting the response of cells to first-line platinum-based chemotherapy using multivariate analysis, as well as predicting cancer differentiation and distant metastasis. Additionally, the abrogation of OPN levels reduced lactate production in NSCLC cells and occurred along side with the downregulation of lactate dehydrogenase A (LDHA). Conclusion The results of the current study suggest that OPN may be able to predict poor prognosis and cisplatin resistance in patients.
Collapse
Affiliation(s)
- Xiaoping Ouyang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China, .,Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Yumin Huang
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Xing Jin
- Department of Clinical Laboratory, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Wei Zhao
- Department of Clinical Biochemistry, School of Laboratory Medicine, Chengdu Medical College, Chengdu, People's Republic of China.,Department of Pulmonary Medicine, Jinling Hospital, Nanjing University School of Medicine, Nanjing, People's Republic of China
| | - Tao Hu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Feng Wu
- Department of Respiratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, People's Republic of China
| | - Jianan Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China,
| |
Collapse
|