1
|
Huang SX, Yang SH, Zeng B, Li XH. Optimization of sub-arc collimator angles in volumetric modulated arc therapy: a heatmap-based blocking index approach for multiple brain metastases. Phys Eng Sci Med 2024; 47:1639-1650. [PMID: 39235667 DOI: 10.1007/s13246-024-01477-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024]
Abstract
To develop and assess an automated Sub-arc Collimator Angle Optimization (SACAO) algorithm and Cumulative Blocking Index Ratio (CBIR) metrics for single-isocenter coplanar volumetric modulated arc therapy (VMAT) to treat multiple brain metastases. This study included 31 patients with multiple brain metastases, each having 2 to 8 targets. Initially, for each control point, the MLC blocking index was calculated at different collimator angles, resulting in a two-dimensional heatmap. Optimal sub-arc segmentation and collimator angle optimization were achieved using an interval dynamic programming algorithm. Subsequently, VMAT plans were designed using two approaches: SACAO and the conventional Full-Arc Fixed Collimator Angle. CBIR was calculated as the ratio of the cumulative blocking index between the two plan approaches. Finally, dosimetric and planning parameters of both plans were compared. Normal brain tissue, brainstem, and eyes received better protection in the SACAO group (P < 0.05).Query Notable reductions in the SACAO group included 11.47% in gradient index (GI), 15.03% in monitor units (MU), 15.73% in mean control point Jaw area (AJaw,mean), and 19.14% in mean control point Jaw-X width (WJaw-X,mean), all statistically significant (P < 0.001). Furthermore, CBIR showed a strong negative correlation with the degree of plan improvement. The SACAO method enhanced protection of normal organs while improving transmission efficiency and optimization performance of VMAT. In particular, the CBIR metrics show promise in quantifying the differences specifically in the 'island blocking problem' between SACAO and conventional VMAT, and in guiding the enhanced application of the SACAO algorithm.
Collapse
Affiliation(s)
- Shi-Xiong Huang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China
| | - Song-Hua Yang
- Department of Clinical Pharmaceutical Research Institution,Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Biao Zeng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410013, Hunan, People's Republic of China.
| | - Xiao-Hua Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
2
|
Huang SX, Yang SH, Zeng B, Li XH. Personalized selection of unequal sub-arc collimator angles in VMAT for multiple brain metastases. Appl Radiat Isot 2024; 214:111513. [PMID: 39276636 DOI: 10.1016/j.apradiso.2024.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
PURPOSE Investigating the effects of unequal sub-arc personalized collimator angle selection on the quality of Volumetric Modulated Arc Therapy (VMAT) plans for treating multiple brain metastases. METHODS This study included 21 patients, each with 2-4 target volumes of multiple brain metastases. Two stereotactic radiotherapy (SRT) approaches were utilized: sub-arc collimator VMAT (SAC-VMAT) and fixed collimator VMAT (FC-VMAT). In the SAC-VMAT group, multi-leaf collimators (MLC) shaped the target area, dividing the full arc into four unequal sub-arcs under the beam's eye view (BEV). Each sub-arc had an appropriate collimator angle selected to mitigate 'island blocking problems'. Conversely, the FC-VMAT group used a fixed collimator angle of 15° or 345°. A comparative analysis of the dosimetric parameters of the target volumes and normal tissues, along with the monitor units (MU), was conducted between the two groups. RESULTS The mean dose and dose-volume to normal brain tissue (2-26 Gy, with a step of 2 Gy) were significantly lower in the SAC-VMAT group (P < 0.01). There was no statistical difference between the two groups in dose to the target volumes, conformity index (CI), homogeneity index (HI), and other normal tissues (P > 0.05). Compared with the FA-VMAT group, the SAC-VMAT group significantly reduced the gradient index (GI) (4.5 ± 0.59 vs 5.2 ± 0.75, P < 0.001) and MU (1774.33 ± 181.77 vs 2001.0 ± 344.86, P < 0.001). Notably, with an increase in the number of PTV, the SAC-VMAT group demonstrated more significant improvements in the dose-volume of normal brain tissue, GI, and MU. CONCLUSIONS In this study, personalized selection of the unequal sub-arc collimator angle ensured the prescribed dose to the PTV, CI, and HI, while significantly reducing the GI, MU, and the dose to normal brain tissue in the VMAT plan for multi-target brain metastases in the cohort of cases with 2-4 target volumes. Particularly as the number of targets increase, the advantages of this method become more pronounced.
Collapse
Affiliation(s)
- Shi-Xiong Huang
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China; Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Song-Hua Yang
- Department of Clinical Pharmaceutical Research Institution, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Biao Zeng
- Department of Radiation Oncology, Hunan Cancer Hospital/the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| | - Xiao-Hua Li
- School of Nuclear Science and Technology, University of South China, Hengyang, 421001, China.
| |
Collapse
|
3
|
Schöpe M, Sahlmann J, Jaschik S, Findeisen A, Klautke G. Comparison of patient setup accuracy for optical surface-guided and X-ray-guided imaging with respect to the impact on intracranial stereotactic radiotherapy. Strahlenther Onkol 2024; 200:60-70. [PMID: 37971534 DOI: 10.1007/s00066-023-02170-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 10/11/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE The objective of this work is to estimate the patient positioning accuracy of a surface-guided radiation therapy (SGRT) system using an optical surface scanner compared to an X‑ray-based imaging system (IGRT) with respect to their impact on intracranial stereotactic radiotherapy (SRT) and intracranial stereotactic radiosurgery (SRS). METHODS Patient positioning data, both acquired with SGRT and IGRT systems at the same linacs, serve as a basis for determination of positioning accuracy. A total of 35 patients with two different open face masks (578 datasets) were positioned using X‑ray stereoscopic imaging and the patient position inside the open face mask was recorded using SGRT. The measurement accuracy of the SGRT system (in a "standard" and an SRS mode with higher resolution) was evaluated using both IGRT and SGRT patient positioning datasets taking into account the measurement errors of the X‑ray system. Based on these clinically measured datasets, the positioning accuracy was estimated using Monte Carlo (MC) simulations. The relevant evaluation criterion, as standard of practice in cranial SRT, was the 95th percentile. RESULTS The interfractional measurement displacement vector of the SGRT system, σSGRT, in high resolution mode was estimated at 2.5 mm (68th percentile) and 5 mm (95th percentile). If the standard resolution was used, σSGRT increased by about 20%. The standard deviation of the axis-related σSGRT of the SGRT system ranged between 1.5 and 1.8 mm interfractionally and 0.5 and 1.0 mm intrafractionally. The magnitude of σSGRT is mainly due to the principle of patient surface scanning and not due to technical limitations or vendor-specific issues in software or hardware. Based on the resulting σSGRT, MC simulations served as a measure for the positioning accuracy for non-coplanar couch rotations. If an SGRT system is used as the only patient positioning device in non-coplanar fields, interfractional positioning errors of up to 6 mm and intrafractional errors of up to 5 mm cannot be ruled out. In contrast, MC simulations resulted in a positioning error of 1.6 mm (95th percentile) using the IGRT system. The cause of positioning errors in the SGRT system is mainly a change in the facial surface relative to a defined point in the brain. CONCLUSION In order to achieve the necessary geometric accuracy in cranial stereotactic radiotherapy, use of an X‑ray-based IGRT system, especially when treating with non-coplanar couch angles, is highly recommended.
Collapse
Affiliation(s)
- Michael Schöpe
- Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany
| | - Jacob Sahlmann
- Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany
| | - Stefan Jaschik
- Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany.
| | - Anne Findeisen
- Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany
| | - Gunther Klautke
- Department of Radiation Oncology, Klinikum Chemnitz gGmbH, Bürgerstraße 2, 09113, Chemnitz, Germany
| |
Collapse
|
4
|
Liang S, Liu X, Liu J, Na F, Lai J, Du L, Gong Y, Zhu J, Huang M, Zhou X, Xu Y, Zhou L. Optimal timing of hypofractionated stereotactic radiotherapy for epidermal growth factor receptor-mutated non-small-cell lung cancer patients with brain metastases. Asia Pac J Clin Oncol 2023; 19:731-738. [PMID: 37088960 DOI: 10.1111/ajco.13957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND For epidermal growth factor receptor (EGFR)-mutated non-small-cell lung cancer (NSCLC) patients with limited brain metastases (BMs), who eventually receive both tyrosine kinase inhibitors (TKIs) treatment and brain radiotherapy, the optimal timing of radiotherapy is not clear. The present retrospective analysis aimed to partly solve this problem. METHODS In total 84 EGFR-mutated NSCLC patients with limited BMs, who received both TKI treatment and brain hypofractionated stereotactic radiotherapy (HSRT), were enrolled. Patients were divided into three groups based on whether the HSRT was administrated 2 weeks before or after the beginning of TKI treatment (upfront HSRT), when intracranial lesions stabilized after TKI treatment (consolidative HSRT), or when the intracranial disease progressed after TKI treatment (salvage HSRT). The clinical efficacy and toxicities were evaluated. RESULTS The median intracranial progression-free survival (iPFS) and overall PFS calculated from the initiation of HSRT (iPFS1 and PFS1) of all patients were 17.5 and 13.1 months, respectively. The median iPFS and PFS calculated from the initiation of TKI treatment (iPFS2 and PFS2) of all patients were 24.1 and 18.4 months, respectively. Compared to consolidative and salvage HSRT, upfront HSRT improved iPFS1 (not reached vs. 17.5 months vs. 11.0 months, p < 0.001) and PFS1 (18.4 months vs. 9.1 months vs. 7.9 months, p < 0.001), and reduced the initial intracranial failure rate (12.5% vs. 48.1% vs. 56%, p < 0.001). However, there were no significant differences between the three groups for iPFS2, PFS2, and overall survival. Hepatic metastases and diagnosis-specific Graded Prognostic Assessment (ds-GPA) at 2-3 were poor prognostic factors. CONCLUSION For patients who receive both TKI treatment and brain HSRT, the timing of HSRT does not seem to influence the eventual therapeutic effect. Further validation in prospective clinical studies is needed.
Collapse
Affiliation(s)
- Shimeng Liang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoqin Liu
- Department of Oncology, Jintang First People's Hospital, Jintang, China
| | - Jia Liu
- Department of Oncology, Chengdu First People's Hospital, Chengdu, China
| | - Feifei Na
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jialu Lai
- Department of Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Leiya Du
- Department of Oncology, Yibin Second People's Hospital, Yibin, China
| | - Youling Gong
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiang Zhu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Meijuan Huang
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaojuan Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Xu
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Zhou
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Lai JL, Liu SP, Jiang XX, Liu J, Li A, Li B, Li XK, Ye XJ, Lei KJ, Zhou L. Can Optical Surface Imaging Replace Non-coplanar Cone-beam Computed Tomography for Non-coplanar Set-up Verification in Single-isocentre Non-coplanar Stereotactic Radiosurgery and Hypofractionated Stereotactic Radiotherapy for Single and Multiple Brain Metastases? Clin Oncol (R Coll Radiol) 2023; 35:e657-e665. [PMID: 37778972 DOI: 10.1016/j.clon.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/03/2023] [Accepted: 09/18/2023] [Indexed: 10/03/2023]
Abstract
AIMS To conduct a direct comparison regarding the non-coplanar positioning accuracy between the optical surface imaging system Catalyst HDTM and non-coplanar cone-beam computed tomography (NC-CBCT) in intracranial single-isocentre non-coplanar stereotactic radiosurgery (SRS) and hypofractionated stereotactic radiotherapy (HSRT). MATERIALS AND METHODS Twenty patients with between one and five brain metastases who underwent single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) SRS or HSRT were enrolled in this study. For each non-zero couch angle, both Catalyst HDTM and NC-CBCT were used for set-up verification prior to beam delivery. The set-up error reported by Catalyst HDTM was compared with the set-up error derived from NC-CBCT, which was defined as the gold standard. Additionally, the dose delivery accuracy of each non-coplanar field after using Catalyst HDTM and NC-CBCT for set-up correction was measured with SRS MapCHECKTM. RESULTS The median set-up error differences (absolute values) between the two positioning methods were 0.30 mm, 0.40 mm, 0.50 mm, 0.15°, 0.10° and 0.10° in the vertical, longitudinal, lateral, yaw, pitch and roll directions, respectively. The largest absolute set-up error differences regarding translation and rotation were 1.5 mm and 1.1°, which occurred in the longitudinal and yaw directions, respectively. Only 35.71% of the pairs of measurements were within the tolerance of 0.5 mm and 0.5° simultaneously. In addition, the non-coplanar field with NC-CBCT correction yielded a higher gamma passing rate than that with Catalyst HDTM correction (P < 0.05), especially for evaluation criteria of 1%/1 mm with a median increase of 12.8%. CONCLUSIONS Catalyst HDTM may not replace NC-CBCT for non-coplanar set-up corrections in single-isocentre NC-VMAT SRS and HSRT for single and multiple brain metastases. The potential role of Catalyst HDTM in intracranial SRS/HSRT needs to be further studied in the future.
Collapse
Affiliation(s)
- J L Lai
- Radiotherapy Physics & Technology Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - S P Liu
- Radiotherapy Physics & Technology Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X X Jiang
- Radiotherapy Physics & Technology Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - J Liu
- Department of Oncology, Chengdu First People's Hospital, Chengdu, Sichuan, China
| | - A Li
- Radiotherapy Physics & Technology Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - B Li
- Radiotherapy Physics & Technology Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X K Li
- West China Clinical Medical College of Sichuan University, Chengdu, Sichuan, China
| | - X J Ye
- Department of Oncology, Yibin Second People's Hospital, Yibin, Sichuan, China
| | - K J Lei
- Department of Oncology, Yibin Second People's Hospital, Yibin, Sichuan, China
| | - L Zhou
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Lai J, Liu S, Liu J, Li X, Chen J, Jia Y, Lei K, Zhou L. Clinical Feasibility of Using Single-isocentre Non-coplanar Volumetric Modulated Arc Therapy Combined with Non-coplanar Cone Beam Computed Tomography in Hypofractionated Stereotactic Radiotherapy for Five or Fewer Multiple Intracranial Metastases. Clin Oncol (R Coll Radiol) 2023; 35:408-416. [PMID: 37002009 DOI: 10.1016/j.clon.2023.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/08/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023]
Abstract
AIMS To evaluate the clinical feasibility of single-isocentre non-coplanar volumetric modulated arc therapy (NC-VMAT) with non-coplanar cone beam computed tomography (NC-CBCT) in hypofractionated stereotactic radiotherapy (HSRT) for five or fewer multiple brain metastases. MATERIALS AND METHODS Ten patients with multiple brain metastases who underwent single-isocentre NC-VMAT HSRT with limited couch rotations (within ±45°) and NC-CBCT with a limited scanning range (150-200°) were included in the current analysis. Conventional single-isocentre coplanar VMAT (C-VMAT) plans were generated and compared with NC-VMAT plans. The intracranial response and toxicities of single-isocentre NC-VMAT HSRT were also evaluated. RESULTS Compared with C-VMAT, NC-VMAT generated better target conformity (P < 0.05), a lower gradient index (P < 0.05) and better normal brain tissue sparing, especially for volume ≥12 Gy, with a median reduction of 12.65 cm3. For 45° couch rotation, NC-CBCT produced sufficient image quality to differentiate bony anatomy, even with a 150° scanning range, which could be successfully used for patient set-up correction. After NC-CBCT, 57.1% of the measured non-coplanar set-up errors exceeded the threshold value. The median gamma passing rate of NC-VMAT was higher than that of C-VMAT plans (P < 0.05). The non-coplanar beam of NC-VMAT with NC-CBCT corrections exhibited superior gamma passing rate to that without NC-CBCT corrections. The intracranial objective response rate and disease control rate for all patients were 80% (8/10) and 100% (10/10), respectively, and the most common toxicities were headache (20%) and dizziness (20%). CONCLUSION NC-VMAT with limited couch rotation (within ±45°) combined with NC-CBCT with a limited scanning range (150-200°) markedly improves the plan quality and set-up accuracy in single-isocentre multiple-target HSRT.
Collapse
|
7
|
Kuntz L, Le Fèvre C, Jarnet D, Keller A, Meyer P, Thiery A, Cebula H, Noel G, Antoni D. Acute toxicities and cumulative dose to the brain of repeated sessions of stereotactic radiotherapy (SRT) for brain metastases: a retrospective study of 184 patients. Radiat Oncol 2023; 18:7. [PMID: 36627646 PMCID: PMC9830690 DOI: 10.1186/s13014-022-02194-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Stereotactic radiation therapy (SRT) is a focal treatment for brain metastases (BMs); thus, 20 to 40% of patients will require salvage treatment after an initial SRT session, either because of local or distant failure. SRT is not exempt from acute toxicity, and the acute toxicities of repeated SRT are not well known. The objective of this study was to analyze the acute toxicities of repeated courses of SRT and to determine whether repeated SRT could lead to cumulative brain doses equivalent to those of whole-brain radiotherapy (WBRT). MATERIAL AND METHODS Between 2010 and 2020, data from 184 patients treated for 915 BMs via two to six SRT sessions for local or distant BM recurrence without previous or intercurrent WBRT were retrospectively reviewed. Patients were seen via consultations during SRT, and the delivered dose, the use of corticosteroid therapy and neurological symptoms were recorded and rated according to the CTCAEv4. The dosimetric characteristics of 79% of BMs were collected, and summation plans of 76.6% of BMs were created. RESULTS 36% of patients developed acute toxicity during at least one session. No grade three or four toxicity was registered, and grade one or two cephalalgy was the most frequently reported symptom. There was no significant difference in the occurrence of acute toxicity between consecutive SRT sessions. In the multivariate analysis, acute toxicity was associated with the use of corticosteroid therapy before irradiation (OR = 2.6; p = 0.01), BMV grade (high vs. low grade OR = 5.17; p = 0.02), and number of SRT sessions (3 SRT vs. 2 SRT: OR = 2.64; p = 0.01). The median volume equivalent to the WBRT dose (VWBRT) was 47.9 ml. In the multivariate analysis, the VWBRT was significantly associated with the total GTV (p < 0.001) and number of BMs (p < 0.001). Even for patients treated for more than ten cumulated BMs, the median BED to the brain was very low compared to the dose delivered during WBRT. CONCLUSION Repeated SRT for local or distant recurrent BM is well tolerated, without grade three or four toxicity, and does not cause more acute neurological toxicity with repeated SRT sessions. Moreover, even for patients treated for more than ten BMs, the VWBRT is low.
Collapse
Affiliation(s)
- L. Kuntz
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - C. Le Fèvre
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Jarnet
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Keller
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - P. Meyer
- grid.512000.6Medical Physics Unit, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - A. Thiery
- grid.512000.6Medical Information Department, Institut de Cancérologie Strasbourg Europe (ICANS), 3 rue de la Porte de L’Hôpital, 67065 Strasbourg Cedex, France
| | - H. Cebula
- grid.412220.70000 0001 2177 138XDepartment of Neurosurgery, University Hospitals of Strasbourg, 1 Avenue Molière, 67200 Strasbourg, France
| | - G. Noel
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| | - D. Antoni
- grid.512000.6Radiation Therapy University Department, Institut de Cancérologie Strasbourg Europe (ICANS), 17 rue Albert Calmette, 67200 Strasbourg, France
| |
Collapse
|
8
|
Using a fixed-jaw technique to achieve superior delivery accuracy and plan quality in single-isocenter multiple-target stereotactic radiosurgery for brain metastases. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Salzmann M, Hess K, Lang K, Enk AH, Jordan B, Hassel JC. Long-term neurocognitive function after whole-brain radiotherapy in patients with melanoma brain metastases in the era of immunotherapy. Strahlenther Onkol 2022; 198:884-891. [PMID: 35546362 PMCID: PMC9515012 DOI: 10.1007/s00066-022-01950-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Whole-brain radiotherapy (WBRT) used to be standard of care for patients suffering from melanoma brain metastases (MBM) and may still be applicable in selected cases. Deterioration of neurocognitive function (NCF) is commonly seen during and after WBRT. Knowledge on long-term effects in melanoma patients is limited due to short survival rates. With the introduction of immune checkpoint inhibitors, patients may experience ongoing disease control, emphasizing the need for paying more attention to potential long-term adverse effects. METHODS In this single-center study, we identified in a period of 11 years all long-term survivors of MBM who received WBRT at least 1 year prior to inclusion. NCF was assessed by Neuropsychological Assessment Battery (NAB) screening and detailed neurological exam; confounders were documented. RESULTS Eight patients (median age 55 years) could be identified with a median follow-up of 5.4 years after WBRT. Six patients reported no subjective neurological impairment. NAB screening revealed an average-range score in 5/8 patients. In 3/8 patients a NAB score below average was obtained, correlating with subjective memory deficits in 2 patients. In these patients, limited performance shown in modalities like memory function, attention, and spatial abilities may be considerably attributed to metastasis localization itself. Six out of 8 patients were able to return to their previous work. CONCLUSION Five of 8 long-term survivors with MBM after WBRT experienced little to no restriction in everyday activities. In 3 out of 8 patients, cognitive decline was primarily explained by localization of the metastases in functionally relevant areas of the brain. The results of our small patient cohort do not support general avoidance of WBRT for treatment of brain metastases. However, long-term studies including pretreatment NCF tests are needed to fully analyze the long-term neurocognitive effects of WBRT.
Collapse
Affiliation(s)
- Martin Salzmann
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| | - Klaus Hess
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kristin Lang
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander H Enk
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Berit Jordan
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Neurology, Halle University Hospital, Halle (Saale), Germany
| | - Jessica C Hassel
- Department of Dermatology and National Center for Tumor Diseases, University Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| |
Collapse
|