1
|
Jesse S, Kuhlmann L, Hildebrand LS, Magelssen H, Schmaus M, Timmermann B, Andres S, Fietkau R, Distel LV. Increased Radiation Sensitivity in Patients with Phelan-McDermid Syndrome. Cells 2023; 12:cells12050820. [PMID: 36899955 PMCID: PMC10000830 DOI: 10.3390/cells12050820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/09/2023] Open
Abstract
Phelan-McDermid syndrome is an inherited global developmental disorder commonly associated with autism spectrum disorder. Due to a significantly increased radiosensitivity, measured before the start of radiotherapy of a rhabdoid tumor in a child with Phelan-McDermid syndrome, the question arose whether other patients with this syndrome also have increased radiosensitivity. For this purpose, the radiation sensitivity of blood lymphocytes after irradiation with 2Gray was examined using the G0 three-color fluorescence in situ hybridization assay in a cohort of 20 patients with Phelan-McDermid syndrome from blood samples. The results were compared to healthy volunteers, breast cancer patients and rectal cancer patients. Independent of age and gender, all but two patients with Phelan-McDermid syndrome showed significantly increased radiosensitivity, with an average of 0.653 breaks per metaphase. These results correlated neither with the individual genetic findings nor with the individual clinical course, nor with the respective clinical severity of the disease. In our pilot study, we saw a significantly increased radiosensitivity in lymphocytes from patients with Phelan-McDermid syndrome, so pronounced that a dose reduction would be recommended if radiotherapy had to be performed. Ultimately, the question arises as to the interpretation of these data. There does not appear to be an increased risk of tumors in these patients, since tumors are rare overall. The question, therefore, arose as to whether our results could possibly be the basis for processes, such as aging/preaging, or, in this context, neurodegeneration. There are no data on this so far, but this issue should be pursued in further fundamentally based studies in order to better understand the pathophysiology of the syndrome.
Collapse
Affiliation(s)
- Sarah Jesse
- Department of Neurology, Ulm University, 89081 Ulm, Germany
| | - Lukas Kuhlmann
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Laura S. Hildebrand
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Henriette Magelssen
- Department of Oncology, Oslo University Hospital (The Norwegian Radium Hospital), 0424 Oslo, Norway
| | - Martina Schmaus
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Beate Timmermann
- Clinic for Particle Therapy at WPE, University Hospital Essen, 45147 Essen, Germany
| | | | - Rainer Fietkau
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
| | - Luitpold V. Distel
- Department of Radiation Biology, Erlangen University, 91054 Erlangen, Germany
- Correspondence:
| |
Collapse
|
2
|
Bäumer C, Frakulli R, Kohl J, Nagaraja S, Steinmeier T, Worawongsakul R, Timmermann B. Adaptive Proton Therapy of Pediatric Head and Neck Cases Using MRI-Based Synthetic CTs: Initial Experience of the Prospective KiAPT Study. Cancers (Basel) 2022; 14:cancers14112616. [PMID: 35681594 PMCID: PMC9179385 DOI: 10.3390/cancers14112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 12/07/2022] Open
Abstract
BACKGROUND AND PURPOSE Interfractional anatomical changes might affect the outcome of proton therapy (PT). We aimed to prospectively evaluate the role of Magnetic Resonance Imaging (MRI) based adaptive PT for children with tumors of the head and neck and base of skull. METHODS MRI verification images were acquired at half of the treatment course. A synthetic computed tomography (CT) image was created using this MRI and a deformable image registration (DIR) to the reference MRI. The methodology was verified with in-silico phantoms and validated using a clinical case with a shrinking cystic hygroma on the basis of dosimetric quantities of contoured structures. The dose distributions on the verification X-ray CT and on the synthetic CT were compared with a gamma-index test using global 2 mm/2% criteria. RESULTS Regarding the clinical validation case, the gamma-index pass rate was 98.3%. Eleven patients were included in the clinical study. The most common diagnosis was rhabdomyosarcoma (73%). Craniofacial tumor site was predominant in 64% of patients, followed by base of skull (18%). For one individual case the synthetic CT showed an increase in the median D2 and Dmax dose on the spinal cord from 20.5 GyRBE to 24.8 GyRBE and 14.7 GyRBE to 25.1 GyRBE, respectively. Otherwise, doses received by OARs remained relatively stable. Similarly, the target volume coverage seen by D95% and V95% remained unchanged. CONCLUSIONS The method of transferring anatomical changes from MRIs to a synthetic CTs was successfully implemented and validated with simple, commonly available tools. In the frame of our early results on a small cohort, no clinical relevant deterioration for neither PTV coverage nor an increased dose burden to OARs occurred. However, the study will be continued to identify a pediatric patient cohort, which benefits from adaptive treatment planning.
Collapse
Affiliation(s)
- Christian Bäumer
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany
- Correspondence:
| | - Rezarta Frakulli
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Jessica Kohl
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
| | - Sindhu Nagaraja
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Theresa Steinmeier
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| | - Rasin Worawongsakul
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- Department of Particle Therapy, 45147 Essen, Germany
- Radiation Oncology Unit, Department of Diagnostic and Therapeutic Radiology, Ramathibodi Hospital, Mahidol University, Nakhon 73170, Thailand
| | - Beate Timmermann
- West German Proton Therapy Centre Essen, 45147 Essen, Germany; (R.F.); (J.K.); (S.N.); (T.S.); (R.W.); (B.T.)
- University Hospital Essen, 45147 Essen, Germany
- West German Cancer Center (WTZ), 45147 Essen, Germany
- German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Department of Particle Therapy, 45147 Essen, Germany
| |
Collapse
|
3
|
Trybula SJ, Youngblood MW, Kemeny HR, Clark JR, Karras CL, Hartsell WF, Tomita T. Radiation Induced Cavernomas in the Treatment of Pediatric Medulloblastoma: Comparative Study Between Proton and Photon Radiation Therapy. Front Oncol 2021; 11:760691. [PMID: 34707999 PMCID: PMC8542782 DOI: 10.3389/fonc.2021.760691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
Radiation induced cavernomas among children with medulloblastoma are common following external beam radiation (XRT) treatment with either photon or proton beams. However, with the increased utilization of proton beam therapy over the last decade we sought to determine if there was any difference in the development or natural history of these cavernous malformations (CM) or CM-like lesions. We performed a retrospective analysis of 79 patients from 2003 to 2019 who had undergone resection of medulloblastoma and subsequent XRT (30 photon or 49 proton beam therapy). The average age of patients at radiation treatment was 8.7 years old. Average follow up for patients who received photon beam therapy was 105 months compared to 56.8 months for proton beam therapy. A total of 68 patients (86.1%) developed post-radiation CMs, including 26 photon and 42 proton patients (86.7% and 85.7% respectively). The time to cavernoma development was significantly different, with a mean of 40.2 months for photon patients and 18.2 months for proton patients (p = 1.98 x 10-4). Three patients, one who received photon and two who received proton beam radiation, required surgical resection of a cavernoma. Although CM or CM-like lesions are detected significantly earlier in patients after receiving proton beam therapy, there appears to be no significant difference between the two radiation therapy modalities in the development of significant CM requiring surgical resection or intervention other than continued follow up and surveillance.
Collapse
Affiliation(s)
- S Joy Trybula
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Mark W Youngblood
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Hanna R Kemeny
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Jeffrey R Clark
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Constantine L Karras
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - William F Hartsell
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.,Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|